forked from vitalif/vitastor
Compare commits
1 Commits
master
...
lrc-matrix
Author | SHA1 | Date |
---|---|---|
Vitaliy Filippov | 61ae4e903a |
|
@ -0,0 +1,2 @@
|
|||
mat: mat.c
|
||||
gcc -O3 -I/usr/include/jerasure -o mat mat.c -lJerasure
|
|
@ -0,0 +1,277 @@
|
|||
#include <jerasure/reed_sol.h>
|
||||
#include <jerasure.h>
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
|
||||
// Generate LRC matrix: (groups*local + global) code rows with (data_drives) columns
|
||||
// w should be >= log2(data_drives + groups*local + global), but not necessary 8/16/32
|
||||
int* reed_sol_vandermonde_lrc_matrix(int data_drives, int groups, int local, int global, int w)
|
||||
{
|
||||
if (w < 0 || w > 32 || data_drives + groups*local + global > (1<<w))
|
||||
{
|
||||
return NULL;
|
||||
}
|
||||
int *lrc_matrix = (int*)malloc(sizeof(int) * (local*groups+global));
|
||||
int *matrix = reed_sol_vandermonde_coding_matrix(data_drives, local+global, w);
|
||||
for (int gr = 0; gr < groups; gr++)
|
||||
{
|
||||
for (int l = 0; l < local; l++)
|
||||
{
|
||||
for (int j = 0; j < data_drives; j++)
|
||||
{
|
||||
lrc_matrix[(gr*local+l)*data_drives + j] = (j / (data_drives/groups)) == gr ? matrix[l*data_drives + j] : 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
for (int i = 0; i < global; i++)
|
||||
{
|
||||
for (int j = 0; j < data_drives; j++)
|
||||
{
|
||||
lrc_matrix[(groups*local+i)*data_drives + j] = matrix[(local+i)*data_drives + j];
|
||||
}
|
||||
}
|
||||
free(matrix);
|
||||
return lrc_matrix;
|
||||
}
|
||||
|
||||
// Check if the generated LRC with given parameters is Maximally Reconstructible (MR-LRC)
|
||||
// Example of a MR-LRC: (8, 2, 1, 2, 6, 8)
|
||||
void check_mr_lrc(int data_drives, int groups, int local, int global, int matrix_w, int w, int print)
|
||||
{
|
||||
|
||||
}
|
||||
|
||||
int main()
|
||||
{
|
||||
int W = 8, MATRIX_W = 6;
|
||||
int n = 8, groups = 2, local = 1, global = 2;
|
||||
//n = 4, groups = 2, local = 1, global = 1;
|
||||
int total_rows = n+groups*local+global;
|
||||
int *matrix = reed_sol_vandermonde_lrc_matrix(n, groups, local, global, MATRIX_W);
|
||||
int *lrc_matrix = (int*)malloc(sizeof(int) * total_rows*n);
|
||||
// Fill identity+LRC matrix
|
||||
for (int i = 0; i < n; i++)
|
||||
for (int j = 0; j < n; j++)
|
||||
lrc_matrix[i*n + j] = j == i ? 1 : 0;
|
||||
memcpy(lrc_matrix + n*n, matrix, (total_rows-n)*n*sizeof(int));
|
||||
free(matrix);
|
||||
matrix = NULL;
|
||||
// Print LRC matrix
|
||||
for (int i = 0; i < total_rows; i++)
|
||||
{
|
||||
for (int j = 0; j < n; j++)
|
||||
{
|
||||
printf("%d ", lrc_matrix[i*n+j]);
|
||||
}
|
||||
printf("\n");
|
||||
}
|
||||
int impossible = 0, success = 0, failures = 0;
|
||||
int *lost_per_group = (int*)malloc(sizeof(int) * groups);
|
||||
for (int lost = local+global+1; lost <= groups*local+global; lost++)
|
||||
//int lost = groups*local+global;
|
||||
{
|
||||
int *erased_matrix = (int*)malloc(sizeof(int) * (total_rows-lost)*n);
|
||||
int *inverted_matrix = (int*)malloc(sizeof(int) * (total_rows-lost)*n);
|
||||
int *p = (int*)malloc(sizeof(int) * (total_rows-lost));
|
||||
for (int i = 0; i < n; i++)
|
||||
p[i] = i;
|
||||
int *p2 = (int*)malloc(sizeof(int) * n);
|
||||
if (total_rows-lost > n)
|
||||
{
|
||||
p[n-1] = n; // skip combinations with all N data disks (0..n-1)
|
||||
for (int i = n; i < total_rows-lost; i++)
|
||||
p[i] = i+1;
|
||||
p[total_rows-lost-1]--; // will be incremented on the first step
|
||||
}
|
||||
int inc = total_rows-lost-1;
|
||||
while (1)
|
||||
{
|
||||
p[inc]++;
|
||||
if (p[inc] >= n+groups*local+global)
|
||||
{
|
||||
if (inc == 0)
|
||||
break;
|
||||
inc--;
|
||||
}
|
||||
else if (inc+1 < total_rows-lost)
|
||||
{
|
||||
p[inc+1] = p[inc];
|
||||
inc++;
|
||||
}
|
||||
else
|
||||
{
|
||||
// Check if it should be recoverable
|
||||
for (int gr = 0; gr < groups; gr++)
|
||||
{
|
||||
lost_per_group[gr] = ((gr+1)*(n/groups) > n ? (n - gr*(n/groups)) : n/groups);
|
||||
}
|
||||
// Calculate count of data chunks lost in each group
|
||||
for (int j = 0; j < total_rows-lost; j++)
|
||||
{
|
||||
if (j < n)
|
||||
{
|
||||
lost_per_group[(p[j] / (n/groups))]--;
|
||||
}
|
||||
}
|
||||
// Every local parity chunk is supposed to restore 1 missing chunk inside its group
|
||||
// So, subtract local parity chunk counts from each group lost chunk count
|
||||
for (int j = 0; j < total_rows-lost; j++)
|
||||
{
|
||||
if (p[j] >= n && p[j] < n+groups*local && lost_per_group[(p[j]-n)/local] > 0)
|
||||
{
|
||||
lost_per_group[(p[j]-n)/local]--;
|
||||
}
|
||||
}
|
||||
// Every global parity chunk is supposed to restore 1 chunk of all that are still missing
|
||||
int still_missing = 0;
|
||||
for (int gr = 0; gr < groups; gr++)
|
||||
{
|
||||
still_missing += lost_per_group[gr];
|
||||
}
|
||||
for (int j = 0; j < total_rows-lost; j++)
|
||||
{
|
||||
if (p[j] >= n+groups*local && still_missing > 0)
|
||||
{
|
||||
still_missing--;
|
||||
}
|
||||
}
|
||||
if (still_missing <= 0)
|
||||
{
|
||||
// We hope it can be recoverable. Try to invert it
|
||||
int invert_ok = -1;
|
||||
if (total_rows-lost == n)
|
||||
{
|
||||
for (int i = 0; i < n; i++)
|
||||
for (int j = 0; j < n; j++)
|
||||
erased_matrix[i*n+j] = lrc_matrix[p[i]*n+j];
|
||||
invert_ok = jerasure_invert_matrix(erased_matrix, inverted_matrix, n, W);
|
||||
}
|
||||
else
|
||||
{
|
||||
// Check submatrices
|
||||
for (int i = 0; i < n; i++)
|
||||
p2[i] = i;
|
||||
p2[n-1]--;
|
||||
int inc2 = n-1;
|
||||
while (1)
|
||||
{
|
||||
p2[inc2]++;
|
||||
if (p2[inc2] >= total_rows-lost)
|
||||
{
|
||||
if (inc2 == 0)
|
||||
break;
|
||||
inc2--;
|
||||
}
|
||||
else if (inc2+1 < n)
|
||||
{
|
||||
p2[inc2+1] = p2[inc2];
|
||||
inc2++;
|
||||
}
|
||||
else
|
||||
{
|
||||
for (int i = 0; i < n; i++)
|
||||
for (int j = 0; j < n; j++)
|
||||
erased_matrix[i*n+j] = lrc_matrix[p[p2[i]]*n+j];
|
||||
invert_ok = jerasure_invert_matrix(erased_matrix, inverted_matrix, n, W);
|
||||
if (invert_ok == 0)
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
if (invert_ok < 0)
|
||||
{
|
||||
failures++;
|
||||
printf("\nFAIL: ");
|
||||
for (int i = 0; i < total_rows-lost; i++)
|
||||
{
|
||||
printf("%d ", p[i]);
|
||||
}
|
||||
printf("\nDIRECT:\n");
|
||||
for (int i = 0; i < total_rows-lost; i++)
|
||||
{
|
||||
for (int j = 0; j < n; j++)
|
||||
printf("%d ", lrc_matrix[p[i]*n+j]);
|
||||
printf("\n");
|
||||
}
|
||||
printf("INVERSE:\n");
|
||||
for (int i = 0; i < total_rows-lost; i++)
|
||||
{
|
||||
for (int j = 0; j < n; j++)
|
||||
printf("%d ", inverted_matrix[i*n+j]);
|
||||
printf("\n");
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
success++;
|
||||
printf("OK: ");
|
||||
for (int i = 0; i < total_rows-lost; i++)
|
||||
{
|
||||
printf("%d ", p[i]);
|
||||
}
|
||||
printf("\n");
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
impossible++;
|
||||
printf("IMPOSSIBLE: ");
|
||||
for (int i = 0; i < total_rows-lost; i++)
|
||||
{
|
||||
printf("%d ", p[i]);
|
||||
}
|
||||
printf("\n");
|
||||
}
|
||||
}
|
||||
}
|
||||
free(p2);
|
||||
free(p);
|
||||
free(inverted_matrix);
|
||||
free(erased_matrix);
|
||||
}
|
||||
free(lost_per_group);
|
||||
printf("\n%d recovered, %d impossible, %d failures\n", success, impossible, failures);
|
||||
return 0;
|
||||
}
|
||||
|
||||
// 1 1 1 1 0 0 0 0
|
||||
// 0 0 0 0 1 1 1 1
|
||||
// 1 55 39 73 84 181 225 217
|
||||
// 1 172 70 235 143 34 200 101
|
||||
//
|
||||
// Can't recover
|
||||
// 1 2 4 5 8 9 10 11 -1
|
||||
// 2 3 4 6 8 9 10 11 -1
|
||||
// FULL:
|
||||
// 1 0 0 0 0 0 0 0
|
||||
// 0 1 0 0 0 0 0 0
|
||||
// 0 0 1 0 0 0 0 0
|
||||
// 0 0 0 1 0 0 0 0
|
||||
// 0 0 0 0 1 0 0 0
|
||||
// 0 0 0 0 0 1 0 0
|
||||
// 0 0 0 0 0 0 1 0
|
||||
// 0 0 0 0 0 0 0 1
|
||||
// 1 1 1 1 0 0 0 0
|
||||
// 0 0 0 0 1 1 1 1
|
||||
// 1 55 39 73 84 181 225 217
|
||||
// 1 172 70 235 143 34 200 101
|
||||
// FIRST UNRECOVERABLE:
|
||||
// 0 1 0 0 0 0 0 0
|
||||
// 0 0 1 0 0 0 0 0
|
||||
// 0 0 0 0 1 0 0 0
|
||||
// 0 0 0 0 0 1 0 0
|
||||
// 1 1 1 1 0 0 0 0
|
||||
// 0 0 0 0 1 1 1 1
|
||||
// 1 55 39 73 84 181 225 217
|
||||
// 1 172 70 235 143 34 200 101
|
||||
// SECOND UNRECOVERABLE:
|
||||
// 0 0 1 0 0 0 0 0
|
||||
// 0 0 0 1 0 0 0 0
|
||||
// 0 0 0 0 1 0 0 0
|
||||
// 0 0 0 0 0 0 1 0
|
||||
// 1 1 1 1 0 0 0 0
|
||||
// 0 0 0 0 1 1 1 1
|
||||
// 1 55 39 73 84 181 225 217
|
||||
// 1 172 70 235 143 34 200 101
|
||||
// Ho ho ho
|
Loading…
Reference in New Issue