Compare commits

..

1 Commits

Author SHA1 Message Date
Vitaliy Filippov 9c33de5e57 Test: use submit_and_wait() 2020-03-03 17:48:47 +03:00
217 changed files with 5586 additions and 33460 deletions

View File

@ -1,19 +0,0 @@
.git
build
packages
mon/node_modules
*.o
*.so
osd
stub_osd
stub_uring_osd
stub_bench
osd_test
dump_journal
nbd_proxy
rm_inode
fio
qemu
rpm/*.Dockerfile
debian/*.Dockerfile
Dockerfile

18
.gitignore vendored
View File

@ -1,18 +0,0 @@
*.o
*.so
package-lock.json
fio
qemu
osd
stub_osd
stub_uring_osd
stub_bench
osd_test
osd_peering_pg_test
dump_journal
nbd_proxy
rm_inode
test_allocator
test_blockstore
test_shit
osd_rmw_test

6
.gitmodules vendored
View File

@ -1,6 +0,0 @@
[submodule "cpp-btree"]
path = cpp-btree
url = ../cpp-btree.git
[submodule "json11"]
path = json11
url = ../json11.git

View File

@ -1,7 +0,0 @@
cmake_minimum_required(VERSION 2.8)
project(vitastor)
set(VERSION "0.6.5")
add_subdirectory(src)

View File

@ -1,339 +0,0 @@
GNU GENERAL PUBLIC LICENSE
Version 2, June 1991
Copyright (C) 1989, 1991 Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
Preamble
The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
License is intended to guarantee your freedom to share and change free
software--to make sure the software is free for all its users. This
General Public License applies to most of the Free Software
Foundation's software and to any other program whose authors commit to
using it. (Some other Free Software Foundation software is covered by
the GNU Lesser General Public License instead.) You can apply it to
your programs, too.
When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it
if you want it, that you can change the software or use pieces of it
in new free programs; and that you know you can do these things.
To protect your rights, we need to make restrictions that forbid
anyone to deny you these rights or to ask you to surrender the rights.
These restrictions translate to certain responsibilities for you if you
distribute copies of the software, or if you modify it.
For example, if you distribute copies of such a program, whether
gratis or for a fee, you must give the recipients all the rights that
you have. You must make sure that they, too, receive or can get the
source code. And you must show them these terms so they know their
rights.
We protect your rights with two steps: (1) copyright the software, and
(2) offer you this license which gives you legal permission to copy,
distribute and/or modify the software.
Also, for each author's protection and ours, we want to make certain
that everyone understands that there is no warranty for this free
software. If the software is modified by someone else and passed on, we
want its recipients to know that what they have is not the original, so
that any problems introduced by others will not reflect on the original
authors' reputations.
Finally, any free program is threatened constantly by software
patents. We wish to avoid the danger that redistributors of a free
program will individually obtain patent licenses, in effect making the
program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone's free use or not licensed at all.
The precise terms and conditions for copying, distribution and
modification follow.
GNU GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
0. This License applies to any program or other work which contains
a notice placed by the copyright holder saying it may be distributed
under the terms of this General Public License. The "Program", below,
refers to any such program or work, and a "work based on the Program"
means either the Program or any derivative work under copyright law:
that is to say, a work containing the Program or a portion of it,
either verbatim or with modifications and/or translated into another
language. (Hereinafter, translation is included without limitation in
the term "modification".) Each licensee is addressed as "you".
Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running the Program is not restricted, and the output from the Program
is covered only if its contents constitute a work based on the
Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.
1. You may copy and distribute verbatim copies of the Program's
source code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the
notices that refer to this License and to the absence of any warranty;
and give any other recipients of the Program a copy of this License
along with the Program.
You may charge a fee for the physical act of transferring a copy, and
you may at your option offer warranty protection in exchange for a fee.
2. You may modify your copy or copies of the Program or any portion
of it, thus forming a work based on the Program, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:
a) You must cause the modified files to carry prominent notices
stating that you changed the files and the date of any change.
b) You must cause any work that you distribute or publish, that in
whole or in part contains or is derived from the Program or any
part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.
c) If the modified program normally reads commands interactively
when run, you must cause it, when started running for such
interactive use in the most ordinary way, to print or display an
announcement including an appropriate copyright notice and a
notice that there is no warranty (or else, saying that you provide
a warranty) and that users may redistribute the program under
these conditions, and telling the user how to view a copy of this
License. (Exception: if the Program itself is interactive but
does not normally print such an announcement, your work based on
the Program is not required to print an announcement.)
These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Program,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Program, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote it.
Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Program.
In addition, mere aggregation of another work not based on the Program
with the Program (or with a work based on the Program) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.
3. You may copy and distribute the Program (or a work based on it,
under Section 2) in object code or executable form under the terms of
Sections 1 and 2 above provided that you also do one of the following:
a) Accompany it with the complete corresponding machine-readable
source code, which must be distributed under the terms of Sections
1 and 2 above on a medium customarily used for software interchange; or,
b) Accompany it with a written offer, valid for at least three
years, to give any third party, for a charge no more than your
cost of physically performing source distribution, a complete
machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,
c) Accompany it with the information you received as to the offer
to distribute corresponding source code. (This alternative is
allowed only for noncommercial distribution and only if you
received the program in object code or executable form with such
an offer, in accord with Subsection b above.)
The source code for a work means the preferred form of the work for
making modifications to it. For an executable work, complete source
code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to
control compilation and installation of the executable. However, as a
special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component
itself accompanies the executable.
If distribution of executable or object code is made by offering
access to copy from a designated place, then offering equivalent
access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.
4. You may not copy, modify, sublicense, or distribute the Program
except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense or distribute the Program is
void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such
parties remain in full compliance.
5. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Program or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Program (or any work based on the
Program), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Program or works based on it.
6. Each time you redistribute the Program (or any work based on the
Program), the recipient automatically receives a license from the
original licensor to copy, distribute or modify the Program subject to
these terms and conditions. You may not impose any further
restrictions on the recipients' exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties to
this License.
7. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Program at all. For example, if a patent
license would not permit royalty-free redistribution of the Program by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.
If any portion of this section is held invalid or unenforceable under
any particular circumstance, the balance of the section is intended to
apply and the section as a whole is intended to apply in other
circumstances.
It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.
This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.
8. If the distribution and/or use of the Program is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Program under this License
may add an explicit geographical distribution limitation excluding
those countries, so that distribution is permitted only in or among
countries not thus excluded. In such case, this License incorporates
the limitation as if written in the body of this License.
9. The Free Software Foundation may publish revised and/or new versions
of the General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.
Each version is given a distinguishing version number. If the Program
specifies a version number of this License which applies to it and "any
later version", you have the option of following the terms and conditions
either of that version or of any later version published by the Free
Software Foundation. If the Program does not specify a version number of
this License, you may choose any version ever published by the Free Software
Foundation.
10. If you wish to incorporate parts of the Program into other free
programs whose distribution conditions are different, write to the author
to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes
make exceptions for this. Our decision will be guided by the two goals
of preserving the free status of all derivatives of our free software and
of promoting the sharing and reuse of software generally.
NO WARRANTY
11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS
TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.
12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.
END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs
If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.
To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
convey the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.
<one line to give the program's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
Also add information on how to contact you by electronic and paper mail.
If the program is interactive, make it output a short notice like this
when it starts in an interactive mode:
Gnomovision version 69, Copyright (C) year name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
This is free software, and you are welcome to redistribute it
under certain conditions; type `show c' for details.
The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, the commands you use may
be called something other than `show w' and `show c'; they could even be
mouse-clicks or menu items--whatever suits your program.
You should also get your employer (if you work as a programmer) or your
school, if any, to sign a "copyright disclaimer" for the program, if
necessary. Here is a sample; alter the names:
Yoyodyne, Inc., hereby disclaims all copyright interest in the program
`Gnomovision' (which makes passes at compilers) written by James Hacker.
<signature of Ty Coon>, 1 April 1989
Ty Coon, President of Vice
This General Public License does not permit incorporating your program into
proprietary programs. If your program is a subroutine library, you may
consider it more useful to permit linking proprietary applications with the
library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License.

27
LICENSE
View File

@ -1,27 +0,0 @@
Copyright (c) Vitaliy Filippov (vitalif [at] yourcmc.ru), 2019+
All server-side code (OSD, Monitor and so on) is licensed under the terms of
Vitastor Network Public License 1.1 (VNPL 1.1), a copyleft license based on
GNU GPLv3.0 with the additional "Network Interaction" clause which requires
opensourcing all programs directly or indirectly interacting with Vitastor
through a computer network and expressly designed to be used in conjunction
with it ("Proxy Programs"). Proxy Programs may be made public not only under
the terms of the same license, but also under the terms of any GPL-Compatible
Free Software License, as listed by the Free Software Foundation.
This is a stricter copyleft license than the Affero GPL.
Please note that VNPL doesn't require you to open the code of proprietary
software running inside a VM if it's not specially designed to be used with
Vitastor.
Basically, you can't use the software in a proprietary environment to provide
its functionality to users without opensourcing all intermediary components
standing between the user and Vitastor or purchasing a commercial license
from the author 😀.
Client libraries (cluster_client and so on) are dual-licensed under the same
VNPL 1.1 and also GNU GPL 2.0 or later to allow for compatibility with GPLed
software like QEMU and fio.
You can find the full text of VNPL-1.1 in the file [VNPL-1.1.txt](VNPL-1.1.txt).
GPL 2.0 is also included in this repository as [GPL-2.0.txt](GPL-2.0.txt).

66
Makefile Normal file
View File

@ -0,0 +1,66 @@
BLOCKSTORE_OBJS := allocator.o blockstore.o blockstore_impl.o blockstore_init.o blockstore_open.o blockstore_journal.o blockstore_read.o \
blockstore_write.o blockstore_sync.o blockstore_stable.o blockstore_rollback.o blockstore_flush.o crc32c.o ringloop.o timerfd_interval.o
# -fsanitize=address
CXXFLAGS := -g -O3 -Wall -Wno-sign-compare -Wno-comment -Wno-parentheses -Wno-pointer-arith -fPIC -fdiagnostics-color=always
all: $(BLOCKSTORE_OBJS) libfio_blockstore.so osd libfio_sec_osd.so test_blockstore stub_osd stub_bench osd_test
clean:
rm -f *.o
crc32c.o: crc32c.c
g++ $(CXXFLAGS) -c -o $@ $<
json11.o: json11/json11.cpp
g++ $(CXXFLAGS) -c -o json11.o json11/json11.cpp
allocator.o: allocator.cpp allocator.h
g++ $(CXXFLAGS) -c -o $@ $<
ringloop.o: ringloop.cpp ringloop.h
g++ $(CXXFLAGS) -c -o $@ $<
timerfd_interval.o: timerfd_interval.cpp timerfd_interval.h ringloop.h
g++ $(CXXFLAGS) -c -o $@ $<
%.o: %.cpp allocator.h blockstore_flush.h blockstore.h blockstore_impl.h blockstore_init.h blockstore_journal.h crc32c.h ringloop.h timerfd_interval.h object_id.h
g++ $(CXXFLAGS) -c -o $@ $<
libblockstore.so: $(BLOCKSTORE_OBJS)
g++ $(CXXFLAGS) -o libblockstore.so -shared $(BLOCKSTORE_OBJS) -ltcmalloc_minimal -luring
libfio_blockstore.so: ./libblockstore.so fio_engine.cpp json11.o
g++ $(CXXFLAGS) -shared -o libfio_blockstore.so fio_engine.cpp json11.o ./libblockstore.so -ltcmalloc_minimal -luring
OSD_OBJS := osd.o osd_secondary.o osd_receive.o osd_send.o osd_peering.o osd_peering_pg.o osd_primary.o osd_rmw.o json11.o timerfd_interval.o
osd_secondary.o: osd_secondary.cpp osd.h osd_ops.h ringloop.h
g++ $(CXXFLAGS) -c -o $@ $<
osd_receive.o: osd_receive.cpp osd.h osd_ops.h ringloop.h
g++ $(CXXFLAGS) -c -o $@ $<
osd_send.o: osd_send.cpp osd.h osd_ops.h ringloop.h
g++ $(CXXFLAGS) -c -o $@ $<
osd_peering.o: osd_peering.cpp osd.h osd_ops.h osd_peering_pg.h ringloop.h
g++ $(CXXFLAGS) -c -o $@ $<
osd_peering_pg.o: osd_peering_pg.cpp object_id.h osd_peering_pg.h
g++ $(CXXFLAGS) -c -o $@ $<
osd_rmw.o: osd_rmw.cpp osd_rmw.h xor.h
g++ $(CXXFLAGS) -c -o $@ $<
osd_rmw_test: osd_rmw_test.cpp osd_rmw.cpp osd_rmw.h xor.h
g++ $(CXXFLAGS) -o $@ $<
osd_primary.o: osd_primary.cpp osd.h osd_ops.h osd_peering_pg.h xor.h ringloop.h
g++ $(CXXFLAGS) -c -o $@ $<
osd.o: osd.cpp osd.h osd_ops.h osd_peering_pg.h ringloop.h
g++ $(CXXFLAGS) -c -o $@ $<
osd: ./libblockstore.so osd_main.cpp osd.h osd_ops.h $(OSD_OBJS)
g++ $(CXXFLAGS) -o osd osd_main.cpp $(OSD_OBJS) ./libblockstore.so -ltcmalloc_minimal -luring
stub_osd: stub_osd.cpp osd_ops.h rw_blocking.o
g++ $(CXXFLAGS) -o stub_osd stub_osd.cpp rw_blocking.o -ltcmalloc_minimal
stub_bench: stub_bench.cpp osd_ops.h rw_blocking.o
g++ $(CXXFLAGS) -o stub_bench stub_bench.cpp rw_blocking.o -ltcmalloc_minimal
rw_blocking.o: rw_blocking.cpp rw_blocking.h
g++ $(CXXFLAGS) -c -o $@ $<
osd_test: osd_test.cpp osd_ops.h rw_blocking.o
g++ $(CXXFLAGS) -o osd_test osd_test.cpp rw_blocking.o -ltcmalloc_minimal
libfio_sec_osd.so: fio_sec_osd.cpp osd_ops.h rw_blocking.o
g++ $(CXXFLAGS) -ltcmalloc_minimal -shared -o libfio_sec_osd.so fio_sec_osd.cpp rw_blocking.o -luring
test_blockstore: ./libblockstore.so test_blockstore.cpp
g++ $(CXXFLAGS) -o test_blockstore test_blockstore.cpp ./libblockstore.so -ltcmalloc_minimal -luring
test: test.cpp osd_peering_pg.o
g++ $(CXXFLAGS) -o test test.cpp osd_peering_pg.o -luring
test_allocator: test_allocator.cpp allocator.o
g++ $(CXXFLAGS) -o test_allocator test_allocator.cpp allocator.o

View File

@ -1,579 +0,0 @@
## Vitastor
[Read English version](README.md)
## Идея
Я всего лишь хочу сделать качественную блочную SDS!
Vitastor - распределённая блочная SDS, прямой аналог Ceph RBD и внутренних СХД популярных
облачных провайдеров. Однако, в отличие от них, Vitastor быстрый и при этом простой.
Только пока маленький :-).
Архитектурная схожесть с Ceph означает заложенную на уровне алгоритмов записи строгую консистентность,
репликацию через первичный OSD, симметричную кластеризацию без единой точки отказа
и автоматическое распределение данных по любому числу дисков любого размера с настраиваемыми схемами
избыточности - репликацией или с произвольными кодами коррекции ошибок.
## Возможности
Vitastor на данный момент находится в статусе предварительного выпуска, расширенные
возможности пока отсутствуют, а в будущих версиях вероятны "ломающие" изменения.
Однако следующее уже реализовано:
- Базовая часть - надёжное кластерное блочное хранилище без единой точки отказа
- Производительность ;-D
- Несколько схем отказоустойчивости: репликация, XOR n+1 (1 диск чётности), коды коррекции ошибок
Рида-Соломона на основе библиотеки jerasure с любым числом дисков данных и чётности в группе
- Конфигурация через простые человекочитаемые JSON-структуры в etcd
- Автоматическое распределение данных по OSD, с поддержкой:
- Математической оптимизации для лучшей равномерности распределения и минимизации перемещений данных
- Нескольких пулов с разными схемами избыточности
- Дерева распределения, выбора OSD по тегам / классам устройств (только SSD, только HDD) и по поддереву
- Настраиваемых доменов отказа (диск/сервер/стойка и т.п.)
- Восстановление деградированных блоков
- Ребаланс, то есть перемещение данных между OSD (дисками)
- Поддержка "ленивого" fsync (fsync не на каждую операцию)
- Сбор статистики ввода/вывода в etcd
- Клиентская библиотека режима пользователя для ввода/вывода
- Драйвер диска для QEMU (собирается вне дерева исходников QEMU)
- Драйвер диска для утилиты тестирования производительности fio (также собирается вне дерева исходников fio)
- NBD-прокси для монтирования образов ядром ("блочное устройство в режиме пользователя")
- Утилита удаления образов/инодов (vitastor-rm)
- Пакеты для Debian и CentOS
- Статистика операций ввода/вывода и занятого места в разрезе инодов
- Именование инодов через хранение их метаданных в etcd
- Снапшоты и copy-on-write клоны
- Сглаживание производительности случайной записи в SSD+HDD конфигурациях
- Поддержка RDMA/RoCEv2 через libibverbs
- CSI-плагин для Kubernetes
- Базовая поддержка OpenStack: драйвер Cinder, патчи для Nova и libvirt
## Планы развития
- Поддержка удаления снапшотов (слияния слоёв)
- Более корректные скрипты разметки дисков и автоматического запуска OSD
- Другие инструменты администрирования
- Плагины для OpenNebula, Proxmox и других облачных систем
- iSCSI-прокси
- Более быстрое переключение при отказах
- Фоновая проверка целостности без контрольных сумм (сверка реплик)
- Контрольные суммы
- Поддержка SSD-кэширования (tiered storage)
- Поддержка NVDIMM
- Web-интерфейс
- Возможно, сжатие
- Возможно, поддержка кэширования данных через системный page cache
## Архитектура
Так же, как и в Ceph, в Vitastor:
- Есть пулы (pools), PG, OSD, мониторы, домены отказа, дерево распределения (аналог crush-дерева).
- Образы делятся на блоки фиксированного размера (объекты), и эти объекты распределяются по OSD.
- У OSD есть журнал и метаданные и они тоже могут размещаться на отдельных быстрых дисках.
- Все операции записи тоже транзакционны. В Vitastor, правда, есть режим отложенного/ленивого fsync
(коммита), в котором fsync не вызывается на каждую операцию записи, что делает его более
пригодным для использования на "плохих" (десктопных) SSD. Однако все операции записи
в любом случае атомарны.
- Клиентская библиотека тоже старается ждать восстановления после любого отказа кластера, то есть,
вы тоже можете перезагрузить хоть весь кластер разом, и клиенты только на время зависнут,
но не отключатся.
Некоторые базовые термины для тех, кто не знаком с Ceph:
- OSD (Object Storage Daemon) - процесс, который хранит данные на одном диске и обрабатывает
запросы чтения/записи от клиентов.
- Пул (Pool) - контейнер для данных, имеющих одну и ту же схему избыточности и правила распределения по OSD.
- PG (Placement Group) - группа объектов, хранимых на одном и том же наборе реплик (OSD).
Несколько PG могут храниться на одном и том же наборе реплик, но объекты одной PG
в норме не хранятся на разных наборах OSD.
- Монитор - демон, хранящий состояние кластера.
- Домен отказа (Failure Domain) - группа OSD, которым вы разрешаете "упасть" всем вместе.
Иными словами, это группа OSD, в которые СХД не помещает разные копии одного и того же
блока данных. Например, если домен отказа - сервер, то на двух дисках одного сервера
никогда не окажется 2 и более копий одного и того же блока данных, а значит, даже
если в этом сервере откажут все диски, это будет равносильно потере только 1 копии
любого блока данных.
- Дерево распределения (Placement Tree / CRUSH Tree) - иерархическая группировка OSD
в узлы, которые далее можно использовать как домены отказа. То есть, диск (OSD) входит в
сервер, сервер входит в стойку, стойка входит в ряд, ряд в датацентр и т.п.
Чем Vitastor отличается от Ceph:
- Vitastor в первую очередь сфокусирован на SSD. Также Vitastor, вероятно, должен неплохо работать
с комбинацией SSD и HDD через bcache, а в будущем, возможно, будут добавлены и нативные способы
оптимизации под SSD+HDD. Однако хранилище на основе одних лишь жёстких дисков, вообще без SSD,
не в приоритете, поэтому оптимизации под этот кейс могут вообще не состояться.
- OSD Vitastor однопоточный и всегда таким останется, так как это самый оптимальный способ работы.
Если вам не хватает 1 ядра на 1 диск, просто делите диск на разделы и запускайте на нём несколько OSD.
Но, скорее всего, вам хватит и 1 ядра - Vitastor не так прожорлив к ресурсам CPU, как Ceph.
- Журнал и метаданные всегда размещаются в памяти, благодаря чему никогда не тратится лишнее время
на чтение метаданных с диска. Размер метаданных линейно зависит от размера диска и блока данных,
который задаётся в конфигурации кластера и по умолчанию составляет 128 КБ. С блоком 128 КБ метаданные
занимают примерно 512 МБ памяти на 1 ТБ дискового пространства (и это всё равно меньше, чем нужно Ceph-у).
Журнал вообще не должен быть большим, например, тесты производительности в данном документе проводились
с журналом размером всего 16 МБ. Большой журнал, вероятно, даже вреден, т.к. "грязные" записи (записи,
не сброшенные из журнала) тоже занимают память и могут немного замедлять работу.
- В Vitastor нет внутреннего copy-on-write. Я считаю, что реализация CoW-хранилища гораздо сложнее,
поэтому сложнее добиться устойчиво хороших результатов. Возможно, в один прекрасный день
я придумаю красивый алгоритм для CoW-хранилища, но пока нет - внутреннего CoW в Vitastor не будет.
Всё это не относится к "внешнему" CoW (снапшотам и клонам).
- Базовый слой Vitastor - простое блочное хранилище с блоками фиксированного размера, а не сложное
объектное хранилище с расширенными возможностями, как в Ceph (RADOS).
- В Vitastor есть режим "ленивых fsync", в котором OSD группирует запросы записи перед сбросом их
на диск, что позволяет получить лучшую производительность с дешёвыми настольными SSD без конденсаторов
("Advanced Power Loss Protection" / "Capacitor-Based Power Loss Protection").
Тем не менее, такой режим всё равно медленнее использования нормальных серверных SSD и мгновенного
fsync, так как приводит к дополнительным операциям передачи данных по сети, поэтому рекомендуется
всё-таки использовать хорошие серверные диски, тем более, стоят они почти так же, как десктопные.
- PG эфемерны. Это означает, что они не хранятся на дисках и существуют только в памяти работающих OSD.
- Процессы восстановления оперируют отдельными объектами, а не целыми PG.
- PGLOG-ов нет.
- "Мониторы" не хранят данные. Конфигурация и состояние кластера хранятся в etcd в простых человекочитаемых
JSON-структурах. Мониторы Vitastor только следят за состоянием кластера и управляют перемещением данных.
В этом смысле монитор Vitastor не является критичным компонентом системы и больше похож на Ceph-овский
менеджер (MGR). Монитор Vitastor написан на node.js.
- Распределение PG не основано на консистентных хешах. Вместо этого все маппинги PG хранятся прямо в etcd
(ибо нет никакой проблемы сохранить несколько сотен-тысяч записей в памяти, а не считать каждый раз хеши).
Перераспределение PG по OSD выполняется через математическую оптимизацию,
а конкретно, сведение задачи к ЛП (задаче линейного программирования) и решение оной с помощью утилиты
lp_solve. Такой подход позволяет обычно выравнивать распределение места почти идеально - равномерность
обычно составляет 96-99%, в отличие от Ceph, где на голом CRUSH-е без балансировщика обычно выходит 80-90%.
Также это позволяет минимизировать объём перемещения данных и случайность связей между OSD, а также менять
распределение вручную, не боясь сломать логику перебалансировки. В таком подходе есть и потенциальный
недостаток - есть предположение, что в очень большом кластере он может сломаться - однако вплоть до
нескольких сотен OSD подход точно работает нормально. Ну и, собственно, при необходимости легко
реализовать и консистентные хеши.
- Отдельный слой, подобный слою "CRUSH-правил", отсутствует. Вы настраиваете схемы отказоустойчивости,
домены отказа и правила выбора OSD напрямую в конфигурации пулов.
## Понимание сути производительности систем хранения
Вкратце: для быстрой хранилки задержки важнее, чем пиковые iops-ы.
Лучшая возможная задержка достигается при тестировании в 1 поток с глубиной очереди 1,
что приблизительно означает минимально нагруженное состояние кластера. В данном случае
IOPS = 1/задержка. Ни числом серверов, ни дисков, ни серверных процессов/потоков
задержка не масштабируется... Она зависит только от того, насколько быстро один
серверный процесс (и клиент) обрабатывают одну операцию.
Почему задержки важны? Потому, что некоторые приложения *не могут* использовать глубину
очереди больше 1, ибо их задача не параллелизуется. Важный пример - это все СУБД
с поддержкой консистентности (ACID), потому что все они обеспечивают её через
журналирование, а журналы пишутся последовательно и с fsync() после каждой операции.
fsync, кстати - это ещё одна очень важная вещь, про которую почти всегда забывают в тестах.
Смысл в том, что все современные диски имеют кэши/буферы записи и не гарантируют, что
данные реально физически записываются на носитель до того, как вы делаете fsync(),
который транслируется в команду сброса кэша операционной системой.
Дешёвые SSD для настольных ПК и ноутбуков очень быстрые без fsync - NVMe диски, например,
могут обработать порядка 80000 операций записи в секунду с глубиной очереди 1 без fsync.
Однако с fsync, когда они реально вынуждены писать каждый блок данных во флеш-память,
они выжимают лишь 1000-2000 операций записи в секунду (число практически постоянное
для всех моделей SSD).
Серверные SSD часто имеют суперконденсаторы, работающие как встроенный источник
бесперебойного питания и дающие дискам успеть сбросить их DRAM-кэш в постоянную
флеш-память при отключении питания. Благодаря этому диски с чистой совестью
*игнорируют fsync*, так как точно знают, что данные из кэша доедут до постоянной
памяти.
Все наиболее известные программные СХД, например, Ceph и внутренние СХД, используемые
такими облачными провайдерами, как Amazon, Google, Яндекс, медленные в смысле задержки.
В лучшем случае они дают задержки от 0.3мс на чтение и 0.6мс на запись 4 КБ блоками
даже при условии использования наилучшего возможного железа.
И это в эпоху SSD, когда вы можете пойти на рынок и купить там SSD, задержка которого
на чтение будет 0.1мс, а на запись - 0.04мс, за 100$ или даже дешевле.
Когда мне нужно быстро протестировать производительность дисковой подсистемы, я
использую следующие 6 команд, с небольшими вариациями:
- Линейная запись:
`fio -ioengine=libaio -direct=1 -invalidate=1 -name=test -bs=4M -iodepth=32 -rw=write -runtime=60 -filename=/dev/sdX`
- Линейное чтение:
`fio -ioengine=libaio -direct=1 -invalidate=1 -name=test -bs=4M -iodepth=32 -rw=read -runtime=60 -filename=/dev/sdX`
- Запись в 1 поток (T1Q1):
`fio -ioengine=libaio -direct=1 -invalidate=1 -name=test -bs=4k -iodepth=1 -fsync=1 -rw=randwrite -runtime=60 -filename=/dev/sdX`
- Чтение в 1 поток (T1Q1):
`fio -ioengine=libaio -direct=1 -invalidate=1 -name=test -bs=4k -iodepth=1 -rw=randread -runtime=60 -filename=/dev/sdX`
- Параллельная запись (numjobs используется, когда 1 ядро CPU не может насытить диск):
`fio -ioengine=libaio -direct=1 -invalidate=1 -name=test -bs=4k -iodepth=128 [-numjobs=4 -group_reporting] -rw=randwrite -runtime=60 -filename=/dev/sdX`
- Параллельное чтение (numjobs - аналогично):
`fio -ioengine=libaio -direct=1 -invalidate=1 -name=test -bs=4k -iodepth=128 [-numjobs=4 -group_reporting] -rw=randread -runtime=60 -filename=/dev/sdX`
## Теоретическая максимальная производительность Vitastor
При использовании репликации:
- Задержка чтения в 1 поток (T1Q1): 1 сетевой RTT + 1 чтение с диска.
- Запись+fsync в 1 поток:
- С мгновенным сбросом: 2 RTT + 1 запись.
- С отложенным ("ленивым") сбросом: 4 RTT + 1 запись + 1 fsync.
- Параллельное чтение: сумма IOPS всех дисков либо производительность сети, если в сеть упрётся раньше.
- Параллельная запись: сумма IOPS всех дисков / число реплик / WA либо производительность сети, если в сеть упрётся раньше.
При использовании кодов коррекции ошибок (EC):
- Задержка чтения в 1 поток (T1Q1): 1.5 RTT + 1 чтение.
- Запись+fsync в 1 поток:
- С мгновенным сбросом: 3.5 RTT + 1 чтение + 2 записи.
- С отложенным ("ленивым") сбросом: 5.5 RTT + 1 чтение + 2 записи + 2 fsync.
- Под 0.5 на самом деле подразумевается (k-1)/k, где k - число дисков данных,
что означает, что дополнительное обращение по сети не нужно, когда операция
чтения обслуживается локально.
- Параллельное чтение: сумма IOPS всех дисков либо производительность сети, если в сеть упрётся раньше.
- Параллельная запись: сумма IOPS всех дисков / общее число дисков данных и чётности / WA либо производительность сети, если в сеть упрётся раньше.
Примечание: IOPS дисков в данном случае надо брать в смешанном режиме чтения/записи в пропорции, аналогичной формулам выше.
WA (мультипликатор записи) для 4 КБ блоков в Vitastor обычно составляет 3-5:
1. Запись метаданных в журнал
2. Запись блока данных в журнал
3. Запись метаданных в БД
4. Ещё одна запись метаданных в журнал при использовании EC
5. Запись блока данных на диск данных
Если вы найдёте SSD, хорошо работающий с 512-байтными блоками данных (Optane?),
то 1, 3 и 4 можно снизить до 512 байт (1/8 от размера данных) и получить WA всего 2.375.
Кроме того, WA снижается при использовании отложенного/ленивого сброса при параллельной
нагрузке, т.к. блоки журнала записываются на диск только когда они заполняются или явным
образом запрашивается fsync.
## Пример сравнения с Ceph
Железо - 4 сервера, в каждом:
- 6x SATA SSD Intel D3-4510 3.84 TB
- 2x Xeon Gold 6242 (16 cores @ 2.8 GHz)
- 384 GB RAM
- 1x 25 GbE сетевая карта (Mellanox ConnectX-4 LX), подключённая к свитчу Juniper QFX5200
Экономия энергии CPU отключена. В тестах и Vitastor, и Ceph развёрнуто по 2 OSD на 1 SSD.
Все результаты ниже относятся к случайной нагрузке 4 КБ блоками (если явно не указано обратное).
Производительность голых дисков:
- T1Q1 запись ~27000 iops (задержка ~0.037ms)
- T1Q1 чтение ~9800 iops (задержка ~0.101ms)
- T1Q32 запись ~60000 iops
- T1Q32 чтение ~81700 iops
Ceph 15.2.4 (Bluestore):
- T1Q1 запись ~1000 iops (задержка ~1ms)
- T1Q1 чтение ~1750 iops (задержка ~0.57ms)
- T8Q64 запись ~100000 iops, потребление CPU процессами OSD около 40 ядер на каждом сервере
- T8Q64 чтение ~480000 iops, потребление CPU процессами OSD около 40 ядер на каждом сервере
Тесты в 8 потоков проводились на 8 400GB RBD образах со всех хостов (с каждого хоста запускалось 2 процесса fio).
Это нужно потому, что в Ceph несколько RBD-клиентов, пишущих в 1 образ, очень сильно замедляются.
Настройки RocksDB и Bluestore в Ceph не менялись, единственным изменением было отключение cephx_sign_messages.
На самом деле, результаты теста не такие уж и плохие для Ceph (могло быть хуже).
Собственно говоря, эти серверы как раз хорошо сбалансированы для Ceph - 6 SATA SSD как раз
утилизируют 25-гигабитную сеть, а без 2 мощных процессоров Ceph-у бы не хватило ядер,
чтобы выдать пристойный результат. Собственно, что и показывает жор 40 ядер в процессе
параллельного теста.
Vitastor:
- T1Q1 запись: 7087 iops (задержка 0.14ms)
- T1Q1 чтение: 6838 iops (задержка 0.145ms)
- T2Q64 запись: 162000 iops, потребление CPU - 3 ядра на каждом сервере
- T8Q64 чтение: 895000 iops, потребление CPU - 4 ядра на каждом сервере
- Линейная запись (4M T1Q32): 2800 МБ/с
- Линейное чтение (4M T1Q32): 1500 МБ/с
Тест на чтение в 8 потоков проводился на 1 большом образе (3.2 ТБ) со всех хостов (опять же, по 2 fio с каждого).
В Vitastor никакой разницы между 1 образом и 8-ю нет. Естественно, примерно 1/4 запросов чтения
в такой конфигурации, как и в тестах Ceph выше, обслуживалась с локальной машины. Если проводить
тест так, чтобы все операции всегда обращались к первичным OSD по сети - тест сильнее упирался
в сеть и результат составлял примерно 689000 iops.
Настройки Vitastor: `--disable_data_fsync true --immediate_commit all --flusher_count 8
--disk_alignment 4096 --journal_block_size 4096 --meta_block_size 4096
--journal_no_same_sector_overwrites true --journal_sector_buffer_count 1024
--journal_size 16777216`.
### EC/XOR 2+1
Vitastor:
- T1Q1 запись: 2808 iops (задержка ~0.355ms)
- T1Q1 чтение: 6190 iops (задержка ~0.16ms)
- T2Q64 запись: 85500 iops, потребление CPU - 3.4 ядра на каждом сервере
- T8Q64 чтение: 812000 iops, потребление CPU - 4.7 ядра на каждом сервере
- Линейная запись (4M T1Q32): 3200 МБ/с
- Линейное чтение (4M T1Q32): 1800 МБ/с
Ceph:
- T1Q1 запись: 730 iops (задержка ~1.37ms latency)
- T1Q1 чтение: 1500 iops с холодным кэшем метаданных (задержка ~0.66ms), 2300 iops через 2 минуты прогрева (задержка ~0.435ms)
- T4Q128 запись (4 RBD images): 45300 iops, потребление CPU - 30 ядер на каждом сервере
- T8Q64 чтение (4 RBD images): 278600 iops, потребление CPU - 40 ядер на каждом сервере
- Линейная запись (4M T1Q32): 1950 МБ/с в пустой образ, 2500 МБ/с в заполненный образ
- Линейное чтение (4M T1Q32): 2400 МБ/с
### NBD
NBD расшифровывается как "сетевое блочное устройство", но на самом деле оно также
работает просто как аналог FUSE для блочных устройств, то есть, представляет собой
"блочное устройство в пространстве пользователя".
NBD - на данный момент единственный способ монтировать Vitastor ядром Linux.
NBD немного снижает производительность, так как приводит к дополнительным копированиям
данных между ядром и пространством пользователя. Тем не менее, способ достаточно оптимален,
а производительность случайного доступа вообще затрагивается слабо.
Vitastor с однопоточной NBD прокси на том же стенде:
- T1Q1 запись: 6000 iops (задержка 0.166ms)
- T1Q1 чтение: 5518 iops (задержка 0.18ms)
- T1Q128 запись: 94400 iops
- T1Q128 чтение: 103000 iops
- Линейная запись (4M T1Q128): 1266 МБ/с (в сравнении с 2800 МБ/с через fio)
- Линейное чтение (4M T1Q128): 975 МБ/с (в сравнении с 1500 МБ/с через fio)
## Установка
### Debian
- Добавьте ключ репозитория Vitastor:
`wget -q -O - https://vitastor.io/debian/pubkey | sudo apt-key add -`
- Добавьте репозиторий Vitastor в /etc/apt/sources.list:
- Debian 11 (Bullseye/Sid): `deb https://vitastor.io/debian bullseye main`
- Debian 10 (Buster): `deb https://vitastor.io/debian buster main`
- Для Debian 10 (Buster) также включите репозиторий backports:
`deb http://deb.debian.org/debian buster-backports main`
- Установите пакеты: `apt update; apt install vitastor lp-solve etcd linux-image-amd64 qemu`
### CentOS
- Добавьте в систему репозиторий Vitastor:
- CentOS 7: `yum install https://vitastor.io/rpms/centos/7/vitastor-release-1.0-1.el7.noarch.rpm`
- CentOS 8: `dnf install https://vitastor.io/rpms/centos/8/vitastor-release-1.0-1.el8.noarch.rpm`
- Включите EPEL: `yum/dnf install epel-release`
- Включите дополнительные репозитории CentOS:
- CentOS 7: `yum install centos-release-scl`
- CentOS 8: `dnf install centos-release-advanced-virtualization`
- Включите elrepo-kernel:
- CentOS 7: `yum install https://www.elrepo.org/elrepo-release-7.el7.elrepo.noarch.rpm`
- CentOS 8: `dnf install https://www.elrepo.org/elrepo-release-8.el8.elrepo.noarch.rpm`
- Установите пакеты: `yum/dnf install vitastor lpsolve etcd kernel-ml qemu-kvm`
### Установка из исходников
- Установите ядро 5.4 или более новое, для поддержки io_uring. Желательно 5.8 или даже новее,
так как в 5.4 есть как минимум 1 известный баг, ведущий к зависанию с io_uring и контроллером HP SmartArray.
- Установите liburing 0.4 или более новый и его заголовки.
- Установите lp_solve.
- Установите etcd, версии не ниже 3.4.15. Более ранние версии работать не будут из-за различных багов,
например [#12402](https://github.com/etcd-io/etcd/pull/12402). Также вы можете взять версию 3.4.13 с
этим конкретным исправлением из ветки release-3.4 репозитория https://github.com/vitalif/etcd/.
- Установите node.js 10 или новее.
- Установите gcc и g++ 8.x или новее.
- Склонируйте данный репозиторий с подмодулями: `git clone https://yourcmc.ru/git/vitalif/vitastor/`.
- Желательно пересобрать QEMU с патчем, который делает необязательным запуск через LD_PRELOAD.
См `patches/qemu-*.*-vitastor.patch` - выберите версию, наиболее близкую вашей версии QEMU.
- Установите QEMU 3.0 или новее, возьмите исходные коды установленного пакета, начните его пересборку,
через некоторое время остановите её и скопируйте следующие заголовки:
- `<qemu>/include` &rarr; `<vitastor>/qemu/include`
- Debian:
* Берите qemu из основного репозитория
* `<qemu>/b/qemu/config-host.h` &rarr; `<vitastor>/qemu/b/qemu/config-host.h`
* `<qemu>/b/qemu/qapi` &rarr; `<vitastor>/qemu/b/qemu/qapi`
- CentOS 8:
* Берите qemu из репозитория Advanced-Virtualization. Чтобы включить его, запустите
`yum install centos-release-advanced-virtualization.noarch` и далее `yum install qemu`
* `<qemu>/config-host.h` &rarr; `<vitastor>/qemu/b/qemu/config-host.h`
* Для QEMU 3.0+: `<qemu>/qapi` &rarr; `<vitastor>/qemu/b/qemu/qapi`
* Для QEMU 2.0+: `<qemu>/qapi-types.h` &rarr; `<vitastor>/qemu/b/qemu/qapi-types.h`
- `config-host.h` и `qapi` нужны, т.к. в них содержатся автогенерируемые заголовки
- Установите fio 3.7 или новее, возьмите исходники пакета и сделайте на них симлинк с `<vitastor>/fio`.
- Соберите и установите Vitastor командой `mkdir build && cd build && cmake .. && make -j8 && make install`.
Обратите внимание на переменную cmake `QEMU_PLUGINDIR` - под RHEL её нужно установить равной `qemu-kvm`.
## Запуск
Внимание: процедура пока что достаточно нетривиальная, задавать конфигурацию и смещения
на диске нужно почти вручную. Это будет исправлено в ближайшем будущем.
- Желательны SATA SSD или NVMe диски с конденсаторами (серверные SSD). Можно использовать и
десктопные SSD, включив режим отложенного fsync, но производительность однопоточной записи
в этом случае пострадает.
- Быстрая сеть, минимум 10 гбит/с
- Для наилучшей производительности нужно отключить энергосбережение CPU: `cpupower idle-set -D 0 && cpupower frequency-set -g performance`.
- Пропишите нужные вам значения вверху файлов `/usr/lib/vitastor/mon/make-units.sh` и `/usr/lib/vitastor/mon/make-osd.sh`.
- Создайте юниты systemd для etcd и мониторов: `/usr/lib/vitastor/mon/make-units.sh`
- Создайте юниты для OSD: `/usr/lib/vitastor/mon/make-osd.sh /dev/disk/by-partuuid/XXX [/dev/disk/by-partuuid/YYY ...]`
- Вы можете поменять параметры OSD в юнитах systemd. Смысл некоторых параметров:
- `disable_data_fsync 1` - отключает fsync, используется с SSD с конденсаторами.
- `immediate_commit all` - используется с SSD с конденсаторами.
- `disable_device_lock 1` - отключает блокировку файла устройства, нужно, только если вы запускаете
несколько OSD на одном блочном устройстве.
- `flusher_count 256` - "flusher" - микропоток, удаляющий старые данные из журнала.
Не волнуйтесь об этой настройке, 256 теперь достаточно практически всегда.
- `disk_alignment`, `journal_block_size`, `meta_block_size` следует установить равными размеру
внутреннего блока SSD. Это почти всегда 4096.
- `journal_no_same_sector_overwrites true` запрещает перезапись одного и того же сектора журнала подряд
много раз в процессе записи. Большинство (99%) SSD не нуждаются в данной опции. Однако выяснилось, что
диски, используемые на одном из тестовых стендов - Intel D3-S4510 - очень сильно не любят такую
перезапись, и для них была добавлена эта опция. Когда данный режим включён, также нужно поднимать
значение `journal_sector_buffer_count`, так как иначе Vitastor не хватит буферов для записи в журнал.
- Запустите все etcd: `systemctl start etcd`
- Создайте глобальную конфигурацию в etcd: `etcdctl --endpoints=... put /vitastor/config/global '{"immediate_commit":"all"}'`
(если все ваши диски - серверные с конденсаторами).
- Создайте пулы: `etcdctl --endpoints=... put /vitastor/config/pools '{"1":{"name":"testpool","scheme":"replicated","pg_size":2,"pg_minsize":1,"pg_count":256,"failure_domain":"host"}}'`.
Для jerasure EC-пулов конфигурация должна выглядеть так: `2:{"name":"ecpool","scheme":"jerasure","pg_size":4,"parity_chunks":2,"pg_minsize":2,"pg_count":256,"failure_domain":"host"}`.
- Запустите все OSD: `systemctl start vitastor.target`
- Ваш кластер должен быть готов - один из мониторов должен уже сконфигурировать PG, а OSD должны запустить их.
- Вы можете проверить состояние PG прямо в etcd: `etcdctl --endpoints=... get --prefix /vitastor/pg/state`. Все PG должны быть 'active'.
### Задать имя образу
```
etcdctl --endpoints=<etcd> put /vitastor/config/inode/<pool>/<inode> '{"name":"<name>","size":<size>[,"parent_id":<parent_inode_number>][,"readonly":true]}'
```
Например:
```
etcdctl --endpoints=http://10.115.0.10:2379/v3 put /vitastor/config/inode/1/1 '{"name":"testimg","size":2147483648}'
```
Если вы зададите parent_id, то образ станет CoW-клоном, т.е. все новые запросы записи пойдут в новый инод, а запросы
чтения будут проверять сначала его, а потом родительские слои по цепочке вверх. Чтобы случайно не перезаписать данные
в родительском слое, вы можете переключить его в режим "только чтение", добавив флаг `"readonly":true` в его запись
метаданных. В таком случае родительский образ становится просто снапшотом.
Таким образом, для создания снапшота вам нужно просто переименовать предыдущий inode (например, из testimg в testimg@0),
сделать его readonly и создать новый слой с исходным именем образа (testimg), ссылающийся на только что переименованный
в качестве родительского.
### Запуск тестов с fio
Пример команды для запуска тестов:
```
fio -thread -ioengine=libfio_vitastor.so -name=test -bs=4M -direct=1 -iodepth=16 -rw=write -etcd=10.115.0.10:2379/v3 -image=testimg
```
Если вы не хотите обращаться к образу по имени, вместо `-image=testimg` можно указать номер пула, номер инода и размер:
`-pool=1 -inode=1 -size=400G`.
### Загрузить образ диска ВМ в/из Vitastor
Используйте qemu-img и строку `vitastor:etcd_host=<HOST>:image=<IMAGE>` в качестве имени файла диска. Например:
```
qemu-img convert -f qcow2 debian10.qcow2 -p -O raw 'vitastor:etcd_host=10.115.0.10\:2379/v3:image=testimg'
```
Обратите внимание, что если вы используете немодифицированный QEMU, потребуется установить переменную окружения
`LD_PRELOAD=/usr/lib/x86_64-linux-gnu/qemu/block-vitastor.so`.
Если вы не хотите обращаться к образу по имени, вместо `:image=<IMAGE>` можно указать номер пула, номер инода и размер:
`:pool=<POOL>:inode=<INODE>:size=<SIZE>`.
### Запустить ВМ
Для запуска QEMU используйте опцию `-drive file=vitastor:etcd_host=<HOST>:image=<IMAGE>` (аналогично qemu-img)
и физический размер блока 4 KB.
Например:
```
qemu-system-x86_64 -enable-kvm -m 1024
-drive 'file=vitastor:etcd_host=10.115.0.10\:2379/v3:image=testimg',format=raw,if=none,id=drive-virtio-disk0,cache=none
-device virtio-blk-pci,scsi=off,bus=pci.0,addr=0x5,drive=drive-virtio-disk0,id=virtio-disk0,bootindex=1,write-cache=off,physical_block_size=4096,logical_block_size=512
-vnc 0.0.0.0:0
```
Обращение по номерам (`:pool=<POOL>:inode=<INODE>:size=<SIZE>` вместо `:image=<IMAGE>`) работает аналогично qemu-img.
### Удалить образ
Используйте утилиту vitastor-rm. Например:
```
vitastor-rm --etcd_address 10.115.0.10:2379/v3 --pool 1 --inode 1 --parallel_osds 16 --iodepth 32
```
### NBD
Чтобы создать локальное блочное устройство, используйте NBD. Например:
```
vitastor-nbd map --etcd_address 10.115.0.10:2379/v3 --image testimg
```
Команда напечатает название устройства вида /dev/nbd0, которое потом можно будет форматировать
и использовать как обычное блочное устройство.
Для обращения по номеру инода, аналогично другим командам, можно использовать опции
`--pool <POOL> --inode <INODE> --size <SIZE>` вместо `--image testimg`.
### Kubernetes
У Vitastor есть CSI-плагин для Kubernetes, поддерживающий RWO-тома.
Для установки возьмите манифесты из директории [csi/deploy/](csi/deploy/), поместите
вашу конфигурацию подключения к Vitastor в [csi/deploy/001-csi-config-map.yaml](001-csi-config-map.yaml),
настройте StorageClass в [csi/deploy/009-storage-class.yaml](009-storage-class.yaml)
и примените все `NNN-*.yaml` к вашей инсталляции Kubernetes.
```
for i in ./???-*.yaml; do kubectl apply -f $i; done
```
После этого вы сможете создавать PersistentVolume. Пример смотрите в файле [csi/deploy/example-pvc.yaml](csi/deploy/example-pvc.yaml).
## Известные проблемы
- Запросы удаления объектов могут в данный момент приводить к "неполным" объектам в EC-пулах,
если в процессе удаления произойдут отказы OSD или серверов, потому что правильная обработка
запросов удаления в кластере должна быть "трёхфазной", а это пока не реализовано. Если вы
столкнётесь с такой ситуацией, просто повторите запрос удаления.
## Принципы реализации
- Я люблю архитектурно простые решения. Vitastor проектируется именно так и я намерен
и далее следовать данному принципу.
- Если вы пришли сюда за идеальным кодом на C++, вы, вероятно, не по адресу. "Общепринятые"
практики написания C++ кода меня не очень волнуют, так как зачастую, опять-таки, ведут к
излишним усложнениям и код получается красивый... но медленный.
- По той же причине в коде иногда можно встретить велосипеды типа собственного упрощённого
HTTP-клиента для работы с etcd. Зато эти велосипеды маленькие и компактные и не требуют
использования десятка внешних библиотек.
- node.js для монитора - не случайный выбор. Он очень быстрый, имеет встроенную событийную
машину, приятный нейтральный C-подобный язык программирования и развитую инфраструктуру.
## Автор и лицензия
Автор: Виталий Филиппов (vitalif [at] yourcmc.ru), 2019+
Заходите в Telegram-чат Vitastor: https://t.me/vitastor
Лицензия: VNPL 1.1 на серверный код и двойная VNPL 1.1 + GPL 2.0+ на клиентский.
VNPL - "сетевой копилефт", собственная свободная копилефт-лицензия
Vitastor Network Public License 1.1, основанная на GNU GPL 3.0 с дополнительным
условием "Сетевого взаимодействия", требующим распространять все программы,
специально разработанные для использования вместе с Vitastor и взаимодействующие
с ним по сети, под лицензией VNPL или под любой другой свободной лицензией.
Идея VNPL - расширение действия копилефта не только на модули, явным образом
связываемые с кодом Vitastor, но также на модули, оформленные в виде микросервисов
и взаимодействующие с ним по сети.
Таким образом, если вы хотите построить на основе Vitastor сервис, содержаший
компоненты с закрытым кодом, взаимодействующие с Vitastor, вам нужна коммерческая
лицензия от автора 😀.
На Windows и любое другое ПО, не разработанное *специально* для использования
вместе с Vitastor, никакие ограничения не накладываются.
Клиентские библиотеки распространяются на условиях двойной лицензии VNPL 1.0
и также на условиях GNU GPL 2.0 или более поздней версии. Так сделано в целях
совместимости с таким ПО, как QEMU и fio.
Вы можете найти полный текст VNPL 1.1 в файле [VNPL-1.1.txt](VNPL-1.1.txt),
а GPL 2.0 в файле [GPL-2.0.txt](GPL-2.0.txt).

530
README.md
View File

@ -1,530 +0,0 @@
## Vitastor
[Читать на русском](README-ru.md)
## The Idea
Make Software-Defined Block Storage Great Again.
Vitastor is a small, simple and fast clustered block storage (storage for VM drives),
architecturally similar to Ceph which means strong consistency, primary-replication, symmetric
clustering and automatic data distribution over any number of drives of any size
with configurable redundancy (replication or erasure codes/XOR).
## Features
Vitastor is currently a pre-release, a lot of features are missing and you can still expect
breaking changes in the future. However, the following is implemented:
- Basic part: highly-available block storage with symmetric clustering and no SPOF
- Performance ;-D
- Multiple redundancy schemes: Replication, XOR n+1, Reed-Solomon erasure codes
based on jerasure library with any number of data and parity drives in a group
- Configuration via simple JSON data structures in etcd
- Automatic data distribution over OSDs, with support for:
- Mathematical optimization for better uniformity and less data movement
- Multiple pools
- Placement tree, OSD selection by tags (device classes) and placement root
- Configurable failure domains
- Recovery of degraded blocks
- Rebalancing (data movement between OSDs)
- Lazy fsync support
- I/O statistics reporting to etcd
- Generic user-space client library
- QEMU driver (built out-of-tree)
- Loadable fio engine for benchmarks (also built out-of-tree)
- NBD proxy for kernel mounts
- Inode removal tool (vitastor-rm)
- Packaging for Debian and CentOS
- Per-inode I/O and space usage statistics
- Inode metadata storage in etcd
- Snapshots and copy-on-write image clones
- Write throttling to smooth random write workloads in SSD+HDD configurations
- RDMA/RoCEv2 support via libibverbs
- CSI plugin for Kubernetes
- Basic OpenStack support: Cinder driver, Nova and libvirt patches
## Roadmap
- Snapshot deletion (layer merge) support
- Better OSD creation and auto-start tools
- Other administrative tools
- Plugins for OpenNebula, Proxmox and other cloud systems
- iSCSI proxy
- Faster failover
- Scrubbing without checksums (verification of replicas)
- Checksums
- Tiered storage
- NVDIMM support
- Web GUI
- Compression (possibly)
- Read caching using system page cache (possibly)
## Architecture
Similarities:
- Just like Ceph, Vitastor has Pools, PGs, OSDs, Monitors, Failure Domains, Placement Tree.
- Just like Ceph, Vitastor is transactional (even though there's a "lazy fsync mode" which
doesn't implicitly flush every operation to disks).
- OSDs also have journal and metadata and they can also be put on separate drives.
- Just like in Ceph, client library attempts to recover from any cluster failure so
you can basically reboot the whole cluster and only pause, but not crash, your clients
(I consider this a bug if the client crashes in that case).
Some basic terms for people not familiar with Ceph:
- OSD (Object Storage Daemon) is a process that stores data and serves read/write requests.
- PG (Placement Group) is a container for data that (normally) shares the same replicas.
- Pool is a container for data that has the same redundancy scheme and placement rules.
- Monitor is a separate daemon that watches cluster state and handles failures.
- Failure Domain is a group of OSDs that you allow to fail. It's "host" by default.
- Placement Tree groups OSDs in a hierarchy to later split them into Failure Domains.
Architectural differences from Ceph:
- Vitastor's primary focus is on SSDs. Proper SSD+HDD optimizations may be added in the future, though.
- Vitastor OSD is (and will always be) single-threaded. If you want to dedicate more than 1 core
per drive you should run multiple OSDs each on a different partition of the drive.
Vitastor isn't CPU-hungry though (as opposed to Ceph), so 1 core is sufficient in a lot of cases.
- Metadata and journal are always kept in memory. Metadata size depends linearly on drive capacity
and data store block size which is 128 KB by default. With 128 KB blocks metadata should occupy
around 512 MB per 1 TB (which is still less than Ceph wants). Journal doesn't have to be big,
the example test below was conducted with only 16 MB journal. A big journal is probably even
harmful as dirty write metadata also take some memory.
- Vitastor storage layer doesn't have internal copy-on-write or redirect-write. I know that maybe
it's possible to create a good copy-on-write storage, but it's much harder and makes performance
less deterministic, so CoW isn't used in Vitastor.
- The basic layer of Vitastor is block storage with fixed-size blocks, not object storage with
rich semantics like in Ceph (RADOS).
- There's a "lazy fsync" mode which allows to batch writes before flushing them to the disk.
This allows to use Vitastor with desktop SSDs, but still lowers performance due to additional
network roundtrips, so use server SSDs with capacitor-based power loss protection
("Advanced Power Loss Protection") for best performance.
- PGs are ephemeral. This means that they aren't stored on data disks and only exist in memory
while OSDs are running.
- Recovery process is per-object (per-block), not per-PG. Also there are no PGLOGs.
- Monitors don't store data. Cluster configuration and state is stored in etcd in simple human-readable
JSON structures. Monitors only watch cluster state and handle data movement.
Thus Vitastor's Monitor isn't a critical component of the system and is more similar to Ceph's Manager.
Vitastor's Monitor is implemented in node.js.
- PG distribution isn't based on consistent hashes. All PG mappings are stored in etcd.
Rebalancing PGs between OSDs is done by mathematical optimization - data distribution problem
is reduced to a linear programming problem and solved by lp_solve. This allows for almost
perfect (96-99% uniformity compared to Ceph's 80-90%) data distribution in most cases, ability
to map PGs by hand without breaking rebalancing logic, reduced OSD peer-to-peer communication
(on average, OSDs have fewer peers) and less data movement. It also probably has a drawback -
this method may fail in very large clusters, but up to several hundreds of OSDs it's perfectly fine.
It's also easy to add consistent hashes in the future if something proves their necessity.
- There's no separate CRUSH layer. You select pool redundancy scheme, placement root, failure domain
and so on directly in pool configuration.
## Understanding Storage Performance
The most important thing for fast storage is latency, not parallel iops.
The best possible latency is achieved with one thread and queue depth of 1 which basically means
"client load as low as possible". In this case IOPS = 1/latency, and this number doesn't
scale with number of servers, drives, server processes or threads and so on.
Single-threaded IOPS and latency numbers only depend on *how fast a single daemon is*.
Why is it important? It's important because some of the applications *can't* use
queue depth greater than 1 because their task isn't parallelizable. A notable example
is any ACID DBMS because all of them write their WALs sequentially with fsync()s.
fsync, by the way, is another important thing often missing in benchmarks. The point is
that drives have cache buffers and don't guarantee that your data is actually persisted
until you call fsync() which is translated to a FLUSH CACHE command by the OS.
Desktop SSDs are very fast without fsync - NVMes, for example, can process ~80000 write
operations per second with queue depth of 1 without fsync - but they're really slow with
fsync because they have to actually write data to flash chips when you call fsync. Typical
number is around 1000-2000 iops with fsync.
Server SSDs often have supercapacitors that act as a built-in UPS and allow the drive
to flush its DRAM cache to the persistent flash storage when a power loss occurs.
This makes them perform equally well with and without fsync. This feature is called
"Advanced Power Loss Protection" by Intel; other vendors either call it similarly
or directly as "Full Capacitor-Based Power Loss Protection".
All software-defined storages that I currently know are slow in terms of latency.
Notable examples are Ceph and internal SDSes used by cloud providers like Amazon, Google,
Yandex and so on. They're all slow and can only reach ~0.3ms read and ~0.6ms 4 KB write latency
with best-in-slot hardware.
And that's in the SSD era when you can buy an SSD that has ~0.04ms latency for 100 $.
I use the following 6 commands with small variations to benchmark any storage:
- Linear write:
`fio -ioengine=libaio -direct=1 -invalidate=1 -name=test -bs=4M -iodepth=32 -rw=write -runtime=60 -filename=/dev/sdX`
- Linear read:
`fio -ioengine=libaio -direct=1 -invalidate=1 -name=test -bs=4M -iodepth=32 -rw=read -runtime=60 -filename=/dev/sdX`
- Random write latency (T1Q1, this hurts storages the most):
`fio -ioengine=libaio -direct=1 -invalidate=1 -name=test -bs=4k -iodepth=1 -fsync=1 -rw=randwrite -runtime=60 -filename=/dev/sdX`
- Random read latency (T1Q1):
`fio -ioengine=libaio -direct=1 -invalidate=1 -name=test -bs=4k -iodepth=1 -rw=randread -runtime=60 -filename=/dev/sdX`
- Parallel write iops (use numjobs if a single CPU core is insufficient to saturate the load):
`fio -ioengine=libaio -direct=1 -invalidate=1 -name=test -bs=4k -iodepth=128 [-numjobs=4 -group_reporting] -rw=randwrite -runtime=60 -filename=/dev/sdX`
- Parallel read iops (use numjobs if a single CPU core is insufficient to saturate the load):
`fio -ioengine=libaio -direct=1 -invalidate=1 -name=test -bs=4k -iodepth=128 [-numjobs=4 -group_reporting] -rw=randread -runtime=60 -filename=/dev/sdX`
## Vitastor's Theoretical Maximum Random Access Performance
Replicated setups:
- Single-threaded (T1Q1) read latency: 1 network roundtrip + 1 disk read.
- Single-threaded write+fsync latency:
- With immediate commit: 2 network roundtrips + 1 disk write.
- With lazy commit: 4 network roundtrips + 1 disk write + 1 disk flush.
- Saturated parallel read iops: min(network bandwidth, sum(disk read iops)).
- Saturated parallel write iops: min(network bandwidth, sum(disk write iops / number of replicas / write amplification)).
EC/XOR setups:
- Single-threaded (T1Q1) read latency: 1.5 network roundtrips + 1 disk read.
- Single-threaded write+fsync latency:
- With immediate commit: 3.5 network roundtrips + 1 disk read + 2 disk writes.
- With lazy commit: 5.5 network roundtrips + 1 disk read + 2 disk writes + 2 disk fsyncs.
- 0.5 in actually (k-1)/k which means that an additional roundtrip doesn't happen when
the read sub-operation can be served locally.
- Saturated parallel read iops: min(network bandwidth, sum(disk read iops)).
- Saturated parallel write iops: min(network bandwidth, sum(disk write iops * number of data drives / (number of data + parity drives) / write amplification)).
In fact, you should put disk write iops under the condition of ~10% reads / ~90% writes in this formula.
Write amplification for 4 KB blocks is usually 3-5 in Vitastor:
1. Journal block write
2. Journal data write
3. Metadata block write
4. Another journal block write for EC/XOR setups
5. Data block write
If you manage to get an SSD which handles 512 byte blocks well (Optane?) you may
lower 1, 3 and 4 to 512 bytes (1/8 of data size) and get WA as low as 2.375.
Lazy fsync also reduces WA for parallel workloads because journal blocks are only
written when they fill up or fsync is requested.
## Example Comparison with Ceph
Hardware configuration: 4 nodes, each with:
- 6x SATA SSD Intel D3-4510 3.84 TB
- 2x Xeon Gold 6242 (16 cores @ 2.8 GHz)
- 384 GB RAM
- 1x 25 GbE network interface (Mellanox ConnectX-4 LX), connected to a Juniper QFX5200 switch
CPU powersaving was disabled. Both Vitastor and Ceph were configured with 2 OSDs per 1 SSD.
All of the results below apply to 4 KB blocks and random access (unless indicated otherwise).
Raw drive performance:
- T1Q1 write ~27000 iops (~0.037ms latency)
- T1Q1 read ~9800 iops (~0.101ms latency)
- T1Q32 write ~60000 iops
- T1Q32 read ~81700 iops
Ceph 15.2.4 (Bluestore):
- T1Q1 write ~1000 iops (~1ms latency)
- T1Q1 read ~1750 iops (~0.57ms latency)
- T8Q64 write ~100000 iops, total CPU usage by OSDs about 40 virtual cores on each node
- T8Q64 read ~480000 iops, total CPU usage by OSDs about 40 virtual cores on each node
T8Q64 tests were conducted over 8 400GB RBD images from all hosts (every host was running 2 instances of fio).
This is because Ceph has performance penalties related to running multiple clients over a single RBD image.
cephx_sign_messages was set to false during tests, RocksDB and Bluestore settings were left at defaults.
In fact, not that bad for Ceph. These servers are an example of well-balanced Ceph nodes.
However, CPU usage and I/O latency were through the roof, as usual.
Vitastor:
- T1Q1 write: 7087 iops (0.14ms latency)
- T1Q1 read: 6838 iops (0.145ms latency)
- T2Q64 write: 162000 iops, total CPU usage by OSDs about 3 virtual cores on each node
- T8Q64 read: 895000 iops, total CPU usage by OSDs about 4 virtual cores on each node
- Linear write (4M T1Q32): 2800 MB/s
- Linear read (4M T1Q32): 1500 MB/s
T8Q64 read test was conducted over 1 larger inode (3.2T) from all hosts (every host was running 2 instances of fio).
Vitastor has no performance penalties related to running multiple clients over a single inode.
If conducted from one node with all primary OSDs moved to other nodes the result was slightly lower (689000 iops),
this is because all operations resulted in network roundtrips between the client and the primary OSD.
When fio was colocated with OSDs (like in Ceph benchmarks above), 1/4 of the read workload actually
used the loopback network.
Vitastor was configured with: `--disable_data_fsync true --immediate_commit all --flusher_count 8
--disk_alignment 4096 --journal_block_size 4096 --meta_block_size 4096
--journal_no_same_sector_overwrites true --journal_sector_buffer_count 1024
--journal_size 16777216`.
### EC/XOR 2+1
Vitastor:
- T1Q1 write: 2808 iops (~0.355ms latency)
- T1Q1 read: 6190 iops (~0.16ms latency)
- T2Q64 write: 85500 iops, total CPU usage by OSDs about 3.4 virtual cores on each node
- T8Q64 read: 812000 iops, total CPU usage by OSDs about 4.7 virtual cores on each node
- Linear write (4M T1Q32): 3200 MB/s
- Linear read (4M T1Q32): 1800 MB/s
Ceph:
- T1Q1 write: 730 iops (~1.37ms latency)
- T1Q1 read: 1500 iops with cold cache (~0.66ms latency), 2300 iops after 2 minute metadata cache warmup (~0.435ms latency)
- T4Q128 write (4 RBD images): 45300 iops, total CPU usage by OSDs about 30 virtual cores on each node
- T8Q64 read (4 RBD images): 278600 iops, total CPU usage by OSDs about 40 virtual cores on each node
- Linear write (4M T1Q32): 1950 MB/s before preallocation, 2500 MB/s after preallocation
- Linear read (4M T1Q32): 2400 MB/s
### NBD
NBD is currently required to mount Vitastor via kernel, but it imposes additional overhead
due to additional copying between the kernel and userspace. This mostly hurts linear
bandwidth, not iops.
Vitastor with single-thread NBD on the same hardware:
- T1Q1 write: 6000 iops (0.166ms latency)
- T1Q1 read: 5518 iops (0.18ms latency)
- T1Q128 write: 94400 iops
- T1Q128 read: 103000 iops
- Linear write (4M T1Q128): 1266 MB/s (compared to 2800 MB/s via fio)
- Linear read (4M T1Q128): 975 MB/s (compared to 1500 MB/s via fio)
## Installation
### Debian
- Trust Vitastor package signing key:
`wget -q -O - https://vitastor.io/debian/pubkey | sudo apt-key add -`
- Add Vitastor package repository to your /etc/apt/sources.list:
- Debian 11 (Bullseye/Sid): `deb https://vitastor.io/debian bullseye main`
- Debian 10 (Buster): `deb https://vitastor.io/debian buster main`
- For Debian 10 (Buster) also enable backports repository:
`deb http://deb.debian.org/debian buster-backports main`
- Install packages: `apt update; apt install vitastor lp-solve etcd linux-image-amd64 qemu`
### CentOS
- Add Vitastor package repository:
- CentOS 7: `yum install https://vitastor.io/rpms/centos/7/vitastor-release-1.0-1.el7.noarch.rpm`
- CentOS 8: `dnf install https://vitastor.io/rpms/centos/8/vitastor-release-1.0-1.el8.noarch.rpm`
- Enable EPEL: `yum/dnf install epel-release`
- Enable additional CentOS repositories:
- CentOS 7: `yum install centos-release-scl`
- CentOS 8: `dnf install centos-release-advanced-virtualization`
- Enable elrepo-kernel:
- CentOS 7: `yum install https://www.elrepo.org/elrepo-release-7.el7.elrepo.noarch.rpm`
- CentOS 8: `dnf install https://www.elrepo.org/elrepo-release-8.el8.elrepo.noarch.rpm`
- Install packages: `yum/dnf install vitastor lpsolve etcd kernel-ml qemu-kvm`
### Building from Source
- Install Linux kernel 5.4 or newer, for io_uring support. 5.8 or later is highly recommended because
there is at least one known io_uring hang with 5.4 and an HP SmartArray controller.
- Install liburing 0.4 or newer and its headers.
- Install lp_solve.
- Install etcd, at least version 3.4.15. Earlier versions won't work because of various bugs,
for example [#12402](https://github.com/etcd-io/etcd/pull/12402). You can also take 3.4.13
with this specific fix from here: https://github.com/vitalif/etcd/, branch release-3.4.
- Install node.js 10 or newer.
- Install gcc and g++ 8.x or newer.
- Clone https://yourcmc.ru/git/vitalif/vitastor/ with submodules.
- Install QEMU 3.0+, get its source, begin to build it, stop the build and copy headers:
- `<qemu>/include` &rarr; `<vitastor>/qemu/include`
- Debian:
* Use qemu packages from the main repository
* `<qemu>/b/qemu/config-host.h` &rarr; `<vitastor>/qemu/b/qemu/config-host.h`
* `<qemu>/b/qemu/qapi` &rarr; `<vitastor>/qemu/b/qemu/qapi`
- CentOS 8:
* Use qemu packages from the Advanced-Virtualization repository. To enable it, run
`yum install centos-release-advanced-virtualization.noarch` and then `yum install qemu`
* `<qemu>/config-host.h` &rarr; `<vitastor>/qemu/b/qemu/config-host.h`
* For QEMU 3.0+: `<qemu>/qapi` &rarr; `<vitastor>/qemu/b/qemu/qapi`
* For QEMU 2.0+: `<qemu>/qapi-types.h` &rarr; `<vitastor>/qemu/b/qemu/qapi-types.h`
- `config-host.h` and `qapi` are required because they contain generated headers
- You can also rebuild QEMU with a patch that makes LD_PRELOAD unnecessary to load vitastor driver.
See `patches/qemu-*.*-vitastor.patch`.
- Install fio 3.7 or later, get its source and symlink it into `<vitastor>/fio`.
- Build & install Vitastor with `mkdir build && cd build && cmake .. && make -j8 && make install`.
Pay attention to the `QEMU_PLUGINDIR` cmake option - it must be set to `qemu-kvm` on RHEL.
## Running
Please note that startup procedure isn't currently simple - you specify configuration
and calculate disk offsets almost by hand. This will be fixed in near future.
- Get some SATA or NVMe SSDs with capacitors (server-grade drives). You can use desktop SSDs
with lazy fsync, but prepare for inferior single-thread latency.
- Get a fast network (at least 10 Gbit/s).
- Disable CPU powersaving: `cpupower idle-set -D 0 && cpupower frequency-set -g performance`.
- Check `/usr/lib/vitastor/mon/make-units.sh` and `/usr/lib/vitastor/mon/make-osd.sh` and
put desired values into the variables at the top of these files.
- Create systemd units for the monitor and etcd: `/usr/lib/vitastor/mon/make-units.sh`
- Create systemd units for your OSDs: `/usr/lib/vitastor/mon/make-osd.sh /dev/disk/by-partuuid/XXX [/dev/disk/by-partuuid/YYY ...]`
- You can edit the units and change OSD configuration. Notable configuration variables:
- `disable_data_fsync 1` - only safe with server-grade drives with capacitors.
- `immediate_commit all` - use this if all your drives are server-grade.
- `disable_device_lock 1` - only required if you run multiple OSDs on one block device.
- `flusher_count 256` - flusher is a micro-thread that removes old data from the journal.
You don't have to worry about this parameter anymore, 256 is enough.
- `disk_alignment`, `journal_block_size`, `meta_block_size` should be set to the internal
block size of your SSDs which is 4096 on most drives.
- `journal_no_same_sector_overwrites true` prevents multiple overwrites of the same journal sector.
Most (99%) SSDs don't need this option. But Intel D3-4510 does because it doesn't like when you
overwrite the same sector twice in a short period of time. The setting forces Vitastor to never
overwrite the same journal sector twice in a row which makes D3-4510 almost happy. Not totally
happy, because overwrites of the same block can still happen in the metadata area... When this
setting is set, it is also required to raise `journal_sector_buffer_count` setting, which is the
number of dirty journal sectors that may be written to at the same time.
- `systemctl start vitastor.target` everywhere.
- Create global configuration in etcd: `etcdctl --endpoints=... put /vitastor/config/global '{"immediate_commit":"all"}'`
(if all your drives have capacitors).
- Create pool configuration in etcd: `etcdctl --endpoints=... put /vitastor/config/pools '{"1":{"name":"testpool","scheme":"replicated","pg_size":2,"pg_minsize":1,"pg_count":256,"failure_domain":"host"}}'`.
For jerasure pools the configuration should look like the following: `2:{"name":"ecpool","scheme":"jerasure","pg_size":4,"parity_chunks":2,"pg_minsize":2,"pg_count":256,"failure_domain":"host"}`.
- At this point, one of the monitors will configure PGs and OSDs will start them.
- You can check PG states with `etcdctl --endpoints=... get --prefix /vitastor/pg/state`. All PGs should become 'active'.
### Name an image
```
etcdctl --endpoints=<etcd> put /vitastor/config/inode/<pool>/<inode> '{"name":"<name>","size":<size>[,"parent_id":<parent_inode_number>][,"readonly":true]}'
```
For example:
```
etcdctl --endpoints=http://10.115.0.10:2379/v3 put /vitastor/config/inode/1/1 '{"name":"testimg","size":2147483648}'
```
If you specify parent_id the image becomes a CoW clone. I.e. all writes go to the new inode and reads first check it
and then upper layers. You can then make parent readonly by updating its entry with `"readonly":true` for safety and
basically treat it as a snapshot.
So to create a snapshot you basically rename the previous upper layer (for example from testimg to testimg@0), make it readonly
and create a new top layer with the original name (testimg) and the previous one as a parent.
### Run fio benchmarks
fio command example:
```
fio -thread -ioengine=libfio_vitastor.so -name=test -bs=4M -direct=1 -iodepth=16 -rw=write -etcd=10.115.0.10:2379/v3 -image=testimg
```
If you don't want to access your image by name, you can specify pool number, inode number and size
(`-pool=1 -inode=1 -size=400G`) instead of the image name (`-image=testimg`).
### Upload VM image
Use qemu-img and `vitastor:etcd_host=<HOST>:image=<IMAGE>` disk filename. For example:
```
qemu-img convert -f qcow2 debian10.qcow2 -p -O raw 'vitastor:etcd_host=10.115.0.10\:2379/v3:image=testimg'
```
Note that the command requires to be run with `LD_PRELOAD=/usr/lib/x86_64-linux-gnu/qemu/block-vitastor.so qemu-img ...`
if you use unmodified QEMU.
You can also specify `:pool=<POOL>:inode=<INODE>:size=<SIZE>` instead of `:image=<IMAGE>`
if you don't want to use inode metadata.
### Start a VM
Run QEMU with `-drive file=vitastor:etcd_host=<HOST>:image=<IMAGE>` and use 4 KB physical block size.
For example:
```
qemu-system-x86_64 -enable-kvm -m 1024
-drive 'file=vitastor:etcd_host=10.115.0.10\:2379/v3:image=testimg',format=raw,if=none,id=drive-virtio-disk0,cache=none
-device virtio-blk-pci,scsi=off,bus=pci.0,addr=0x5,drive=drive-virtio-disk0,id=virtio-disk0,bootindex=1,write-cache=off,physical_block_size=4096,logical_block_size=512
-vnc 0.0.0.0:0
```
You can also specify `:pool=<POOL>:inode=<INODE>:size=<SIZE>` instead of `:image=<IMAGE>`,
just like in qemu-img.
### Remove inode
Use vitastor-rm. For example:
```
vitastor-rm --etcd_address 10.115.0.10:2379/v3 --pool 1 --inode 1 --parallel_osds 16 --iodepth 32
```
### NBD
To create a local block device for a Vitastor image, use NBD. For example:
```
vitastor-nbd map --etcd_address 10.115.0.10:2379/v3 --image testimg
```
It will output the device name, like /dev/nbd0 which you can then format and mount as a normal block device.
Again, you can use `--pool <POOL> --inode <INODE> --size <SIZE>` insteaf of `--image <IMAGE>` if you want.
### Kubernetes
Vitastor has a CSI plugin for Kubernetes which supports RWO volumes.
To deploy it, take manifests from [csi/deploy/](csi/deploy/) directory, put your
Vitastor configuration in [csi/deploy/001-csi-config-map.yaml](001-csi-config-map.yaml),
configure storage class in [csi/deploy/009-storage-class.yaml](009-storage-class.yaml)
and apply all `NNN-*.yaml` manifests to your Kubernetes installation:
```
for i in ./???-*.yaml; do kubectl apply -f $i; done
```
After that you'll be able to create PersistentVolumes. See example in [csi/deploy/example-pvc.yaml](csi/deploy/example-pvc.yaml).
## Known Problems
- Object deletion requests may currently lead to 'incomplete' objects in EC pools
if your OSDs crash during deletion because proper handling of object cleanup
in a cluster should be "three-phase" and it's currently not implemented.
Just repeat the removal request again in this case.
## Implementation Principles
- I like architecturally simple solutions. Vitastor is and will always be designed
exactly like that.
- I also like reinventing the wheel to some extent, like writing my own HTTP client
for etcd interaction instead of using prebuilt libraries, because in this case
I'm confident about what my code does and what it doesn't do.
- I don't care about C++ "best practices" like RAII or proper inheritance or usage of
smart pointers or whatever and I don't intend to change my mind, so if you're here
looking for ideal reference C++ code, this probably isn't the right place.
- I like node.js better than any other dynamically-typed language interpreter
because it's faster than any other interpreter in the world, has neutral C-like
syntax and built-in event loop. That's why Monitor is implemented in node.js.
## Author and License
Copyright (c) Vitaliy Filippov (vitalif [at] yourcmc.ru), 2019+
Join Vitastor Telegram Chat: https://t.me/vitastor
All server-side code (OSD, Monitor and so on) is licensed under the terms of
Vitastor Network Public License 1.1 (VNPL 1.1), a copyleft license based on
GNU GPLv3.0 with the additional "Network Interaction" clause which requires
opensourcing all programs directly or indirectly interacting with Vitastor
through a computer network and expressly designed to be used in conjunction
with it ("Proxy Programs"). Proxy Programs may be made public not only under
the terms of the same license, but also under the terms of any GPL-Compatible
Free Software License, as listed by the Free Software Foundation.
This is a stricter copyleft license than the Affero GPL.
Please note that VNPL doesn't require you to open the code of proprietary
software running inside a VM if it's not specially designed to be used with
Vitastor.
Basically, you can't use the software in a proprietary environment to provide
its functionality to users without opensourcing all intermediary components
standing between the user and Vitastor or purchasing a commercial license
from the author 😀.
Client libraries (cluster_client and so on) are dual-licensed under the same
VNPL 1.1 and also GNU GPL 2.0 or later to allow for compatibility with GPLed
software like QEMU and fio.
You can find the full text of VNPL-1.1 in the file [VNPL-1.1.txt](VNPL-1.1.txt).
GPL 2.0 is also included in this repository as [GPL-2.0.txt](GPL-2.0.txt).

View File

@ -1,648 +0,0 @@
VITASTOR NETWORK PUBLIC LICENSE
Version 1.1, 6 February 2021
Copyright (C) 2021 Vitaliy Filippov <vitalif@yourcmc.ru>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
Preamble
The Vitastor Network Public License is a free, copyleft license for
software and other kinds of works, specifically designed to ensure
cooperation with the community in the case of network server software.
The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
GNU General Public Licenses and Vitastor Network Public License are
intended to guarantee your freedom to share and change all versions
of a program--to make sure it remains free software for all its users.
When we speak of free software, we are referring to freedom, not
price. GNU General Public Licenses and Vitastor Network Public License
are designed to make sure that you have the freedom to distribute copies
of free software (and charge for them if you wish), that you receive
source code or can get it if you want it, that you can change the software
or use pieces of it in new free programs, and that you know you can do these
things.
Developers that use GNU General Public Licenses and Vitastor
Network Public License protect your rights with two steps:
(1) assert copyright on the software, and (2) offer
you this License which gives you legal permission to copy, distribute
and/or modify the software.
A secondary benefit of defending all users' freedom is that
improvements made in alternate versions of the program, if they
receive widespread use, become available for other developers to
incorporate. Many developers of free software are heartened and
encouraged by the resulting cooperation. However, in the case of
software used on network servers, this result may fail to come about.
The GNU General Public License permits making a modified version and
letting the public access it on a server without ever releasing its
source code to the public. Even the GNU Affero General Public License
permits running a modified version in a closed environment where
public users only interact with it through a closed-source proxy, again,
without making the program and the proxy available to the public
for free.
The Vitastor Network Public License is designed specifically to
ensure that, in such cases, the modified program and the proxy stays
available to the community. It requires the operator of a network server to
provide the source code of the original program and all other programs
communicating with it running there to the users of that server.
Therefore, public use of a modified version, on a server accessible
directly or indirectly to the public, gives the public access to the source
code of the modified version.
The precise terms and conditions for copying, distribution and
modification follow.
TERMS AND CONDITIONS
0. Definitions.
"This License" refers to version 1 of the Vitastor Network Public License.
"Copyright" also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.
"The Program" refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.
To "modify" a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a "modified version" of the
earlier work or a work "based on" the earlier work.
A "covered work" means either the unmodified Program or a work based
on the Program.
To "propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.
To "convey" a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.
An interactive user interface displays "Appropriate Legal Notices"
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.
1. Source Code.
The "source code" for a work means the preferred form of the work
for making modifications to it. "Object code" means any non-source
form of a work.
A "Standard Interface" means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.
The "System Libraries" of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
"Major Component", in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.
The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work's
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.
The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.
The Corresponding Source for a work in source code form is that
same work.
2. Basic Permissions.
All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.
You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.
Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.
When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work's
users, your or third parties' legal rights to forbid circumvention of
technological measures.
4. Conveying Verbatim Copies.
You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.
You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.
5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:
a) The work must carry prominent notices stating that you modified
it, and giving a relevant date.
b) The work must carry prominent notices stating that it is
released under this License and any conditions added under section
7. This requirement modifies the requirement in section 4 to
"keep intact all notices".
c) You must license the entire work, as a whole, under this
License to anyone who comes into possession of a copy. This
License will therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no
permission to license the work in any other way, but it does not
invalidate such permission if you have separately received it.
d) If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has interactive
interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.
A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
"aggregate" if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation's users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.
6. Conveying Non-Source Forms.
You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:
a) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium
customarily used for software interchange.
b) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a
written offer, valid for at least three years and valid for as
long as you offer spare parts or customer support for that product
model, to give anyone who possesses the object code either (1) a
copy of the Corresponding Source for all the software in the
product that is covered by this License, on a durable physical
medium customarily used for software interchange, for a price no
more than your reasonable cost of physically performing this
conveying of source, or (2) access to copy the
Corresponding Source from a network server at no charge.
c) Convey individual copies of the object code with a copy of the
written offer to provide the Corresponding Source. This
alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord
with subsection 6b.
d) Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party)
that supports equivalent copying facilities, provided you maintain
clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that it is
available for as long as needed to satisfy these requirements.
e) Convey the object code using peer-to-peer transmission, provided
you inform other peers where the object code and Corresponding
Source of the work are being offered to the general public at no
charge under subsection 6d.
A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.
A "User Product" is either (1) a "consumer product", which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, "normally used" refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.
"Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.
If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).
The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.
Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.
7. Additional Terms.
"Additional permissions" are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.
When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.
Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:
a) Disclaiming warranty or limiting liability differently from the
terms of sections 15 and 16 of this License; or
b) Requiring preservation of specified reasonable legal notices or
author attributions in that material or in the Appropriate Legal
Notices displayed by works containing it; or
c) Prohibiting misrepresentation of the origin of that material, or
requiring that modified versions of such material be marked in
reasonable ways as different from the original version; or
d) Limiting the use for publicity purposes of names of licensors or
authors of the material; or
e) Declining to grant rights under trademark law for use of some
trade names, trademarks, or service marks; or
f) Requiring indemnification of licensors and authors of that
material by anyone who conveys the material (or modified versions of
it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on
those licensors and authors.
All other non-permissive additional terms are considered "further
restrictions" within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.
If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.
Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.
8. Termination.
You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).
However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.
Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.
Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.
9. Acceptance Not Required for Having Copies.
You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.
10. Automatic Licensing of Downstream Recipients.
Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.
An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.
You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.
11. Patents.
A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor's "contributor version".
A contributor's "essential patent claims" are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, "control" includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.
Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor's essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.
In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To "grant" such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.
If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. "Knowingly relying" means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient's use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.
If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.
A patent license is "discriminatory" if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.
Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.
12. No Surrender of Others' Freedom.
If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.
13. Remote Network Interaction.
A "Proxy Program" means a separate program which is specially designed to
be used in conjunction with the covered work and interacts with it directly
or indirectly through any kind of API (application programming interfaces),
a computer network, an imitation of such network, or another Proxy Program
itself.
Notwithstanding any other provision of this License, if you provide any user
with an opportunity to interact with the covered work through a computer
network, an imitation of such network, or any number of "Proxy Programs",
you must prominently offer that user an opportunity to receive the
Corresponding Source of the covered work and all Proxy Programs from a
network server at no charge, through some standard or customary means of
facilitating copying of software. The Corresponding Source for the covered
work must be made available under the conditions of this License, and
the Corresponding Source for all Proxy Programs must be made available
under the conditions of either this License or any GPL-Compatible
Free Software License, as described by the Free Software Foundation
in their "GPL-Compatible License List".
14. Revised Versions of this License.
Vitastor Author may publish revised and/or new versions of
the Vitastor Network Public License from time to time. Such new versions
will be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.
Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the Vitastor Network
Public License "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version. If the Program does not specify a version
number of the Vitastor Network Public License, you may choose any version
ever published.
Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.
15. Disclaimer of Warranty.
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
16. Limitation of Liability.
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.
17. Interpretation of Sections 15 and 16.
If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.
END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs
If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.
To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.
<one line to give the program's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>
This program is free software: you can redistribute it and/or modify
it under the terms of the Vitastor Network Public License as published by
the Vitastor Author, either version 1 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Vitastor Network Public License for more details.
Also add information on how to contact you by electronic and paper mail.
If your software can interact with users remotely through a computer
network, you should also make sure that it provides a way for users to
get its source. For example, if your program is a web application, its
interface could display a "Source" link that leads users to an archive
of the code. There are many ways you could offer source, and different
solutions will be better for different programs; see section 13 for the
specific requirements.

View File

@ -1,6 +1,3 @@
// Copyright (c) Vitaliy Filippov, 2019+
// License: VNPL-1.1 (see README.md for details)
#include <stdexcept>
#include "allocator.h"
@ -13,19 +10,19 @@ allocator::allocator(uint64_t blocks)
{
throw std::invalid_argument("blocks");
}
uint64_t p2 = 1;
total = 0;
uint64_t p2 = 1, total = 1;
while (p2 * 64 < blocks)
{
total += p2;
p2 = p2 * 64;
total += p2;
}
total -= p2;
total += (blocks+63) / 64;
mask = new uint64_t[total];
mask = new uint64_t[2 + total];
size = free = blocks;
last_one_mask = (blocks % 64) == 0
? UINT64_MAX
: ((1l << (blocks % 64)) - 1);
: ~(UINT64_MAX << (64 - blocks % 64));
for (uint64_t i = 0; i < total; i++)
{
mask[i] = 0;
@ -37,21 +34,6 @@ allocator::~allocator()
delete[] mask;
}
bool allocator::get(uint64_t addr)
{
if (addr >= size)
{
return false;
}
uint64_t p2 = 1, offset = 0;
while (p2 * 64 < size)
{
offset += p2;
p2 = p2 * 64;
}
return ((mask[offset + addr/64] >> (addr % 64)) & 1);
}
void allocator::set(uint64_t addr, bool value)
{
if (addr >= size)
@ -114,10 +96,6 @@ uint64_t allocator::find_free()
uint64_t p2 = 1, offset = 0, addr = 0, f, i;
while (p2 < size)
{
if (offset+addr >= total)
{
return UINT64_MAX;
}
uint64_t m = mask[offset + addr];
for (i = 0, f = 1; i < 64; i++, f <<= 1)
{
@ -132,6 +110,11 @@ uint64_t allocator::find_free()
return UINT64_MAX;
}
addr = (addr * 64) | i;
if (addr >= size)
{
// No space
return UINT64_MAX;
}
offset += p2;
p2 = p2 * 64;
}
@ -142,35 +125,3 @@ uint64_t allocator::get_free_count()
{
return free;
}
void bitmap_set(void *bitmap, uint64_t start, uint64_t len, uint64_t bitmap_granularity)
{
if (start == 0)
{
if (len == 32*bitmap_granularity)
{
*((uint32_t*)bitmap) = UINT32_MAX;
return;
}
else if (len == 64*bitmap_granularity)
{
*((uint64_t*)bitmap) = UINT64_MAX;
return;
}
}
unsigned bit_start = start / bitmap_granularity;
unsigned bit_end = ((start + len) + bitmap_granularity - 1) / bitmap_granularity;
while (bit_start < bit_end)
{
if (!(bit_start & 7) && bit_end >= bit_start+8)
{
((uint8_t*)bitmap)[bit_start / 8] = UINT8_MAX;
bit_start += 8;
}
else
{
((uint8_t*)bitmap)[bit_start / 8] |= 1 << (bit_start % 8);
bit_start++;
}
}
}

View File

@ -1,6 +1,3 @@
// Copyright (c) Vitaliy Filippov, 2019+
// License: VNPL-1.1 (see README.md for details)
#pragma once
#include <stdint.h>
@ -8,7 +5,6 @@
// Hierarchical bitmap allocator
class allocator
{
uint64_t total;
uint64_t size;
uint64_t free;
uint64_t last_one_mask;
@ -16,10 +12,7 @@ class allocator
public:
allocator(uint64_t blocks);
~allocator();
bool get(uint64_t addr);
void set(uint64_t addr, bool value);
uint64_t find_free();
uint64_t get_free_count();
};
void bitmap_set(void *bitmap, uint64_t start, uint64_t len, uint64_t bitmap_granularity);

61
blockstore.cpp Normal file
View File

@ -0,0 +1,61 @@
#include "blockstore_impl.h"
blockstore_t::blockstore_t(blockstore_config_t & config, ring_loop_t *ringloop)
{
impl = new blockstore_impl_t(config, ringloop);
}
blockstore_t::~blockstore_t()
{
delete impl;
}
void blockstore_t::loop()
{
impl->loop();
}
bool blockstore_t::is_started()
{
return impl->is_started();
}
bool blockstore_t::is_stalled()
{
return impl->is_stalled();
}
bool blockstore_t::is_safe_to_stop()
{
return impl->is_safe_to_stop();
}
void blockstore_t::enqueue_op(blockstore_op_t *op)
{
impl->enqueue_op(op, false);
}
void blockstore_t::enqueue_op_first(blockstore_op_t *op)
{
impl->enqueue_op(op, true);
}
std::unordered_map<object_id, uint64_t> & blockstore_t::get_unstable_writes()
{
return impl->unstable_writes;
}
uint32_t blockstore_t::get_block_size()
{
return impl->get_block_size();
}
uint64_t blockstore_t::get_block_count()
{
return impl->get_block_count();
}
uint32_t blockstore_t::get_disk_alignment()
{
return impl->get_disk_alignment();
}

View File

@ -1,6 +1,3 @@
// Copyright (c) Vitaliy Filippov, 2019+
// License: VNPL-1.1 (see README.md for details)
#pragma once
#ifndef _LARGEFILE64_SOURCE
@ -9,38 +6,32 @@
#include <stdint.h>
#include <string>
#include <map>
#include <unordered_map>
#include <functional>
#include "object_id.h"
#include "ringloop.h"
#include "timerfd_manager.h"
// Memory alignment for direct I/O (usually 512 bytes)
// All other alignments must be a multiple of this one
#ifndef MEM_ALIGNMENT
#define MEM_ALIGNMENT 512
#endif
// Default block size is 128 KB, current allowed range is 4K - 128M
#define DEFAULT_ORDER 17
#define MIN_BLOCK_SIZE 4*1024
#define MAX_BLOCK_SIZE 128*1024*1024
#define DEFAULT_BITMAP_GRANULARITY 4096
#define BS_OP_MIN 1
#define BS_OP_READ 1
#define BS_OP_WRITE 2
#define BS_OP_WRITE_STABLE 3
#define BS_OP_SYNC 4
#define BS_OP_STABLE 5
#define BS_OP_DELETE 6
#define BS_OP_LIST 7
#define BS_OP_ROLLBACK 8
#define BS_OP_SYNC_STAB_ALL 9
#define BS_OP_MAX 9
#define BS_OP_SYNC 3
#define BS_OP_STABLE 4
#define BS_OP_DELETE 5
#define BS_OP_LIST 6
#define BS_OP_ROLLBACK 7
#define BS_OP_SYNC_STAB_ALL 8
#define BS_OP_MAX 8
#define BS_OP_PRIVATE_DATA_SIZE 256
@ -48,9 +39,9 @@
Blockstore opcode documentation:
## BS_OP_READ / BS_OP_WRITE / BS_OP_WRITE_STABLE
## BS_OP_READ / BS_OP_WRITE
Read or write object data. WRITE_STABLE writes a version that doesn't require marking as stable.
Read or write object data.
Input:
- oid = requested object
@ -59,15 +50,12 @@ Input:
- version == 0: read the last stable version,
- version == UINT64_MAX: read the last version,
- otherwise: read the newest version that is <= the specified version
- reads aren't guaranteed to return data from previous unfinished writes
For writes:
- if version == 0, a new version is assigned automatically
- if version != 0, it is assigned for the new write if possible, otherwise -EINVAL is returned
- offset, len = offset and length within object. length may be zero, in that case
read operation only returns the version / write operation only bumps the version
- buf = pre-allocated buffer for data (read) / with data (write). may be NULL if len == 0.
- bitmap = pointer to the new 'external' object bitmap data. Its part which is respective to the
write request is copied into the metadata area bitwise and stored there.
Output:
- retval = number of bytes actually read/written or negative error number (-EINVAL or -ENOSPC)
@ -104,7 +92,7 @@ Input:
- buf = pre-allocated obj_ver_id array <len> units long
Output:
- retval = 0 or negative error number (-EINVAL, -ENOENT if no such version or -EBUSY if not synced)
- retval = 0 or negative error number (-EINVAL)
## BS_OP_SYNC_STAB_ALL
@ -122,8 +110,6 @@ Input:
- oid.stripe = PG alignment
- len = PG count or 0 to list all objects
- offset = PG number
- oid.inode = min inode number or 0 to list all inodes
- version = max inode number or 0 to list all inodes
Output:
- retval = total obj_ver_id count
@ -145,7 +131,6 @@ struct blockstore_op_t
uint32_t offset;
uint32_t len;
void *buf;
void *bitmap;
int retval;
uint8_t private_data[BS_OP_PRIVATE_DATA_SIZE];
@ -159,7 +144,7 @@ class blockstore_t
{
blockstore_impl_t *impl;
public:
blockstore_t(blockstore_config_t & config, ring_loop_t *ringloop, timerfd_manager_t *tfd);
blockstore_t(blockstore_config_t & config, ring_loop_t *ringloop);
~blockstore_t();
// Event loop
@ -180,16 +165,16 @@ public:
// Submission
void enqueue_op(blockstore_op_t *op);
// Simplified synchronous operation: get object bitmap & current version
int read_bitmap(object_id oid, uint64_t target_version, void *bitmap, uint64_t *result_version = NULL);
// Insert operation into the beginning of the queue
// Intended for the OSD syncer "thread" to be able to stabilize something when the journal is full
void enqueue_op_first(blockstore_op_t *op);
// Get per-inode space usage statistics
std::map<uint64_t, uint64_t> & get_inode_space_stats();
// Unstable writes are added here (map of object_id -> version)
std::unordered_map<object_id, uint64_t> & get_unstable_writes();
// FIXME rename to object_size
uint32_t get_block_size();
uint64_t get_block_count();
uint64_t get_free_block_count();
uint32_t get_bitmap_granularity();
uint32_t get_disk_alignment();
};

View File

@ -1,27 +1,16 @@
// Copyright (c) Vitaliy Filippov, 2019+
// License: VNPL-1.1 (see README.md for details)
#include "blockstore_impl.h"
journal_flusher_t::journal_flusher_t(blockstore_impl_t *bs)
journal_flusher_t::journal_flusher_t(int flusher_count, blockstore_impl_t *bs)
{
this->bs = bs;
this->max_flusher_count = bs->max_flusher_count;
this->min_flusher_count = bs->min_flusher_count;
this->cur_flusher_count = bs->min_flusher_count;
this->target_flusher_count = bs->min_flusher_count;
dequeuing = false;
trimming = false;
this->flusher_count = flusher_count;
active_flushers = 0;
syncing_flushers = 0;
// FIXME: allow to configure flusher_start_threshold and journal_trim_interval
flusher_start_threshold = bs->journal_block_size / sizeof(journal_entry_stable);
journal_trim_interval = 512;
journal_trim_counter = bs->journal.flush_journal ? 1 : 0;
trim_wanted = bs->journal.flush_journal ? 1 : 0;
journal_superblock = bs->journal.inmemory ? bs->journal.buffer : memalign_or_die(MEM_ALIGNMENT, bs->journal_block_size);
co = new journal_flusher_co[max_flusher_count];
for (int i = 0; i < max_flusher_count; i++)
sync_threshold = flusher_count == 1 ? 1 : flusher_count/2;
journal_trim_interval = sync_threshold;
journal_trim_counter = 0;
journal_superblock = bs->journal.inmemory ? bs->journal.buffer : memalign(MEM_ALIGNMENT, bs->journal_block_size);
co = new journal_flusher_co[flusher_count];
for (int i = 0; i < flusher_count; i++)
{
co[i].bs = bs;
co[i].flusher = this;
@ -66,36 +55,23 @@ journal_flusher_t::~journal_flusher_t()
bool journal_flusher_t::is_active()
{
return active_flushers > 0 || dequeuing;
return active_flushers > 0 || start_forced && flush_queue.size() > 0 || flush_queue.size() >= sync_threshold;
}
void journal_flusher_t::loop()
{
target_flusher_count = bs->write_iodepth*2;
if (target_flusher_count < min_flusher_count)
target_flusher_count = min_flusher_count;
else if (target_flusher_count > max_flusher_count)
target_flusher_count = max_flusher_count;
if (target_flusher_count > cur_flusher_count)
cur_flusher_count = target_flusher_count;
else if (target_flusher_count < cur_flusher_count)
for (int i = 0; i < flusher_count; i++)
{
while (target_flusher_count < cur_flusher_count)
if (!active_flushers && (start_forced ? !flush_queue.size() : (flush_queue.size() < sync_threshold)))
{
if (co[cur_flusher_count-1].wait_state)
break;
cur_flusher_count--;
return;
}
}
for (int i = 0; (active_flushers > 0 || dequeuing) && i < cur_flusher_count; i++)
co[i].loop();
}
}
void journal_flusher_t::enqueue_flush(obj_ver_id ov)
{
#ifdef BLOCKSTORE_DEBUG
printf("enqueue_flush %lx:%lx v%lu\n", ov.oid.inode, ov.oid.stripe, ov.version);
#endif
auto it = flush_versions.find(ov.oid);
if (it != flush_versions.end())
{
@ -107,18 +83,10 @@ void journal_flusher_t::enqueue_flush(obj_ver_id ov)
flush_versions[ov.oid] = ov.version;
flush_queue.push_back(ov.oid);
}
if (!dequeuing && (flush_queue.size() >= flusher_start_threshold || trim_wanted > 0))
{
dequeuing = true;
bs->ringloop->wakeup();
}
}
void journal_flusher_t::unshift_flush(obj_ver_id ov, bool force)
void journal_flusher_t::unshift_flush(obj_ver_id ov)
{
#ifdef BLOCKSTORE_DEBUG
printf("unshift_flush %lx:%lx v%lu\n", ov.oid.inode, ov.oid.stripe, ov.version);
#endif
auto it = flush_versions.find(ov.oid);
if (it != flush_versions.end())
{
@ -128,60 +96,16 @@ void journal_flusher_t::unshift_flush(obj_ver_id ov, bool force)
else
{
flush_versions[ov.oid] = ov.version;
if (!force)
flush_queue.push_front(ov.oid);
}
if (force)
flush_queue.push_front(ov.oid);
if (force || !dequeuing && (flush_queue.size() >= flusher_start_threshold || trim_wanted > 0))
{
dequeuing = true;
bs->ringloop->wakeup();
}
}
void journal_flusher_t::remove_flush(object_id oid)
void journal_flusher_t::force_start()
{
#ifdef BLOCKSTORE_DEBUG
printf("undo_flush %lx:%lx\n", oid.inode, oid.stripe);
#endif
auto v_it = flush_versions.find(oid);
if (v_it != flush_versions.end())
{
flush_versions.erase(v_it);
for (auto q_it = flush_queue.begin(); q_it != flush_queue.end(); q_it++)
{
if (*q_it == oid)
{
flush_queue.erase(q_it);
break;
}
}
}
}
void journal_flusher_t::request_trim()
{
dequeuing = true;
trim_wanted++;
start_forced = true;
bs->ringloop->wakeup();
}
void journal_flusher_t::mark_trim_possible()
{
if (trim_wanted > 0)
{
dequeuing = true;
journal_trim_counter++;
bs->ringloop->wakeup();
}
}
void journal_flusher_t::release_trim()
{
trim_wanted--;
}
#define await_sqe(label) \
resume_##label:\
sqe = bs->get_sqe();\
@ -192,7 +116,6 @@ void journal_flusher_t::release_trim()
}\
data = ((ring_data_t*)sqe->user_data);
// FIXME: Implement batch flushing
bool journal_flusher_co::loop()
{
// This is much better than implementing the whole function as an FSM
@ -231,24 +154,11 @@ bool journal_flusher_co::loop()
goto resume_17;
else if (wait_state == 18)
goto resume_18;
else if (wait_state == 19)
goto resume_19;
else if (wait_state == 20)
goto resume_20;
else if (wait_state == 21)
goto resume_21;
resume_0:
if (flusher->flush_queue.size() < flusher->min_flusher_count && !flusher->trim_wanted ||
!flusher->flush_queue.size() || !flusher->dequeuing)
if (!flusher->flush_queue.size() ||
!flusher->start_forced && !flusher->active_flushers && flusher->flush_queue.size() < flusher->sync_threshold)
{
stop_flusher:
if (flusher->trim_wanted > 0 && flusher->journal_trim_counter > 0)
{
// Attempt forced trim
flusher->active_flushers++;
goto trim_journal;
}
flusher->dequeuing = false;
flusher->start_forced = false;
wait_state = 0;
return true;
}
@ -263,7 +173,7 @@ stop_flusher:
if (repeat_it != flusher->sync_to_repeat.end())
{
#ifdef BLOCKSTORE_DEBUG
printf("Postpone %lx:%lx v%lu\n", cur.oid.inode, cur.oid.stripe, cur.version);
printf("Postpone %lu:%lu v%lu\n", cur.oid.inode, cur.oid.stripe, cur.version);
#endif
// We don't flush different parts of history of the same object in parallel
// So we check if someone is already flushing this object
@ -276,110 +186,42 @@ stop_flusher:
}
else
flusher->sync_to_repeat[cur.oid] = 0;
if (dirty_end->second.journal_sector >= bs->journal.dirty_start &&
(bs->journal.dirty_start >= bs->journal.used_start ||
dirty_end->second.journal_sector < bs->journal.used_start))
{
flusher->enqueue_flush(cur);
// We can't flush journal sectors that are still written to
// However, as we group flushes by oid, current oid may have older writes to flush!
// And it may even block writes if we don't flush the older version
// (if it's in the beginning of the journal)...
// So first try to find an older version of the same object to flush.
bool found = false;
while (dirty_end != bs->dirty_db.begin())
{
dirty_end--;
if (dirty_end->first.oid != cur.oid)
{
break;
}
if (!(dirty_end->second.journal_sector >= bs->journal.dirty_start &&
(bs->journal.dirty_start >= bs->journal.used_start ||
dirty_end->second.journal_sector < bs->journal.used_start)))
{
found = true;
cur.version = dirty_end->first.version;
break;
}
}
if (!found)
{
// Try other objects
flusher->sync_to_repeat.erase(cur.oid);
int search_left = flusher->flush_queue.size() - 1;
#ifdef BLOCKSTORE_DEBUG
printf("Flusher overran writers (dirty_start=%08lx) - searching for older flushes (%d left)\n", bs->journal.dirty_start, search_left);
#endif
while (search_left > 0)
{
cur.oid = flusher->flush_queue.front();
cur.version = flusher->flush_versions[cur.oid];
flusher->flush_queue.pop_front();
flusher->flush_versions.erase(cur.oid);
dirty_end = bs->dirty_db.find(cur);
if (dirty_end != bs->dirty_db.end())
{
if (dirty_end->second.journal_sector >= bs->journal.dirty_start &&
(bs->journal.dirty_start >= bs->journal.used_start ||
dirty_end->second.journal_sector < bs->journal.used_start))
{
#ifdef BLOCKSTORE_DEBUG
printf("Write %lx:%lx v%lu is too new: offset=%08lx\n", cur.oid.inode, cur.oid.stripe, cur.version, dirty_end->second.journal_sector);
#endif
flusher->enqueue_flush(cur);
}
else
{
repeat_it = flusher->sync_to_repeat.find(cur.oid);
if (repeat_it == flusher->sync_to_repeat.end())
{
flusher->sync_to_repeat[cur.oid] = 0;
break;
}
}
}
search_left--;
}
if (search_left <= 0)
{
#ifdef BLOCKSTORE_DEBUG
printf("No older flushes, stopping\n");
#endif
goto stop_flusher;
}
}
}
#ifdef BLOCKSTORE_DEBUG
printf("Flushing %lx:%lx v%lu\n", cur.oid.inode, cur.oid.stripe, cur.version);
printf("Flushing %lu:%lu v%lu\n", cur.oid.inode, cur.oid.stripe, cur.version);
#endif
flusher->active_flushers++;
resume_1:
// Find it in clean_db
clean_it = bs->clean_db.find(cur.oid);
old_clean_loc = (clean_it != bs->clean_db.end() ? clean_it->second.location : UINT64_MAX);
// Scan dirty versions of the object
if (!scan_dirty(1))
{
wait_state += 1;
return false;
}
// Writes and deletes shouldn't happen at the same time
assert(!has_writes || !has_delete);
if (!has_writes && !has_delete || has_delete && old_clean_loc == UINT64_MAX)
if (copy_count == 0 && clean_loc == UINT64_MAX && !has_delete && !has_empty)
{
// Nothing to flush
bs->erase_dirty(dirty_start, std::next(dirty_end), clean_loc);
goto release_oid;
flusher->active_flushers--;
repeat_it = flusher->sync_to_repeat.find(cur.oid);
if (repeat_it != flusher->sync_to_repeat.end() && repeat_it->second > cur.version)
{
// Requeue version
flusher->unshift_flush({ .oid = cur.oid, .version = repeat_it->second });
}
flusher->sync_to_repeat.erase(repeat_it);
wait_state = 0;
goto resume_0;
}
// Find it in clean_db
clean_it = bs->clean_db.find(cur.oid);
old_clean_loc = (clean_it != bs->clean_db.end() ? clean_it->second.location : UINT64_MAX);
if (clean_loc == UINT64_MAX)
{
if (old_clean_loc == UINT64_MAX)
if (copy_count > 0 && has_delete || old_clean_loc == UINT64_MAX)
{
// Object not allocated. This is a bug.
char err[1024];
snprintf(
err, 1024, "BUG: Object %lx:%lx v%lu that we are trying to flush is not allocated on the data device",
err, 1024, "BUG: Object %lu:%lu v%lu that we are trying to flush is not allocated on the data device",
cur.oid.inode, cur.oid.stripe, cur.version
);
throw std::runtime_error(err);
@ -428,18 +270,18 @@ resume_1:
{
new_clean_bitmap = (bs->inmemory_meta
? meta_new.buf + meta_new.pos*bs->clean_entry_size + sizeof(clean_disk_entry)
: bs->clean_bitmap + (clean_loc >> bs->block_order)*(2*bs->clean_entry_bitmap_size));
: bs->clean_bitmap + (clean_loc >> bs->block_order)*bs->clean_entry_bitmap_size);
if (clean_init_bitmap)
{
memset(new_clean_bitmap, 0, bs->clean_entry_bitmap_size);
bitmap_set(new_clean_bitmap, clean_bitmap_offset, clean_bitmap_len, bs->bitmap_granularity);
bitmap_set(new_clean_bitmap, clean_bitmap_offset, clean_bitmap_len);
}
}
for (it = v.begin(); it != v.end(); it++)
{
if (new_clean_bitmap)
{
bitmap_set(new_clean_bitmap, it->offset, it->len, bs->bitmap_granularity);
bitmap_set(new_clean_bitmap, it->offset, it->len);
}
await_sqe(4);
data->iov = (struct iovec){ it->buf, (size_t)it->len };
@ -473,7 +315,6 @@ resume_1:
wait_state = 5;
return false;
}
// zero out old metadata entry
memset(meta_old.buf + meta_old.pos*bs->clean_entry_size, 0, bs->clean_entry_size);
await_sqe(15);
data->iov = (struct iovec){ meta_old.buf, bs->meta_block_size };
@ -485,37 +326,17 @@ resume_1:
}
if (has_delete)
{
clean_disk_entry *new_entry = (clean_disk_entry*)(meta_new.buf + meta_new.pos*bs->clean_entry_size);
if (new_entry->oid.inode != 0 && new_entry->oid != cur.oid)
{
printf("Fatal error (metadata corruption or bug): tried to delete metadata entry %lu (%lx:%lx) while deleting %lx:%lx\n",
clean_loc >> bs->block_order, new_entry->oid.inode, new_entry->oid.stripe, cur.oid.inode, cur.oid.stripe);
exit(1);
}
// zero out new metadata entry
memset(meta_new.buf + meta_new.pos*bs->clean_entry_size, 0, bs->clean_entry_size);
}
else
{
clean_disk_entry *new_entry = (clean_disk_entry*)(meta_new.buf + meta_new.pos*bs->clean_entry_size);
if (new_entry->oid.inode != 0 && new_entry->oid != cur.oid)
{
printf("Fatal error (metadata corruption or bug): tried to overwrite non-zero metadata entry %lu (%lx:%lx) with %lx:%lx\n",
clean_loc >> bs->block_order, new_entry->oid.inode, new_entry->oid.stripe, cur.oid.inode, cur.oid.stripe);
exit(1);
}
new_entry->oid = cur.oid;
new_entry->version = cur.version;
if (!bs->inmemory_meta)
{
memcpy(&new_entry->bitmap, new_clean_bitmap, bs->clean_entry_bitmap_size);
}
// copy latest external bitmap/attributes
if (bs->clean_entry_bitmap_size)
{
void *bmp_ptr = bs->clean_entry_bitmap_size > sizeof(void*) ? dirty_end->second.bitmap : &dirty_end->second.bitmap;
memcpy((void*)(new_entry+1) + bs->clean_entry_bitmap_size, bmp_ptr, bs->clean_entry_bitmap_size);
}
}
await_sqe(6);
data->iov = (struct iovec){ meta_new.buf, bs->meta_block_size };
@ -565,35 +386,13 @@ resume_1:
}
// Update clean_db and dirty_db, free old data locations
update_clean_db();
#ifdef BLOCKSTORE_DEBUG
printf("Flushed %lx:%lx v%lu (%d copies, wr:%d, del:%d), %ld left\n", cur.oid.inode, cur.oid.stripe, cur.version,
copy_count, has_writes, has_delete, flusher->flush_queue.size());
#endif
release_oid:
repeat_it = flusher->sync_to_repeat.find(cur.oid);
if (repeat_it != flusher->sync_to_repeat.end() && repeat_it->second > cur.version)
{
// Requeue version
flusher->unshift_flush({ .oid = cur.oid, .version = repeat_it->second }, false);
}
flusher->sync_to_repeat.erase(repeat_it);
trim_journal:
// Clear unused part of the journal every <journal_trim_interval> flushes
if (!((++flusher->journal_trim_counter) % flusher->journal_trim_interval) || flusher->trim_wanted > 0)
if (!((++flusher->journal_trim_counter) % flusher->journal_trim_interval))
{
flusher->journal_trim_counter = 0;
new_trim_pos = bs->journal.get_trim_pos();
if (new_trim_pos != bs->journal.used_start)
if (bs->journal.trim())
{
resume_19:
// Wait for other coroutines trimming the journal, if any
if (flusher->trimming)
{
wait_state = 19;
return false;
}
flusher->trimming = true;
// First update journal "superblock" and only then update <used_start> in memory
// Update journal "superblock"
await_sqe(12);
*((journal_entry_start*)flusher->journal_superblock) = {
.crc32 = 0,
@ -601,8 +400,7 @@ resume_1:
.type = JE_START,
.size = sizeof(journal_entry_start),
.reserved = 0,
.journal_start = new_trim_pos,
.version = JOURNAL_VERSION,
.journal_start = bs->journal.used_start,
};
((journal_entry_start*)flusher->journal_superblock)->crc32 = je_crc32((journal_entry*)flusher->journal_superblock);
data->iov = (struct iovec){ flusher->journal_superblock, bs->journal_block_size };
@ -615,34 +413,20 @@ resume_1:
wait_state = 13;
return false;
}
if (!bs->disable_journal_fsync)
{
await_sqe(20);
my_uring_prep_fsync(sqe, bs->journal.fd, IORING_FSYNC_DATASYNC);
data->iov = { 0 };
data->callback = simple_callback_w;
resume_21:
if (wait_count > 0)
{
wait_state = 21;
return false;
}
}
bs->journal.used_start = new_trim_pos;
#ifdef BLOCKSTORE_DEBUG
printf("Journal trimmed to %08lx (next_free=%08lx)\n", bs->journal.used_start, bs->journal.next_free);
#endif
flusher->trimming = false;
}
if (bs->journal.flush_journal && !flusher->flush_queue.size())
{
assert(bs->journal.used_start == bs->journal.next_free);
printf("Journal flushed\n");
exit(0);
}
}
// All done
#ifdef BLOCKSTORE_DEBUG
printf("Flushed %lu:%lu v%lu\n", cur.oid.inode, cur.oid.stripe, cur.version);
#endif
flusher->active_flushers--;
repeat_it = flusher->sync_to_repeat.find(cur.oid);
if (repeat_it != flusher->sync_to_repeat.end() && repeat_it->second > cur.version)
{
// Requeue version
flusher->unshift_flush({ .oid = cur.oid, .version = repeat_it->second });
}
flusher->sync_to_repeat.erase(repeat_it);
wait_state = 0;
goto resume_0;
}
@ -661,25 +445,19 @@ bool journal_flusher_co::scan_dirty(int wait_base)
copy_count = 0;
clean_loc = UINT64_MAX;
has_delete = false;
has_writes = false;
has_empty = false;
skip_copy = false;
clean_init_bitmap = false;
while (1)
{
if (!IS_STABLE(dirty_it->second.state))
{
char err[1024];
snprintf(
err, 1024, "BUG: Unexpected dirty_entry %lx:%lx v%lu unstable state during flush: 0x%x",
dirty_it->first.oid.inode, dirty_it->first.oid.stripe, dirty_it->first.version, dirty_it->second.state
);
throw std::runtime_error(err);
}
else if (IS_JOURNAL(dirty_it->second.state) && !skip_copy)
if (dirty_it->second.state == ST_J_STABLE && !skip_copy)
{
// First we submit all reads
has_writes = true;
if (dirty_it->second.len != 0)
if (dirty_it->second.len == 0)
{
has_empty = true;
}
else
{
offset = dirty_it->second.offset;
end_offset = dirty_it->second.offset + dirty_it->second.len;
@ -693,18 +471,18 @@ bool journal_flusher_co::scan_dirty(int wait_base)
{
submit_offset = dirty_it->second.location + offset - dirty_it->second.offset;
submit_len = it == v.end() || it->offset >= end_offset ? end_offset-offset : it->offset-offset;
it = v.insert(it, (copy_buffer_t){ .offset = offset, .len = submit_len, .buf = memalign_or_die(MEM_ALIGNMENT, submit_len) });
it = v.insert(it, (copy_buffer_t){ .offset = offset, .len = submit_len, .buf = memalign(MEM_ALIGNMENT, submit_len) });
copy_count++;
if (bs->journal.inmemory)
{
// Take it from memory
memcpy(it->buf, bs->journal.buffer + submit_offset, submit_len);
memcpy(v.back().buf, bs->journal.buffer + submit_offset, submit_len);
}
else
{
// Read it from disk
await_sqe(0);
data->iov = (struct iovec){ it->buf, (size_t)submit_len };
data->iov = (struct iovec){ v.back().buf, (size_t)submit_len };
data->callback = simple_callback_r;
my_uring_prep_readv(
sqe, bs->journal.fd, &data->iov, 1, bs->journal.offset + submit_offset
@ -718,22 +496,30 @@ bool journal_flusher_co::scan_dirty(int wait_base)
}
}
}
else if (IS_BIG_WRITE(dirty_it->second.state) && !skip_copy)
else if (dirty_it->second.state == ST_D_STABLE && !skip_copy)
{
// There is an unflushed big write. Copy small writes in its position
has_writes = true;
clean_loc = dirty_it->second.location;
clean_init_bitmap = true;
clean_bitmap_offset = dirty_it->second.offset;
clean_bitmap_len = dirty_it->second.len;
skip_copy = true;
}
else if (IS_DELETE(dirty_it->second.state) && !skip_copy)
else if (dirty_it->second.state == ST_DEL_STABLE && !skip_copy)
{
// There is an unflushed delete
has_delete = true;
skip_copy = true;
}
else if (!IS_STABLE(dirty_it->second.state))
{
char err[1024];
snprintf(
err, 1024, "BUG: Unexpected dirty_entry %lu:%lu v%lu state during flush: %d",
dirty_it->first.oid.inode, dirty_it->first.oid.stripe, dirty_it->first.version, dirty_it->second.state
);
throw std::runtime_error(err);
}
dirty_start = dirty_it;
if (dirty_it == bs->dirty_db.begin())
{
@ -769,7 +555,7 @@ bool journal_flusher_co::modify_meta_read(uint64_t meta_loc, flusher_meta_write_
if (wr.it == flusher->meta_sectors.end())
{
// Not in memory yet, read it
wr.buf = memalign_or_die(MEM_ALIGNMENT, bs->meta_block_size);
wr.buf = memalign(MEM_ALIGNMENT, bs->meta_block_size);
wr.it = flusher->meta_sectors.emplace(wr.sector, (meta_sector_t){
.offset = wr.sector,
.len = bs->meta_block_size,
@ -799,10 +585,7 @@ void journal_flusher_co::update_clean_db()
if (old_clean_loc != UINT64_MAX && old_clean_loc != clean_loc)
{
#ifdef BLOCKSTORE_DEBUG
printf("Free block %lu from %lx:%lx v%lu (new location is %lu)\n",
old_clean_loc >> bs->block_order,
cur.oid.inode, cur.oid.stripe, cur.version,
clean_loc >> bs->block_order);
printf("Free block %lu\n", old_clean_loc >> bs->block_order);
#endif
bs->data_alloc->set(old_clean_loc >> bs->block_order, false);
}
@ -810,11 +593,6 @@ void journal_flusher_co::update_clean_db()
{
auto clean_it = bs->clean_db.find(cur.oid);
bs->clean_db.erase(clean_it);
#ifdef BLOCKSTORE_DEBUG
printf("Free block %lu from %lx:%lx v%lu (delete)\n",
clean_loc >> bs->block_order,
cur.oid.inode, cur.oid.stripe, cur.version);
#endif
bs->data_alloc->set(clean_loc >> bs->block_order, false);
clean_loc = UINT64_MAX;
}
@ -836,7 +614,7 @@ bool journal_flusher_co::fsync_batch(bool fsync_meta, int wait_base)
goto resume_1;
else if (wait_state == wait_base+2)
goto resume_2;
if (!(fsync_meta ? bs->disable_meta_fsync : bs->disable_data_fsync))
if (!(fsync_meta ? bs->disable_meta_fsync : bs->disable_journal_fsync))
{
cur_sync = flusher->syncs.end();
while (cur_sync != flusher->syncs.begin())
@ -854,37 +632,32 @@ bool journal_flusher_co::fsync_batch(bool fsync_meta, int wait_base)
});
sync_found:
cur_sync->ready_count++;
flusher->syncing_flushers++;
resume_1:
if (!cur_sync->state)
if (cur_sync->ready_count >= flusher->sync_threshold || !flusher->flush_queue.size())
{
if (flusher->syncing_flushers >= flusher->cur_flusher_count || !flusher->flush_queue.size())
// Sync batch is ready. Do it.
await_sqe(0);
data->iov = { 0 };
data->callback = simple_callback_w;
my_uring_prep_fsync(sqe, fsync_meta ? bs->meta_fd : bs->data_fd, IORING_FSYNC_DATASYNC);
cur_sync->state = 1;
wait_count++;
resume_1:
if (wait_count > 0)
{
// Sync batch is ready. Do it.
await_sqe(0);
data->iov = { 0 };
data->callback = simple_callback_w;
my_uring_prep_fsync(sqe, fsync_meta ? bs->meta_fd : bs->data_fd, IORING_FSYNC_DATASYNC);
cur_sync->state = 1;
wait_count++;
resume_2:
if (wait_count > 0)
{
wait_state = 2;
return false;
}
// Sync completed. All previous coroutines waiting for it must be resumed
cur_sync->state = 2;
bs->ringloop->wakeup();
}
else
{
// Wait until someone else sends and completes a sync.
wait_state = 1;
return false;
}
// Sync completed. All previous coroutines waiting for it must be resumed
cur_sync->state = 2;
bs->ringloop->wakeup();
}
// Wait until someone else sends and completes a sync.
resume_2:
if (!cur_sync->state)
{
wait_state = 2;
return false;
}
flusher->syncing_flushers--;
cur_sync->ready_count--;
if (cur_sync->ready_count == 0)
{
@ -893,3 +666,35 @@ bool journal_flusher_co::fsync_batch(bool fsync_meta, int wait_base)
}
return true;
}
void journal_flusher_co::bitmap_set(void *bitmap, uint64_t start, uint64_t len)
{
if (start == 0)
{
if (len == 32*bs->bitmap_granularity)
{
*((uint32_t*)bitmap) = UINT32_MAX;
return;
}
else if (len == 64*bs->bitmap_granularity)
{
*((uint64_t*)bitmap) = UINT64_MAX;
return;
}
}
unsigned bit_start = start / bs->bitmap_granularity;
unsigned bit_end = ((start + len) + bs->bitmap_granularity - 1) / bs->bitmap_granularity;
while (bit_start < bit_end)
{
if (!(bit_start & 7) && bit_end >= bit_start+8)
{
((uint8_t*)bitmap)[bit_start / 8] = UINT8_MAX;
bit_start += 8;
}
else
{
((uint8_t*)bitmap)[bit_start / 8] |= 1 << (bit_start % 8);
bit_start++;
}
}
}

View File

@ -1,6 +1,3 @@
// Copyright (c) Vitaliy Filippov, 2019+
// License: VNPL-1.1 (see README.md for details)
struct copy_buffer_t
{
uint64_t offset, len;
@ -48,8 +45,8 @@ class journal_flusher_co
std::map<object_id, uint64_t>::iterator repeat_it;
std::function<void(ring_data_t*)> simple_callback_r, simple_callback_w;
bool skip_copy, has_delete, has_writes;
blockstore_clean_db_t::iterator clean_it;
bool skip_copy, has_delete, has_empty;
spp::sparse_hash_map<object_id, clean_entry>::iterator clean_it;
std::vector<copy_buffer_t> v;
std::vector<copy_buffer_t>::iterator it;
int copy_count;
@ -59,8 +56,6 @@ class journal_flusher_co
uint64_t clean_bitmap_offset, clean_bitmap_len;
void *new_clean_bitmap;
uint64_t new_trim_pos;
// local: scan_dirty()
uint64_t offset, end_offset, submit_offset, submit_len;
@ -69,6 +64,7 @@ class journal_flusher_co
bool modify_meta_read(uint64_t meta_loc, flusher_meta_write_t &wr, int wait_base);
void update_clean_db();
bool fsync_batch(bool fsync_meta, int wait_base);
void bitmap_set(void *bitmap, uint64_t start, uint64_t len);
public:
journal_flusher_co();
bool loop();
@ -77,20 +73,17 @@ public:
// Journal flusher itself
class journal_flusher_t
{
int trim_wanted = 0;
bool dequeuing;
int min_flusher_count, max_flusher_count, cur_flusher_count, target_flusher_count;
int flusher_start_threshold;
bool start_forced = false;
int flusher_count;
int sync_threshold;
journal_flusher_co *co;
blockstore_impl_t *bs;
friend class journal_flusher_co;
int journal_trim_counter, journal_trim_interval;
bool trimming;
void* journal_superblock;
int active_flushers;
int syncing_flushers;
std::list<flusher_sync_t> syncs;
std::map<object_id, uint64_t> sync_to_repeat;
@ -98,14 +91,11 @@ class journal_flusher_t
std::deque<object_id> flush_queue;
std::map<object_id, uint64_t> flush_versions;
public:
journal_flusher_t(blockstore_impl_t *bs);
journal_flusher_t(int flusher_count, blockstore_impl_t *bs);
~journal_flusher_t();
void loop();
bool is_active();
void mark_trim_possible();
void request_trim();
void release_trim();
void force_start();
void enqueue_flush(obj_ver_id oid);
void unshift_flush(obj_ver_id oid, bool force);
void remove_flush(object_id oid);
void unshift_flush(obj_ver_id oid);
};

453
blockstore_impl.cpp Normal file
View File

@ -0,0 +1,453 @@
#include "blockstore_impl.h"
blockstore_impl_t::blockstore_impl_t(blockstore_config_t & config, ring_loop_t *ringloop)
{
assert(sizeof(blockstore_op_private_t) <= BS_OP_PRIVATE_DATA_SIZE);
this->ringloop = ringloop;
ring_consumer.loop = [this]() { loop(); };
ringloop->register_consumer(ring_consumer);
initialized = 0;
zero_object = (uint8_t*)memalign(MEM_ALIGNMENT, block_size);
data_fd = meta_fd = journal.fd = -1;
parse_config(config);
try
{
open_data();
open_meta();
open_journal();
calc_lengths();
data_alloc = new allocator(block_count);
}
catch (std::exception & e)
{
if (data_fd >= 0)
close(data_fd);
if (meta_fd >= 0 && meta_fd != data_fd)
close(meta_fd);
if (journal.fd >= 0 && journal.fd != meta_fd)
close(journal.fd);
throw;
}
flusher = new journal_flusher_t(flusher_count, this);
}
blockstore_impl_t::~blockstore_impl_t()
{
delete data_alloc;
delete flusher;
free(zero_object);
ringloop->unregister_consumer(ring_consumer);
if (data_fd >= 0)
close(data_fd);
if (meta_fd >= 0 && meta_fd != data_fd)
close(meta_fd);
if (journal.fd >= 0 && journal.fd != meta_fd)
close(journal.fd);
if (metadata_buffer)
free(metadata_buffer);
if (clean_bitmap)
free(clean_bitmap);
}
bool blockstore_impl_t::is_started()
{
return initialized == 10;
}
bool blockstore_impl_t::is_stalled()
{
return queue_stall;
}
// main event loop - produce requests
void blockstore_impl_t::loop()
{
// FIXME: initialized == 10 is ugly
if (initialized != 10)
{
// read metadata, then journal
if (initialized == 0)
{
metadata_init_reader = new blockstore_init_meta(this);
initialized = 1;
}
if (initialized == 1)
{
int res = metadata_init_reader->loop();
if (!res)
{
delete metadata_init_reader;
metadata_init_reader = NULL;
journal_init_reader = new blockstore_init_journal(this);
initialized = 2;
}
}
if (initialized == 2)
{
int res = journal_init_reader->loop();
if (!res)
{
delete journal_init_reader;
journal_init_reader = NULL;
initialized = 10;
ringloop->wakeup();
}
}
}
else
{
// try to submit ops
unsigned initial_ring_space = ringloop->space_left();
auto cur_sync = in_progress_syncs.begin();
while (cur_sync != in_progress_syncs.end())
{
continue_sync(*cur_sync++);
}
auto cur = submit_queue.begin();
int has_writes = 0;
while (cur != submit_queue.end())
{
auto op_ptr = cur;
auto op = *(cur++);
// FIXME: This needs some simplification
// Writes should not block reads if the ring is not full and reads don't depend on them
// In all other cases we should stop submission
if (PRIV(op)->wait_for)
{
check_wait(op);
#ifdef BLOCKSTORE_DEBUG
if (PRIV(op)->wait_for)
{
printf("still waiting for %d\n", PRIV(op)->wait_for);
}
#endif
if (PRIV(op)->wait_for == WAIT_SQE)
{
break;
}
else if (PRIV(op)->wait_for)
{
if (op->opcode == BS_OP_WRITE || op->opcode == BS_OP_DELETE)
{
has_writes = 2;
}
continue;
}
}
unsigned ring_space = ringloop->space_left();
unsigned prev_sqe_pos = ringloop->save();
int dequeue_op = 0;
if (op->opcode == BS_OP_READ)
{
dequeue_op = dequeue_read(op);
}
else if (op->opcode == BS_OP_WRITE || op->opcode == BS_OP_DELETE)
{
if (has_writes == 2)
{
// Some writes could not be submitted
break;
}
dequeue_op = dequeue_write(op);
has_writes = dequeue_op ? 1 : 2;
}
else if (op->opcode == BS_OP_SYNC)
{
// wait for all small writes to be submitted
// wait for all big writes to complete, submit data device fsync
// wait for the data device fsync to complete, then submit journal writes for big writes
// then submit an fsync operation
if (has_writes)
{
// Can't submit SYNC before previous writes
continue;
}
dequeue_op = dequeue_sync(op);
}
else if (op->opcode == BS_OP_STABLE)
{
dequeue_op = dequeue_stable(op);
}
else if (op->opcode == BS_OP_ROLLBACK)
{
dequeue_op = dequeue_rollback(op);
}
else if (op->opcode == BS_OP_LIST)
{
process_list(op);
dequeue_op = true;
}
if (dequeue_op)
{
submit_queue.erase(op_ptr);
}
else
{
ringloop->restore(prev_sqe_pos);
if (PRIV(op)->wait_for == WAIT_SQE)
{
PRIV(op)->wait_detail = 1 + ring_space;
// ring is full, stop submission
break;
}
}
}
if (!readonly)
{
flusher->loop();
}
if ((initial_ring_space - ringloop->space_left()) > 0)
{
live = true;
}
queue_stall = !live && !ringloop->get_loop_again();
live = false;
}
}
bool blockstore_impl_t::is_safe_to_stop()
{
// It's safe to stop blockstore when there are no in-flight operations,
// no in-progress syncs and flusher isn't doing anything
if (submit_queue.size() > 0 || in_progress_syncs.size() > 0 || !readonly && flusher->is_active())
{
return false;
}
if (unsynced_big_writes.size() > 0 || unsynced_small_writes.size() > 0)
{
if (!readonly && !stop_sync_submitted)
{
// We should sync the blockstore before unmounting
blockstore_op_t *op = new blockstore_op_t;
op->opcode = BS_OP_SYNC;
op->buf = NULL;
op->callback = [](blockstore_op_t *op)
{
delete op;
};
enqueue_op(op);
stop_sync_submitted = true;
}
return false;
}
return true;
}
void blockstore_impl_t::check_wait(blockstore_op_t *op)
{
if (PRIV(op)->wait_for == WAIT_SQE)
{
if (ringloop->space_left() < PRIV(op)->wait_detail)
{
// stop submission if there's still no free space
return;
}
PRIV(op)->wait_for = 0;
}
else if (PRIV(op)->wait_for == WAIT_IN_FLIGHT)
{
auto dirty_it = dirty_db.find((obj_ver_id){
.oid = op->oid,
.version = PRIV(op)->wait_detail,
});
if (dirty_it != dirty_db.end() && IS_IN_FLIGHT(dirty_it->second.state))
{
// do not submit
return;
}
PRIV(op)->wait_for = 0;
}
else if (PRIV(op)->wait_for == WAIT_JOURNAL)
{
if (journal.used_start == PRIV(op)->wait_detail)
{
// do not submit
return;
}
PRIV(op)->wait_for = 0;
}
else if (PRIV(op)->wait_for == WAIT_JOURNAL_BUFFER)
{
int next = ((journal.cur_sector + 1) % journal.sector_count);
if (journal.sector_info[next].usage_count > 0 ||
journal.sector_info[next].dirty)
{
// do not submit
return;
}
PRIV(op)->wait_for = 0;
}
else if (PRIV(op)->wait_for == WAIT_FREE)
{
if (!data_alloc->get_free_count() && !flusher->is_active())
{
return;
}
PRIV(op)->wait_for = 0;
}
else
{
throw std::runtime_error("BUG: op->wait_for value is unexpected");
}
}
void blockstore_impl_t::enqueue_op(blockstore_op_t *op, bool first)
{
if (op->opcode < BS_OP_MIN || op->opcode > BS_OP_MAX ||
((op->opcode == BS_OP_READ || op->opcode == BS_OP_WRITE) && (
op->offset >= block_size ||
op->len > block_size-op->offset ||
(op->len % disk_alignment)
)) ||
readonly && op->opcode != BS_OP_READ ||
first && op->opcode == BS_OP_WRITE)
{
// Basic verification not passed
op->retval = -EINVAL;
op->callback(op);
return;
}
if (op->opcode == BS_OP_SYNC_STAB_ALL)
{
std::function<void(blockstore_op_t*)> *old_callback = new std::function<void(blockstore_op_t*)>(op->callback);
op->opcode = BS_OP_SYNC;
op->callback = [this, old_callback](blockstore_op_t *op)
{
if (op->retval >= 0 && unstable_writes.size() > 0)
{
op->opcode = BS_OP_STABLE;
op->len = unstable_writes.size();
obj_ver_id *vers = new obj_ver_id[op->len];
op->buf = vers;
int i = 0;
for (auto it = unstable_writes.begin(); it != unstable_writes.end(); it++, i++)
{
vers[i] = {
.oid = it->first,
.version = it->second,
};
}
unstable_writes.clear();
op->callback = [this, old_callback](blockstore_op_t *op)
{
obj_ver_id *vers = (obj_ver_id*)op->buf;
delete[] vers;
op->buf = NULL;
(*old_callback)(op);
delete old_callback;
};
this->enqueue_op(op);
}
else
{
(*old_callback)(op);
delete old_callback;
}
};
}
if (op->opcode == BS_OP_WRITE && !enqueue_write(op))
{
op->callback(op);
return;
}
if (0 && op->opcode == BS_OP_SYNC && immediate_commit)
{
op->retval = 0;
op->callback(op);
return;
}
// Call constructor without allocating memory. We'll call destructor before returning op back
new ((void*)op->private_data) blockstore_op_private_t;
PRIV(op)->wait_for = 0;
PRIV(op)->sync_state = 0;
PRIV(op)->pending_ops = 0;
if (!first)
{
submit_queue.push_back(op);
}
else
{
submit_queue.push_front(op);
}
ringloop->wakeup();
}
void blockstore_impl_t::process_list(blockstore_op_t *op)
{
// Count objects
uint32_t list_pg = op->offset;
uint32_t pg_count = op->len;
uint64_t parity_block_size = op->oid.stripe;
if (pg_count != 0 && (parity_block_size < MIN_BLOCK_SIZE || list_pg >= pg_count))
{
op->retval = -EINVAL;
FINISH_OP(op);
return;
}
uint64_t stable_count = 0;
if (pg_count > 0)
{
for (auto it = clean_db.begin(); it != clean_db.end(); it++)
{
uint32_t pg = (it->first.inode + it->first.stripe / parity_block_size) % pg_count;
if (pg == list_pg)
{
stable_count++;
}
}
}
else
{
stable_count = clean_db.size();
}
uint64_t total_count = stable_count;
for (auto it = dirty_db.begin(); it != dirty_db.end(); it++)
{
if (!pg_count || ((it->first.oid.inode + it->first.oid.stripe / parity_block_size) % pg_count) == list_pg)
{
if (IS_STABLE(it->second.state))
{
stable_count++;
}
total_count++;
}
}
// Allocate memory
op->version = stable_count;
op->retval = total_count;
op->buf = malloc(sizeof(obj_ver_id) * total_count);
if (!op->buf)
{
op->retval = -ENOMEM;
FINISH_OP(op);
return;
}
obj_ver_id *vers = (obj_ver_id*)op->buf;
int i = 0;
for (auto it = clean_db.begin(); it != clean_db.end(); it++)
{
if (!pg_count || ((it->first.inode + it->first.stripe / parity_block_size) % pg_count) == list_pg)
{
vers[i++] = {
.oid = it->first,
.version = it->second.version,
};
}
}
int j = stable_count;
for (auto it = dirty_db.begin(); it != dirty_db.end(); it++)
{
if (!pg_count || ((it->first.oid.inode + it->first.oid.stripe / parity_block_size) % pg_count) == list_pg)
{
if (IS_STABLE(it->second.state))
{
vers[i++] = it->first;
}
else
{
vers[j++] = it->first;
}
}
}
FINISH_OP(op);
}

View File

@ -1,16 +1,14 @@
// Copyright (c) Vitaliy Filippov, 2019+
// License: VNPL-1.1 (see README.md for details)
#pragma once
#include "blockstore.h"
#include "timerfd_interval.h"
#include <sys/types.h>
#include <sys/ioctl.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <time.h>
#include <unistd.h>
#include <malloc.h>
#include <linux/fs.h>
#include <vector>
@ -18,41 +16,43 @@
#include <deque>
#include <new>
#include "cpp-btree/btree_map.h"
#include "sparsepp/sparsepp/spp.h"
#include "malloc_or_die.h"
#include "allocator.h"
//#define BLOCKSTORE_DEBUG
// States are not stored on disk. Instead, they're deduced from the journal
// FIXME: Rename to BS_ST_*
#define BS_ST_SMALL_WRITE 0x01
#define BS_ST_BIG_WRITE 0x02
#define BS_ST_DELETE 0x03
#define ST_J_IN_FLIGHT 1
#define ST_J_SUBMITTED 2
#define ST_J_WRITTEN 3
#define ST_J_SYNCED 4
#define ST_J_STABLE 5
#define BS_ST_WAIT_DEL 0x10
#define BS_ST_WAIT_BIG 0x20
#define BS_ST_IN_FLIGHT 0x30
#define BS_ST_SUBMITTED 0x40
#define BS_ST_WRITTEN 0x50
#define BS_ST_SYNCED 0x60
#define BS_ST_STABLE 0x70
#define ST_D_IN_FLIGHT 15
#define ST_D_SUBMITTED 16
#define ST_D_WRITTEN 17
#define ST_D_META_WRITTEN 19
#define ST_D_META_SYNCED 20
#define ST_D_STABLE 21
#define BS_ST_INSTANT 0x100
#define ST_DEL_IN_FLIGHT 31
#define ST_DEL_SUBMITTED 32
#define ST_DEL_WRITTEN 33
#define ST_DEL_SYNCED 34
#define ST_DEL_STABLE 35
#define IMMEDIATE_NONE 0
#define IMMEDIATE_SMALL 1
#define IMMEDIATE_ALL 2
#define ST_CURRENT 48
#define BS_ST_TYPE_MASK 0x0F
#define BS_ST_WORKFLOW_MASK 0xF0
#define IS_IN_FLIGHT(st) (((st) & 0xF0) <= BS_ST_SUBMITTED)
#define IS_STABLE(st) (((st) & 0xF0) == BS_ST_STABLE)
#define IS_SYNCED(st) (((st) & 0xF0) >= BS_ST_SYNCED)
#define IS_JOURNAL(st) (((st) & 0x0F) == BS_ST_SMALL_WRITE)
#define IS_BIG_WRITE(st) (((st) & 0x0F) == BS_ST_BIG_WRITE)
#define IS_DELETE(st) (((st) & 0x0F) == BS_ST_DELETE)
#define IS_IN_FLIGHT(st) (st == ST_J_IN_FLIGHT || st == ST_D_IN_FLIGHT || st == ST_DEL_IN_FLIGHT || st == ST_J_SUBMITTED || st == ST_D_SUBMITTED || st == ST_DEL_SUBMITTED)
#define IS_STABLE(st) (st == ST_J_STABLE || st == ST_D_STABLE || st == ST_DEL_STABLE || st == ST_CURRENT)
#define IS_SYNCED(st) (IS_STABLE(st) || st == ST_J_SYNCED || st == ST_D_META_SYNCED || st == ST_DEL_SYNCED)
#define IS_JOURNAL(st) (st >= ST_J_SUBMITTED && st <= ST_J_STABLE)
#define IS_BIG_WRITE(st) (st >= ST_D_SUBMITTED && st <= ST_D_STABLE)
#define IS_DELETE(st) (st >= ST_DEL_SUBMITTED && st <= ST_DEL_STABLE)
#define IS_UNSYNCED(st) (st >= ST_J_SUBMITTED && st <= ST_J_WRITTEN || st >= ST_D_SUBMITTED && st <= ST_D_META_WRITTEN || st >= ST_DEL_SUBMITTED && st <= ST_DEL_WRITTEN)
#define BS_SUBMIT_GET_SQE(sqe, data) \
BS_SUBMIT_GET_ONLY_SQE(sqe); \
@ -78,25 +78,7 @@
#include "blockstore_journal.h"
// "VITAstor"
#define BLOCKSTORE_META_MAGIC 0x726F747341544956l
#define BLOCKSTORE_META_VERSION 1
// metadata header (superblock)
// FIXME: After adding the OSD superblock, add a key to metadata
// and journal headers to check if they belong to the same OSD
struct __attribute__((__packed__)) blockstore_meta_header_t
{
uint64_t zero;
uint64_t magic;
uint64_t version;
uint32_t meta_block_size;
uint32_t data_block_size;
uint32_t bitmap_granularity;
};
// 32 bytes = 24 bytes + block bitmap (4 bytes by default) + external attributes (also bitmap, 4 bytes by default)
// per "clean" entry on disk with fixed metadata tables
// 24 bytes + block bitmap per "clean" entry on disk with fixed metadata tables
// FIXME: maybe add crc32's to metadata
struct __attribute__((__packed__)) clean_disk_entry
{
@ -112,7 +94,7 @@ struct __attribute__((__packed__)) clean_entry
uint64_t location;
};
// 64 = 24 + 40 bytes per dirty entry in memory (obj_ver_id => dirty_entry)
// 56 = 24 + 32 bytes per dirty entry in memory (obj_ver_id => dirty_entry)
struct __attribute__((__packed__)) dirty_entry
{
uint32_t state;
@ -121,7 +103,6 @@ struct __attribute__((__packed__)) dirty_entry
uint32_t offset; // data offset within object (stripe)
uint32_t len; // data length
uint64_t journal_sector; // journal sector used for this entry
void* bitmap; // either external bitmap itself when it fits, or a pointer to it when it doesn't
};
// - Sync must be submitted after previous writes/deletes (not before!)
@ -143,6 +124,8 @@ struct __attribute__((__packed__)) dirty_entry
// Suspend operation until there are more free SQEs
#define WAIT_SQE 1
// Suspend operation until version <wait_detail> of object <oid> is written
#define WAIT_IN_FLIGHT 2
// Suspend operation until there are <wait_detail> bytes of free space in the journal on disk
#define WAIT_JOURNAL 3
// Suspend operation until the next journal sector buffer is free
@ -156,7 +139,7 @@ struct fulfill_read_t
};
#define PRIV(op) ((blockstore_op_private_t*)(op)->private_data)
#define FINISH_OP(op) PRIV(op)->~blockstore_op_private_t(); std::function<void (blockstore_op_t*)>(op->callback)(op)
#define FINISH_OP(op) PRIV(op)->~blockstore_op_private_t(); op->callback(op)
struct blockstore_op_private_t
{
@ -164,29 +147,23 @@ struct blockstore_op_private_t
int wait_for;
uint64_t wait_detail;
int pending_ops;
int op_state;
// Read
std::vector<fulfill_read_t> read_vec;
// Sync, write
uint64_t min_flushed_journal_sector, max_flushed_journal_sector;
uint64_t min_used_journal_sector, max_used_journal_sector;
// Write
struct iovec iov_zerofill[3];
// Warning: must not have a default value here because it's written to before calling constructor in blockstore_write.cpp O_o
uint64_t real_version;
timespec tv_begin;
// Sync
std::vector<obj_ver_id> sync_big_writes, sync_small_writes;
int sync_small_checked, sync_big_checked;
std::list<blockstore_op_t*>::iterator in_progress_ptr;
int sync_state, prev_sync_count;
};
// https://github.com/algorithm-ninja/cpp-btree
// https://github.com/greg7mdp/sparsepp/ was used previously, but it was TERRIBLY slow after resizing
// with sparsepp, random reads dropped to ~700 iops very fast with just as much as ~32k objects in the DB
typedef btree::btree_map<object_id, clean_entry> blockstore_clean_db_t;
typedef std::map<obj_ver_id, dirty_entry> blockstore_dirty_db_t;
#include "blockstore_init.h"
@ -200,46 +177,34 @@ class blockstore_impl_t
uint32_t block_size;
uint64_t meta_offset;
uint64_t data_offset;
uint64_t cfg_journal_size, cfg_data_size;
uint64_t cfg_journal_size;
// Required write alignment and journal/metadata/data areas' location alignment
uint32_t disk_alignment = 4096;
uint32_t disk_alignment = 512;
// Journal block size - minimum_io_size of the journal device is the best choice
uint64_t journal_block_size = 4096;
uint64_t journal_block_size = 512;
// Metadata block size - minimum_io_size of the metadata device is the best choice
uint64_t meta_block_size = 4096;
uint64_t meta_block_size = 512;
// Sparse write tracking granularity. 4 KB is a good choice. Must be a multiple of disk_alignment
uint64_t bitmap_granularity = 4096;
bool readonly = false;
// By default, Blockstore locks all opened devices exclusively. This option can be used to disable locking
bool disable_flock = false;
// It is safe to disable fsync() if drive write cache is writethrough
bool disable_data_fsync = false, disable_meta_fsync = false, disable_journal_fsync = false;
// Enable if you want every operation to be executed with an "implicit fsync"
// Suitable only for server SSDs with capacitors, requires disabled data and journal fsyncs
int immediate_commit = IMMEDIATE_NONE;
// FIXME Not implemented yet
bool immediate_commit = false;
bool inmemory_meta = false;
// Maximum and minimum flusher count
unsigned max_flusher_count, min_flusher_count;
// Maximum queue depth
unsigned max_write_iodepth = 128;
// Enable small (journaled) write throttling, useful for the SSD+HDD case
bool throttle_small_writes = false;
// Target data device iops, bandwidth and parallelism for throttling (100/100/1 is the default for HDD)
int throttle_target_iops = 100;
int throttle_target_mbs = 100;
int throttle_target_parallelism = 1;
// Minimum difference in microseconds between target and real execution times to throttle the response
int throttle_threshold_us = 50;
int flusher_count;
/******* END OF OPTIONS *******/
struct ring_consumer_t ring_consumer;
blockstore_clean_db_t clean_db;
// Another option is https://github.com/algorithm-ninja/cpp-btree
spp::sparse_hash_map<object_id, clean_entry> clean_db;
uint8_t *clean_bitmap = NULL;
blockstore_dirty_db_t dirty_db;
std::vector<blockstore_op_t*> submit_queue;
std::list<blockstore_op_t*> submit_queue; // FIXME: funny thing is that vector is better here
std::vector<obj_ver_id> unsynced_big_writes, unsynced_small_writes;
int unsynced_big_write_count = 0;
std::list<blockstore_op_t*> in_progress_syncs; // ...and probably here, too
allocator *data_alloc = NULL;
uint8_t *zero_object;
@ -256,11 +221,9 @@ class blockstore_impl_t
struct journal_t journal;
journal_flusher_t *flusher;
int write_iodepth = 0;
bool live = false, queue_stall = false;
ring_loop_t *ringloop;
timerfd_manager_t *tfd;
bool stop_sync_submitted;
@ -280,7 +243,6 @@ class blockstore_impl_t
void open_data();
void open_meta();
void open_journal();
uint8_t* get_clean_entry_bitmap(uint64_t block_loc, int offset);
// Asynchronous init
int initialized;
@ -300,29 +262,26 @@ class blockstore_impl_t
// Write
bool enqueue_write(blockstore_op_t *op);
void cancel_all_writes(blockstore_op_t *op, blockstore_dirty_db_t::iterator dirty_it, int retval);
int dequeue_write(blockstore_op_t *op);
int dequeue_del(blockstore_op_t *op);
int continue_write(blockstore_op_t *op);
void ack_write(blockstore_op_t *op);
void release_journal_sectors(blockstore_op_t *op);
void handle_write_event(ring_data_t *data, blockstore_op_t *op);
// Sync
int continue_sync(blockstore_op_t *op, bool queue_has_in_progress_sync);
int dequeue_sync(blockstore_op_t *op);
void handle_sync_event(ring_data_t *data, blockstore_op_t *op);
void ack_sync(blockstore_op_t *op);
int continue_sync(blockstore_op_t *op);
void ack_one_sync(blockstore_op_t *op);
int ack_sync(blockstore_op_t *op);
// Stabilize
int dequeue_stable(blockstore_op_t *op);
int continue_stable(blockstore_op_t *op);
void mark_stable(const obj_ver_id & ov, bool forget_dirty = false);
void handle_stable_event(ring_data_t *data, blockstore_op_t *op);
void stabilize_object(object_id oid, uint64_t max_ver);
// Rollback
int dequeue_rollback(blockstore_op_t *op);
int continue_rollback(blockstore_op_t *op);
void mark_rolled_back(const obj_ver_id & ov);
void handle_rollback_event(ring_data_t *data, blockstore_op_t *op);
void erase_dirty(blockstore_dirty_db_t::iterator dirty_start, blockstore_dirty_db_t::iterator dirty_end, uint64_t clean_loc);
@ -331,7 +290,7 @@ class blockstore_impl_t
public:
blockstore_impl_t(blockstore_config_t & config, ring_loop_t *ringloop, timerfd_manager_t *tfd);
blockstore_impl_t(blockstore_config_t & config, ring_loop_t *ringloop);
~blockstore_impl_t();
// Event loop
@ -350,19 +309,12 @@ public:
bool is_stalled();
// Submission
void enqueue_op(blockstore_op_t *op);
// Simplified synchronous operation: get object bitmap & current version
int read_bitmap(object_id oid, uint64_t target_version, void *bitmap, uint64_t *result_version = NULL);
void enqueue_op(blockstore_op_t *op, bool first = false);
// Unstable writes are added here (map of object_id -> version)
std::unordered_map<object_id, uint64_t> unstable_writes;
// Space usage statistics
std::map<uint64_t, uint64_t> inode_space_stats;
inline uint32_t get_block_size() { return block_size; }
inline uint64_t get_block_count() { return block_count; }
inline uint64_t get_free_block_count() { return data_alloc->get_free_count(); }
inline uint32_t get_bitmap_granularity() { return disk_alignment; }
inline uint32_t get_disk_alignment() { return disk_alignment; }
};

View File

@ -1,22 +1,5 @@
// Copyright (c) Vitaliy Filippov, 2019+
// License: VNPL-1.1 (see README.md for details)
#include "blockstore_impl.h"
#define GET_SQE() \
sqe = bs->get_sqe();\
if (!sqe)\
throw std::runtime_error("io_uring is full during initialization");\
data = ((ring_data_t*)sqe->user_data)
static bool iszero(uint64_t *buf, int len)
{
for (int i = 0; i < len; i++)
if (buf[i] != 0)
return false;
return true;
}
blockstore_init_meta::blockstore_init_meta(blockstore_impl_t *bs)
{
this->bs = bs;
@ -24,7 +7,7 @@ blockstore_init_meta::blockstore_init_meta(blockstore_impl_t *bs)
void blockstore_init_meta::handle_event(ring_data_t *data)
{
if (data->res < 0)
if (data->res <= 0)
{
throw std::runtime_error(
std::string("read metadata failed at offset ") + std::to_string(metadata_read) +
@ -42,12 +25,6 @@ int blockstore_init_meta::loop()
{
if (wait_state == 1)
goto resume_1;
else if (wait_state == 2)
goto resume_2;
else if (wait_state == 3)
goto resume_3;
else if (wait_state == 4)
goto resume_4;
printf("Reading blockstore metadata\n");
if (bs->inmemory_meta)
metadata_buffer = bs->metadata_buffer;
@ -55,98 +32,22 @@ int blockstore_init_meta::loop()
metadata_buffer = memalign(MEM_ALIGNMENT, 2*bs->metadata_buf_size);
if (!metadata_buffer)
throw std::runtime_error("Failed to allocate metadata read buffer");
// Read superblock
GET_SQE();
data->iov = { metadata_buffer, bs->meta_block_size };
data->callback = [this](ring_data_t *data) { handle_event(data); };
my_uring_prep_readv(sqe, bs->meta_fd, &data->iov, 1, bs->meta_offset);
bs->ringloop->submit();
submitted = 1;
resume_1:
if (submitted)
{
wait_state = 1;
return 1;
}
if (iszero((uint64_t*)metadata_buffer, bs->meta_block_size / sizeof(uint64_t)))
{
{
blockstore_meta_header_t *hdr = (blockstore_meta_header_t *)metadata_buffer;
hdr->zero = 0;
hdr->magic = BLOCKSTORE_META_MAGIC;
hdr->version = BLOCKSTORE_META_VERSION;
hdr->meta_block_size = bs->meta_block_size;
hdr->data_block_size = bs->block_size;
hdr->bitmap_granularity = bs->bitmap_granularity;
}
if (bs->readonly)
{
printf("Skipping metadata initialization because blockstore is readonly\n");
}
else
{
printf("Initializing metadata area\n");
GET_SQE();
data->iov = (struct iovec){ metadata_buffer, bs->meta_block_size };
data->callback = [this](ring_data_t *data) { handle_event(data); };
my_uring_prep_writev(sqe, bs->meta_fd, &data->iov, 1, bs->meta_offset);
bs->ringloop->submit();
submitted = 1;
resume_3:
if (submitted > 0)
{
wait_state = 3;
return 1;
}
zero_on_init = true;
}
}
else
{
blockstore_meta_header_t *hdr = (blockstore_meta_header_t *)metadata_buffer;
if (hdr->zero != 0 ||
hdr->magic != BLOCKSTORE_META_MAGIC ||
hdr->version != BLOCKSTORE_META_VERSION)
{
printf(
"Metadata is corrupt or old version.\n"
" If this is a new OSD please zero out the metadata area before starting it.\n"
" If you need to upgrade from 0.5.x please request it via the issue tracker.\n"
);
exit(1);
}
if (hdr->meta_block_size != bs->meta_block_size ||
hdr->data_block_size != bs->block_size ||
hdr->bitmap_granularity != bs->bitmap_granularity)
{
printf(
"Configuration stored in metadata superblock"
" (meta_block_size=%u, data_block_size=%u, bitmap_granularity=%u)"
" differs from OSD configuration (%lu/%u/%lu).\n",
hdr->meta_block_size, hdr->data_block_size, hdr->bitmap_granularity,
bs->meta_block_size, bs->block_size, bs->bitmap_granularity
);
exit(1);
}
}
// Skip superblock
bs->meta_offset += bs->meta_block_size;
prev_done = 0;
done_len = 0;
done_pos = 0;
metadata_read = 0;
// Read the rest of the metadata
while (1)
{
resume_2:
resume_1:
if (submitted)
{
wait_state = 2;
wait_state = 1;
return 1;
}
if (metadata_read < bs->meta_len)
{
GET_SQE();
sqe = bs->get_sqe();
if (!sqe)
{
throw std::runtime_error("io_uring is full while trying to read metadata");
}
data = ((ring_data_t*)sqe->user_data);
data->iov = {
metadata_buffer + (bs->inmemory_meta
? metadata_read
@ -154,14 +55,7 @@ resume_1:
bs->meta_len - metadata_read > bs->metadata_buf_size ? bs->metadata_buf_size : bs->meta_len - metadata_read,
};
data->callback = [this](ring_data_t *data) { handle_event(data); };
if (!zero_on_init)
my_uring_prep_readv(sqe, bs->meta_fd, &data->iov, 1, bs->meta_offset + metadata_read);
else
{
// Fill metadata with zeroes
memset(data->iov.iov_base, 0, data->iov.iov_len);
my_uring_prep_writev(sqe, bs->meta_fd, &data->iov, 1, bs->meta_offset + metadata_read);
}
my_uring_prep_readv(sqe, bs->meta_fd, &data->iov, 1, bs->meta_offset + metadata_read);
bs->ringloop->submit();
submitted = (prev == 1 ? 2 : 1);
prev = submitted;
@ -193,21 +87,6 @@ resume_1:
free(metadata_buffer);
metadata_buffer = NULL;
}
if (zero_on_init && !bs->disable_meta_fsync)
{
GET_SQE();
my_uring_prep_fsync(sqe, bs->meta_fd, IORING_FSYNC_DATASYNC);
data->iov = { 0 };
data->callback = [this](ring_data_t *data) { handle_event(data); };
submitted = 1;
bs->ringloop->submit();
resume_4:
if (submitted > 0)
{
wait_state = 4;
return 1;
}
}
return 0;
}
@ -218,7 +97,7 @@ void blockstore_init_meta::handle_entries(void* entries, unsigned count, int blo
clean_disk_entry *entry = (clean_disk_entry*)(entries + i*bs->clean_entry_size);
if (!bs->inmemory_meta && bs->clean_entry_bitmap_size)
{
memcpy(bs->clean_bitmap + (done_cnt+i)*2*bs->clean_entry_bitmap_size, &entry->bitmap, 2*bs->clean_entry_bitmap_size);
memcpy(bs->clean_bitmap + (done_cnt+i)*bs->clean_entry_bitmap_size, &entry->bitmap, bs->clean_entry_bitmap_size);
}
if (entry->oid.inode > 0)
{
@ -229,20 +108,13 @@ void blockstore_init_meta::handle_entries(void* entries, unsigned count, int blo
{
// free the previous block
#ifdef BLOCKSTORE_DEBUG
printf("Free block %lu from %lx:%lx v%lu (new location is %lu)\n",
clean_it->second.location >> block_order,
clean_it->first.inode, clean_it->first.stripe, clean_it->second.version,
done_cnt+i);
printf("Free block %lu\n", clean_it->second.location >> bs->block_order);
#endif
bs->data_alloc->set(clean_it->second.location >> block_order, false);
}
else
{
bs->inode_space_stats[entry->oid.inode] += bs->block_size;
}
entries_loaded++;
#ifdef BLOCKSTORE_DEBUG
printf("Allocate block (clean entry) %lu: %lx:%lx v%lu\n", done_cnt+i, entry->oid.inode, entry->oid.stripe, entry->version);
printf("Allocate block (clean entry) %lu: %lu:%lu v%lu\n", done_cnt+i, entry->oid.inode, entry->oid.stripe, entry->version);
#endif
bs->data_alloc->set(done_cnt+i, true);
bs->clean_db[entry->oid] = (struct clean_entry){
@ -253,7 +125,7 @@ void blockstore_init_meta::handle_entries(void* entries, unsigned count, int blo
else
{
#ifdef BLOCKSTORE_DEBUG
printf("Old clean entry %lu: %lx:%lx v%lu\n", done_cnt+i, entry->oid.inode, entry->oid.stripe, entry->version);
printf("Old clean entry %lu: %lu:%lu v%lu\n", done_cnt+i, entry->oid.inode, entry->oid.stripe, entry->version);
#endif
}
}
@ -274,6 +146,14 @@ blockstore_init_journal::blockstore_init_journal(blockstore_impl_t *bs)
};
}
bool iszero(uint64_t *buf, int len)
{
for (int i = 0; i < len; i++)
if (buf[i] != 0)
return false;
return true;
}
void blockstore_init_journal::handle_event(ring_data_t *data1)
{
if (data1->res <= 0)
@ -298,6 +178,12 @@ void blockstore_init_journal::handle_event(ring_data_t *data1)
submitted_buf = NULL;
}
#define GET_SQE() \
sqe = bs->get_sqe();\
if (!sqe)\
throw std::runtime_error("io_uring is full while trying to read journal");\
data = ((ring_data_t*)sqe->user_data)
int blockstore_init_journal::loop()
{
if (wait_state == 1)
@ -316,7 +202,11 @@ int blockstore_init_journal::loop()
goto resume_7;
printf("Reading blockstore journal\n");
if (!bs->journal.inmemory)
submitted_buf = memalign_or_die(MEM_ALIGNMENT, 2*bs->journal.block_size);
{
submitted_buf = memalign(MEM_ALIGNMENT, 2*bs->journal.block_size);
if (!submitted_buf)
throw std::bad_alloc();
}
else
submitted_buf = bs->journal.buffer;
// Read first block of the journal
@ -335,7 +225,7 @@ resume_1:
wait_state = 1;
return 1;
}
if (iszero((uint64_t*)submitted_buf, bs->journal.block_size / sizeof(uint64_t)))
if (iszero((uint64_t*)submitted_buf, 3))
{
// Journal is empty
// FIXME handle this wrapping to journal_block_size better (maybe)
@ -350,7 +240,6 @@ resume_1:
.size = sizeof(journal_entry_start),
.reserved = 0,
.journal_start = bs->journal.block_size,
.version = JOURNAL_VERSION,
};
((journal_entry_start*)submitted_buf)->crc32 = je_crc32((journal_entry*)submitted_buf);
if (bs->readonly)
@ -401,21 +290,11 @@ resume_1:
je_start = (journal_entry_start*)submitted_buf;
if (je_start->magic != JOURNAL_MAGIC ||
je_start->type != JE_START ||
je_crc32((journal_entry*)je_start) != je_start->crc32 ||
je_start->size != sizeof(journal_entry_start) && je_start->size != JE_START_LEGACY_SIZE)
je_start->size != sizeof(journal_entry_start) ||
je_crc32((journal_entry*)je_start) != je_start->crc32)
{
// Entry is corrupt
fprintf(stderr, "First entry of the journal is corrupt\n");
exit(1);
}
if (je_start->size == JE_START_LEGACY_SIZE || je_start->version != JOURNAL_VERSION)
{
fprintf(
stderr, "The code only supports journal version %d, but it is %lu on disk."
" Please use the previous version to flush the journal before upgrading OSD\n",
JOURNAL_VERSION, je_start->size == JE_START_LEGACY_SIZE ? 0 : je_start->version
);
exit(1);
throw std::runtime_error("first entry of the journal is corrupt");
}
next_free = journal_pos = bs->journal.used_start = je_start->journal_start;
if (!bs->journal.inmemory)
@ -438,7 +317,7 @@ resume_1:
if (journal_pos < bs->journal.used_start)
end = bs->journal.used_start;
if (!bs->journal.inmemory)
submitted_buf = memalign_or_die(MEM_ALIGNMENT, JOURNAL_BUFFER_SIZE);
submitted_buf = memalign(MEM_ALIGNMENT, JOURNAL_BUFFER_SIZE);
else
submitted_buf = bs->journal.buffer + journal_pos;
data->iov = {
@ -521,22 +400,10 @@ resume_1:
}
}
}
for (auto ov: double_allocs)
{
auto dirty_it = bs->dirty_db.find(ov);
if (dirty_it != bs->dirty_db.end() &&
IS_BIG_WRITE(dirty_it->second.state) &&
dirty_it->second.location == UINT64_MAX)
{
printf("Fatal error (bug): %lx:%lx v%lu big_write journal_entry was allocated over another object\n",
dirty_it->first.oid.inode, dirty_it->first.oid.stripe, dirty_it->first.version);
exit(1);
}
}
bs->flusher->mark_trim_possible();
bs->journal.dirty_start = bs->journal.next_free;
// Trim journal on start so we don't stall when all entries are older
bs->journal.trim();
printf(
"Journal entries loaded: %lu, free journal space: %lu bytes (%08lx..%08lx is used), free blocks: %lu / %lu\n",
"Journal entries loaded: %lu, free journal space: %lu bytes (%lu..%lu is used), free blocks: %lu / %lu\n",
entries_loaded,
(bs->journal.next_free >= bs->journal.used_start
? bs->journal.len-bs->journal.block_size - (bs->journal.next_free-bs->journal.used_start)
@ -572,7 +439,7 @@ int blockstore_init_journal::handle_journal_part(void *buf, uint64_t done_pos, u
{
journal_entry *je = (journal_entry*)(buf + proc_pos - done_pos + pos);
if (je->magic != JOURNAL_MAGIC || je_crc32(je) != je->crc32 ||
je->type < JE_MIN || je->type > JE_MAX || started && je->crc32_prev != crc32_last)
je->type < JE_SMALL_WRITE || je->type > JE_DELETE || started && je->crc32_prev != crc32_last)
{
if (pos == 0)
{
@ -586,15 +453,10 @@ int blockstore_init_journal::handle_journal_part(void *buf, uint64_t done_pos, u
break;
}
}
if (je->type == JE_SMALL_WRITE || je->type == JE_SMALL_WRITE_INSTANT)
if (je->type == JE_SMALL_WRITE)
{
#ifdef BLOCKSTORE_DEBUG
printf(
"je_small_write%s oid=%lx:%lx ver=%lu offset=%u len=%u\n",
je->type == JE_SMALL_WRITE_INSTANT ? "_instant" : "",
je->small_write.oid.inode, je->small_write.oid.stripe, je->small_write.version,
je->small_write.offset, je->small_write.len
);
printf("je_small_write oid=%lu:%lu ver=%lu offset=%u len=%u\n", je->small_write.oid.inode, je->small_write.oid.stripe, je->small_write.version, je->small_write.offset, je->small_write.len);
#endif
// oid, version, offset, len
uint64_t prev_free = next_free;
@ -612,7 +474,7 @@ int blockstore_init_journal::handle_journal_part(void *buf, uint64_t done_pos, u
if (location != je->small_write.data_offset)
{
char err[1024];
snprintf(err, 1024, "BUG: calculated journal data offset (%08lx) != stored journal data offset (%08lx)", location, je->small_write.data_offset);
snprintf(err, 1024, "BUG: calculated journal data offset (%lu) != stored journal data offset (%lu)", location, je->small_write.data_offset);
throw std::runtime_error(err);
}
uint32_t data_crc32 = 0;
@ -647,9 +509,7 @@ int blockstore_init_journal::handle_journal_part(void *buf, uint64_t done_pos, u
if (data_crc32 != je->small_write.crc32_data)
{
// journal entry is corrupt, stop here
// interesting thing is that we must clear the corrupt entry if we're not readonly,
// because we don't write next entries in the same journal block
printf("Journal entry data is corrupt (data crc32 %x != %x)\n", data_crc32, je->small_write.crc32_data);
// interesting thing is that we must clear the corrupt entry if we're not readonly
memset(buf + proc_pos - done_pos + pos, 0, bs->journal.block_size - pos);
bs->journal.next_free = prev_free;
init_write_buf = buf + proc_pos - done_pos;
@ -658,83 +518,33 @@ int blockstore_init_journal::handle_journal_part(void *buf, uint64_t done_pos, u
}
auto clean_it = bs->clean_db.find(je->small_write.oid);
if (clean_it == bs->clean_db.end() ||
clean_it->second.version < je->small_write.version)
clean_it->second.version < je->big_write.version)
{
obj_ver_id ov = {
.oid = je->small_write.oid,
.version = je->small_write.version,
};
void *bmp = NULL;
void *bmp_from = (void*)je + sizeof(journal_entry_small_write);
if (bs->clean_entry_bitmap_size <= sizeof(void*))
{
memcpy(&bmp, bmp_from, bs->clean_entry_bitmap_size);
}
else
{
// FIXME Using large blockstore objects will result in a lot of small
// allocations for entry bitmaps. This can only be fixed by using
// a patched map with dynamic entry size, but not the btree_map,
// because it doesn't keep iterators valid all the time.
bmp = malloc_or_die(bs->clean_entry_bitmap_size);
memcpy(bmp, bmp_from, bs->clean_entry_bitmap_size);
}
bs->dirty_db.emplace(ov, (dirty_entry){
.state = (BS_ST_SMALL_WRITE | BS_ST_SYNCED),
.state = ST_J_SYNCED,
.flags = 0,
.location = location,
.offset = je->small_write.offset,
.len = je->small_write.len,
.journal_sector = proc_pos,
.bitmap = bmp,
});
bs->journal.used_sectors[proc_pos]++;
#ifdef BLOCKSTORE_DEBUG
printf(
"journal offset %08lx is used by %lx:%lx v%lu (%lu refs)\n",
proc_pos, ov.oid.inode, ov.oid.stripe, ov.version, bs->journal.used_sectors[proc_pos]
);
printf("journal offset %lu is used by %lu:%lu v%lu\n", proc_pos, ov.oid.inode, ov.oid.stripe, ov.version);
#endif
auto & unstab = bs->unstable_writes[ov.oid];
unstab = unstab < ov.version ? ov.version : unstab;
if (je->type == JE_SMALL_WRITE_INSTANT)
{
bs->mark_stable(ov, true);
}
}
}
else if (je->type == JE_BIG_WRITE || je->type == JE_BIG_WRITE_INSTANT)
else if (je->type == JE_BIG_WRITE)
{
#ifdef BLOCKSTORE_DEBUG
printf(
"je_big_write%s oid=%lx:%lx ver=%lu loc=%lu\n",
je->type == JE_BIG_WRITE_INSTANT ? "_instant" : "",
je->big_write.oid.inode, je->big_write.oid.stripe, je->big_write.version, je->big_write.location >> bs->block_order
);
printf("je_big_write oid=%lu:%lu ver=%lu loc=%lu\n", je->big_write.oid.inode, je->big_write.oid.stripe, je->big_write.version, je->big_write.location);
#endif
auto dirty_it = bs->dirty_db.upper_bound((obj_ver_id){
.oid = je->big_write.oid,
.version = UINT64_MAX,
});
if (dirty_it != bs->dirty_db.begin() && bs->dirty_db.size() > 0)
{
dirty_it--;
if (dirty_it->first.oid == je->big_write.oid &&
dirty_it->first.version >= je->big_write.version &&
(dirty_it->second.state & BS_ST_TYPE_MASK) == BS_ST_DELETE)
{
// It is allowed to overwrite a deleted object with a
// version number smaller than deletion version number,
// because the presence of a BIG_WRITE entry means that
// its data and metadata are already flushed.
// We don't know if newer versions are flushed, but
// the previous delete definitely is.
// So we forget previous dirty entries, but retain the clean one.
// This feature is required for writes happening shortly
// after deletes.
erase_dirty_object(dirty_it);
}
}
auto clean_it = bs->clean_db.find(je->big_write.oid);
if (clean_it == bs->clean_db.end() ||
clean_it->second.version < je->big_write.version)
@ -744,133 +554,131 @@ int blockstore_init_journal::handle_journal_part(void *buf, uint64_t done_pos, u
.oid = je->big_write.oid,
.version = je->big_write.version,
};
void *bmp = NULL;
void *bmp_from = (void*)je + sizeof(journal_entry_big_write);
if (bs->clean_entry_bitmap_size <= sizeof(void*))
{
memcpy(&bmp, bmp_from, bs->clean_entry_bitmap_size);
}
else
{
// FIXME Using large blockstore objects will result in a lot of small
// allocations for entry bitmaps. This can only be fixed by using
// a patched map with dynamic entry size, but not the btree_map,
// because it doesn't keep iterators valid all the time.
bmp = malloc_or_die(bs->clean_entry_bitmap_size);
memcpy(bmp, bmp_from, bs->clean_entry_bitmap_size);
}
auto dirty_it = bs->dirty_db.emplace(ov, (dirty_entry){
.state = (BS_ST_BIG_WRITE | BS_ST_SYNCED),
bs->dirty_db.emplace(ov, (dirty_entry){
.state = ST_D_META_SYNCED,
.flags = 0,
.location = je->big_write.location,
.offset = je->big_write.offset,
.len = je->big_write.len,
.journal_sector = proc_pos,
.bitmap = bmp,
}).first;
if (bs->data_alloc->get(je->big_write.location >> bs->block_order))
{
// This is probably a big_write that's already flushed and freed, but it may
// also indicate a bug. So we remember such entries and recheck them afterwards.
// If it's not a bug they won't be present after reading the whole journal.
dirty_it->second.location = UINT64_MAX;
double_allocs.push_back(ov);
}
else
{
});
#ifdef BLOCKSTORE_DEBUG
printf(
"Allocate block (journal) %lu: %lx:%lx v%lu\n",
je->big_write.location >> bs->block_order,
ov.oid.inode, ov.oid.stripe, ov.version
);
printf("Allocate block %lu\n", je->big_write.location >> bs->block_order);
#endif
bs->data_alloc->set(je->big_write.location >> bs->block_order, true);
}
bs->data_alloc->set(je->big_write.location >> bs->block_order, true);
bs->journal.used_sectors[proc_pos]++;
#ifdef BLOCKSTORE_DEBUG
printf(
"journal offset %08lx is used by %lx:%lx v%lu (%lu refs)\n",
proc_pos, ov.oid.inode, ov.oid.stripe, ov.version, bs->journal.used_sectors[proc_pos]
);
#endif
auto & unstab = bs->unstable_writes[ov.oid];
unstab = unstab < ov.version ? ov.version : unstab;
if (je->type == JE_BIG_WRITE_INSTANT)
{
bs->mark_stable(ov, true);
}
}
}
else if (je->type == JE_STABLE)
{
#ifdef BLOCKSTORE_DEBUG
printf("je_stable oid=%lx:%lx ver=%lu\n", je->stable.oid.inode, je->stable.oid.stripe, je->stable.version);
printf("je_stable oid=%lu:%lu ver=%lu\n", je->stable.oid.inode, je->stable.oid.stripe, je->stable.version);
#endif
// oid, version
obj_ver_id ov = {
.oid = je->stable.oid,
.version = je->stable.version,
};
bs->mark_stable(ov, true);
auto it = bs->dirty_db.find(ov);
if (it == bs->dirty_db.end())
{
// journal contains a legitimate STABLE entry for a non-existing dirty write
// this probably means that journal was trimmed between WRITE and STABLE entries
// skip it
}
else
{
while (1)
{
it->second.state = (it->second.state == ST_D_META_SYNCED
? ST_D_STABLE
: (it->second.state == ST_DEL_SYNCED ? ST_DEL_STABLE : ST_J_STABLE));
if (it == bs->dirty_db.begin())
break;
it--;
if (it->first.oid != ov.oid || IS_STABLE(it->second.state))
break;
}
bs->flusher->enqueue_flush(ov);
}
auto unstab_it = bs->unstable_writes.find(ov.oid);
if (unstab_it != bs->unstable_writes.end() && unstab_it->second <= ov.version)
{
bs->unstable_writes.erase(unstab_it);
}
}
else if (je->type == JE_ROLLBACK)
{
#ifdef BLOCKSTORE_DEBUG
printf("je_rollback oid=%lx:%lx ver=%lu\n", je->rollback.oid.inode, je->rollback.oid.stripe, je->rollback.version);
printf("je_rollback oid=%lu:%lu ver=%lu\n", je->rollback.oid.inode, je->rollback.oid.stripe, je->rollback.version);
#endif
// rollback dirty writes of <oid> up to <version>
obj_ver_id ov = {
auto it = bs->dirty_db.lower_bound((obj_ver_id){
.oid = je->rollback.oid,
.version = je->rollback.version,
};
bs->mark_rolled_back(ov);
.version = UINT64_MAX,
});
if (it != bs->dirty_db.begin())
{
uint64_t max_unstable = 0;
auto rm_start = it;
auto rm_end = it;
it--;
while (it->first.oid == je->rollback.oid &&
it->first.version > je->rollback.version &&
!IS_IN_FLIGHT(it->second.state) &&
!IS_STABLE(it->second.state))
{
if (it->first.oid != je->rollback.oid)
break;
else if (it->first.version <= je->rollback.version)
{
if (!IS_STABLE(it->second.state))
max_unstable = it->first.version;
break;
}
else if (IS_STABLE(it->second.state))
break;
// Remove entry
rm_start = it;
if (it == bs->dirty_db.begin())
break;
it--;
}
if (rm_start != rm_end)
{
bs->erase_dirty(rm_start, rm_end, UINT64_MAX);
}
auto unstab_it = bs->unstable_writes.find(je->rollback.oid);
if (unstab_it != bs->unstable_writes.end())
{
if (max_unstable == 0)
bs->unstable_writes.erase(unstab_it);
else
unstab_it->second = max_unstable;
}
}
}
else if (je->type == JE_DELETE)
{
#ifdef BLOCKSTORE_DEBUG
printf("je_delete oid=%lx:%lx ver=%lu\n", je->del.oid.inode, je->del.oid.stripe, je->del.version);
printf("je_delete oid=%lu:%lu ver=%lu\n", je->del.oid.inode, je->del.oid.stripe, je->del.version);
#endif
bool dirty_exists = false;
auto dirty_it = bs->dirty_db.upper_bound((obj_ver_id){
// oid, version
obj_ver_id ov = {
.oid = je->del.oid,
.version = UINT64_MAX,
.version = je->del.version,
};
bs->dirty_db.emplace(ov, (dirty_entry){
.state = ST_DEL_SYNCED,
.flags = 0,
.location = 0,
.offset = 0,
.len = 0,
.journal_sector = proc_pos,
});
if (dirty_it != bs->dirty_db.begin())
{
dirty_it--;
dirty_exists = dirty_it->first.oid == je->del.oid;
}
auto clean_it = bs->clean_db.find(je->del.oid);
bool clean_exists = (clean_it != bs->clean_db.end() &&
clean_it->second.version < je->del.version);
if (!clean_exists && dirty_exists)
{
// Clean entry doesn't exist. This means that the delete is already flushed.
// So we must not flush this object anymore.
erase_dirty_object(dirty_it);
}
else if (clean_exists || dirty_exists)
{
// oid, version
obj_ver_id ov = {
.oid = je->del.oid,
.version = je->del.version,
};
bs->dirty_db.emplace(ov, (dirty_entry){
.state = (BS_ST_DELETE | BS_ST_SYNCED),
.flags = 0,
.location = 0,
.offset = 0,
.len = 0,
.journal_sector = proc_pos,
});
bs->journal.used_sectors[proc_pos]++;
// Deletions are treated as immediately stable, because
// "2-phase commit" (write->stabilize) isn't sufficient for them anyway
bs->mark_stable(ov, true);
}
// Ignore delete if neither preceding dirty entries nor the clean one are present
bs->journal.used_sectors[proc_pos]++;
}
started = true;
pos += je->size;
@ -881,35 +689,3 @@ int blockstore_init_journal::handle_journal_part(void *buf, uint64_t done_pos, u
bs->journal.next_free = next_free;
return 1;
}
void blockstore_init_journal::erase_dirty_object(blockstore_dirty_db_t::iterator dirty_it)
{
auto oid = dirty_it->first.oid;
bool exists = !IS_DELETE(dirty_it->second.state);
auto dirty_end = dirty_it;
dirty_end++;
while (1)
{
if (dirty_it == bs->dirty_db.begin())
{
break;
}
dirty_it--;
if (dirty_it->first.oid != oid)
{
dirty_it++;
break;
}
}
auto clean_it = bs->clean_db.find(oid);
uint64_t clean_loc = clean_it != bs->clean_db.end()
? clean_it->second.location : UINT64_MAX;
if (exists && clean_loc == UINT64_MAX)
{
bs->inode_space_stats[oid.inode] -= bs->block_size;
}
bs->erase_dirty(dirty_it, dirty_end, clean_loc);
// Remove it from the flusher's queue, too
// Otherwise it may end up referring to a small unstable write after reading the rest of the journal
bs->flusher->remove_flush(oid);
}

View File

@ -1,13 +1,9 @@
// Copyright (c) Vitaliy Filippov, 2019+
// License: VNPL-1.1 (see README.md for details)
#pragma once
class blockstore_init_meta
{
blockstore_impl_t *bs;
int wait_state = 0, wait_count = 0;
bool zero_on_init = false;
void *metadata_buffer = NULL;
uint64_t metadata_read = 0;
int prev = 0, prev_done = 0, done_len = 0, submitted = 0;
@ -37,7 +33,6 @@ class blockstore_init_journal
bool started = false;
uint64_t next_free;
std::vector<bs_init_journal_done> done;
std::vector<obj_ver_id> double_allocs;
uint64_t journal_pos = 0;
uint64_t continue_pos = 0;
void *init_write_buf = NULL;
@ -50,7 +45,6 @@ class blockstore_init_journal
std::function<void(ring_data_t*)> simple_callback;
int handle_journal_part(void *buf, uint64_t done_pos, uint64_t len);
void handle_event(ring_data_t *data);
void erase_dirty_object(blockstore_dirty_db_t::iterator dirty_it);
public:
blockstore_init_journal(blockstore_impl_t* bs);
int loop();

View File

@ -1,45 +1,31 @@
// Copyright (c) Vitaliy Filippov, 2019+
// License: VNPL-1.1 (see README.md for details)
#include "blockstore_impl.h"
blockstore_journal_check_t::blockstore_journal_check_t(blockstore_impl_t *bs)
{
this->bs = bs;
sectors_to_write = 0;
sectors_required = 0;
next_pos = bs->journal.next_free;
next_sector = bs->journal.cur_sector;
first_sector = -1;
next_in_pos = bs->journal.in_sector_pos;
right_dir = next_pos >= bs->journal.used_start;
}
// Check if we can write <required> entries of <size> bytes and <data_after> data bytes after them to the journal
int blockstore_journal_check_t::check_available(blockstore_op_t *op, int entries_required, int size, int data_after)
int blockstore_journal_check_t::check_available(blockstore_op_t *op, int required, int size, int data_after)
{
int required = entries_required;
while (1)
{
int fits = bs->journal.no_same_sector_overwrites && next_pos == bs->journal.next_free && bs->journal.sector_info[next_sector].written
? 0
: (bs->journal.block_size - next_in_pos) / size;
int fits = (bs->journal.block_size - next_in_pos) / size;
if (fits > 0)
{
if (fits > required)
{
fits = required;
}
if (first_sector == -1)
{
first_sector = next_sector;
}
required -= fits;
next_in_pos += fits * size;
sectors_to_write++;
sectors_required++;
}
else if (bs->journal.sector_info[next_sector].dirty)
{
sectors_to_write++;
// sectors_required is more like "sectors to write"
sectors_required++;
}
if (required <= 0)
{
@ -52,41 +38,19 @@ int blockstore_journal_check_t::check_available(blockstore_op_t *op, int entries
right_dir = false;
}
next_in_pos = 0;
next_sector = ((next_sector + 1) % bs->journal.sector_count);
if (next_sector == first_sector)
if (bs->journal.sector_info[next_sector].usage_count > 0 ||
bs->journal.sector_info[next_sector].dirty)
{
// next_sector may wrap when all sectors are flushed and the incoming batch is too big
// This is an error condition, we can't wait for anything in this case
throw std::runtime_error(
"Blockstore journal_sector_buffer_count="+std::to_string(bs->journal.sector_count)+
" is too small for a batch of "+std::to_string(entries_required)+" entries of "+std::to_string(size)+" bytes"
);
next_sector = ((next_sector + 1) % bs->journal.sector_count);
}
if (bs->journal.sector_info[next_sector].flush_count > 0 ||
if (bs->journal.sector_info[next_sector].usage_count > 0 ||
bs->journal.sector_info[next_sector].dirty)
{
// No memory buffer available. Wait for it.
int used = 0, dirty = 0;
for (int i = 0; i < bs->journal.sector_count; i++)
{
if (bs->journal.sector_info[i].dirty)
{
dirty++;
used++;
}
if (bs->journal.sector_info[i].flush_count > 0)
{
used++;
}
}
// In fact, it's even more rare than "ran out of journal space", so print a warning
printf(
"Ran out of journal sector buffers: %d/%lu buffers used (%d dirty), next buffer (%ld)"
" is %s and flushed %lu times. Consider increasing \'journal_sector_buffer_count\'\n",
used, bs->journal.sector_count, dirty, next_sector,
bs->journal.sector_info[next_sector].dirty ? "dirty" : "not dirty",
bs->journal.sector_info[next_sector].flush_count
);
#ifdef BLOCKSTORE_DEBUG
printf("next journal buffer %d is still dirty=%d used=%d\n", next_sector,
bs->journal.sector_info[next_sector].dirty, bs->journal.sector_info[next_sector].usage_count);
#endif
PRIV(op)->wait_for = WAIT_JOURNAL_BUFFER;
return 0;
}
@ -104,11 +68,13 @@ int blockstore_journal_check_t::check_available(blockstore_op_t *op, int entries
{
// No space in the journal. Wait until used_start changes.
printf(
"Ran out of journal space (used_start=%08lx, next_free=%08lx, dirty_start=%08lx)\n",
bs->journal.used_start, bs->journal.next_free, bs->journal.dirty_start
"Ran out of journal space (free space: %lu bytes)\n",
(bs->journal.next_free >= bs->journal.used_start
? bs->journal.len-bs->journal.block_size - (bs->journal.next_free-bs->journal.used_start)
: bs->journal.used_start - bs->journal.next_free)
);
PRIV(op)->wait_for = WAIT_JOURNAL;
bs->flusher->request_trim();
bs->flusher->force_start();
PRIV(op)->wait_detail = bs->journal.used_start;
return 0;
}
@ -117,21 +83,15 @@ int blockstore_journal_check_t::check_available(blockstore_op_t *op, int entries
journal_entry* prefill_single_journal_entry(journal_t & journal, uint16_t type, uint32_t size)
{
if (!journal.entry_fits(size))
if (journal.block_size - journal.in_sector_pos < size)
{
assert(!journal.sector_info[journal.cur_sector].dirty);
// Move to the next journal sector
if (journal.sector_info[journal.cur_sector].flush_count > 0)
if (journal.sector_info[journal.cur_sector].usage_count > 0)
{
// Also select next sector buffer in memory
journal.cur_sector = ((journal.cur_sector + 1) % journal.sector_count);
assert(!journal.sector_info[journal.cur_sector].flush_count);
}
else
{
journal.dirty_start = journal.next_free;
}
journal.sector_info[journal.cur_sector].written = false;
journal.sector_info[journal.cur_sector].offset = journal.next_free;
journal.in_sector_pos = 0;
journal.next_free = (journal.next_free+journal.block_size) < journal.len ? journal.next_free + journal.block_size : journal.block_size;
@ -156,8 +116,7 @@ journal_entry* prefill_single_journal_entry(journal_t & journal, uint16_t type,
void prepare_journal_sector_write(journal_t & journal, int cur_sector, io_uring_sqe *sqe, std::function<void(ring_data_t*)> cb)
{
journal.sector_info[cur_sector].dirty = false;
journal.sector_info[cur_sector].written = true;
journal.sector_info[cur_sector].flush_count++;
journal.sector_info[cur_sector].usage_count++;
ring_data_t *data = ((ring_data_t*)sqe->user_data);
data->iov = (struct iovec){
(journal.inmemory
@ -184,13 +143,13 @@ journal_t::~journal_t()
buffer = NULL;
}
uint64_t journal_t::get_trim_pos()
bool journal_t::trim()
{
auto journal_used_it = used_sectors.lower_bound(used_start);
#ifdef BLOCKSTORE_DEBUG
printf(
"Trimming journal (used_start=%08lx, next_free=%08lx, dirty_start=%08lx, new_start=%08lx, new_refcount=%ld)\n",
used_start, next_free, dirty_start,
"Trimming journal (used_start=%lu, next_free=%lu, first_used=%lu, usage_count=%lu)\n",
used_start, next_free,
journal_used_it == used_sectors.end() ? 0 : journal_used_it->first,
journal_used_it == used_sectors.end() ? 0 : journal_used_it->second
);
@ -202,19 +161,26 @@ uint64_t journal_t::get_trim_pos()
if (journal_used_it == used_sectors.end())
{
// Journal is empty
return next_free;
used_start = next_free;
}
else
{
// next_free does not need updating during trim
return journal_used_it->first;
used_start = journal_used_it->first;
// next_free does not need updating here
}
}
else if (journal_used_it->first > used_start)
{
// Journal is cleared up to <journal_used_it>
return journal_used_it->first;
used_start = journal_used_it->first;
}
// Can't trim journal
return used_start;
else
{
// Can't trim journal
return false;
}
#ifdef BLOCKSTORE_DEBUG
printf("Journal trimmed to %lu (next_free=%lu)\n", used_start, next_free);
#endif
return true;
}

View File

@ -1,33 +1,23 @@
// Copyright (c) Vitaliy Filippov, 2019+
// License: VNPL-1.1 (see README.md for details)
#pragma once
#include "crc32c.h"
#define MIN_JOURNAL_SIZE 4*1024*1024
#define JOURNAL_MAGIC 0x4A33
#define JOURNAL_VERSION 1
#define JOURNAL_BUFFER_SIZE 4*1024*1024
// We reserve some extra space for future stabilize requests during writes
// FIXME: This value should be dynamic i.e. Blockstore ideally shouldn't allow
// writing more than can be stabilized afterwards
#define JOURNAL_STABILIZE_RESERVATION 65536
// Journal entries
// Journal entries are linked to each other by their crc32 value
// The journal is almost a blockchain, because object versions constantly increase
#define JE_MIN 0x01
#define JE_START 0x01
#define JE_SMALL_WRITE 0x02
#define JE_BIG_WRITE 0x03
#define JE_STABLE 0x04
#define JE_DELETE 0x05
#define JE_ROLLBACK 0x06
#define JE_SMALL_WRITE_INSTANT 0x07
#define JE_BIG_WRITE_INSTANT 0x08
#define JE_MAX 0x08
// crc32c comes first to ease calculation and is equal to crc32()
struct __attribute__((__packed__)) journal_entry_start
@ -38,9 +28,7 @@ struct __attribute__((__packed__)) journal_entry_start
uint32_t size;
uint32_t reserved;
uint64_t journal_start;
uint64_t version;
};
#define JE_START_LEGACY_SIZE 24
struct __attribute__((__packed__)) journal_entry_small_write
{
@ -57,9 +45,6 @@ struct __attribute__((__packed__)) journal_entry_small_write
// data_offset is its offset within journal
uint64_t data_offset;
uint32_t crc32_data;
// small_write and big_write entries are followed by the "external" bitmap
// its size is dynamic and included in journal entry's <size> field
uint8_t bitmap[];
};
struct __attribute__((__packed__)) journal_entry_big_write
@ -74,9 +59,6 @@ struct __attribute__((__packed__)) journal_entry_big_write
uint32_t offset;
uint32_t len;
uint64_t location;
// small_write and big_write entries are followed by the "external" bitmap
// its size is dynamic and included in journal entry's <size> field
uint8_t bitmap[];
};
struct __attribute__((__packed__)) journal_entry_stable
@ -142,8 +124,7 @@ inline uint32_t je_crc32(journal_entry *je)
struct journal_sector_info_t
{
uint64_t offset;
uint64_t flush_count;
bool written;
uint64_t usage_count;
bool dirty;
};
@ -152,24 +133,18 @@ struct journal_t
int fd;
uint64_t device_size;
bool inmemory = false;
bool flush_journal = false;
void *buffer = NULL;
uint64_t block_size;
uint64_t block_size = 512;
uint64_t offset, len;
// Next free block offset
uint64_t next_free = 0;
// First occupied block offset
uint64_t used_start = 0;
// End of the last block not used for writing anymore
uint64_t dirty_start = 0;
uint32_t crc32_last = 0;
// Current sector(s) used for writing
void *sector_buf = NULL;
journal_sector_info_t *sector_info = NULL;
uint64_t sector_count;
bool no_same_sector_overwrites = false;
int cur_sector = 0;
int in_sector_pos = 0;
@ -179,19 +154,13 @@ struct journal_t
~journal_t();
bool trim();
uint64_t get_trim_pos();
inline bool entry_fits(int size)
{
return !(block_size - in_sector_pos < size ||
no_same_sector_overwrites && sector_info[cur_sector].written);
}
};
struct blockstore_journal_check_t
{
blockstore_impl_t *bs;
uint64_t next_pos, next_sector, next_in_pos;
int sectors_to_write, first_sector;
int sectors_required;
bool right_dir; // writing to the end or the beginning of the ring buffer
blockstore_journal_check_t(blockstore_impl_t *bs);

View File

@ -1,7 +1,3 @@
// Copyright (c) Vitaliy Filippov, 2019+
// License: VNPL-1.1 (see README.md for details)
#include <sys/file.h>
#include "blockstore_impl.h"
static uint32_t is_power_of_two(uint64_t value)
@ -38,28 +34,10 @@ void blockstore_impl_t::parse_config(blockstore_config_t & config)
{
disable_journal_fsync = true;
}
if (config["disable_device_lock"] == "true" || config["disable_device_lock"] == "1" || config["disable_device_lock"] == "yes")
{
disable_flock = true;
}
if (config["flush_journal"] == "true" || config["flush_journal"] == "1" || config["flush_journal"] == "yes")
{
// Only flush journal and exit
journal.flush_journal = true;
}
if (config["immediate_commit"] == "all")
{
immediate_commit = IMMEDIATE_ALL;
}
else if (config["immediate_commit"] == "small")
{
immediate_commit = IMMEDIATE_SMALL;
}
metadata_buf_size = strtoull(config["meta_buf_size"].c_str(), NULL, 10);
cfg_journal_size = strtoull(config["journal_size"].c_str(), NULL, 10);
data_device = config["data_device"];
data_offset = strtoull(config["data_offset"].c_str(), NULL, 10);
cfg_data_size = strtoull(config["data_size"].c_str(), NULL, 10);
meta_device = config["meta_device"];
meta_offset = strtoull(config["meta_offset"].c_str(), NULL, 10);
block_size = strtoull(config["block_size"].c_str(), NULL, 10);
@ -67,23 +45,12 @@ void blockstore_impl_t::parse_config(blockstore_config_t & config)
journal_device = config["journal_device"];
journal.offset = strtoull(config["journal_offset"].c_str(), NULL, 10);
journal.sector_count = strtoull(config["journal_sector_buffer_count"].c_str(), NULL, 10);
journal.no_same_sector_overwrites = config["journal_no_same_sector_overwrites"] == "true" ||
config["journal_no_same_sector_overwrites"] == "1" || config["journal_no_same_sector_overwrites"] == "yes";
journal.inmemory = config["inmemory_journal"] != "false";
disk_alignment = strtoull(config["disk_alignment"].c_str(), NULL, 10);
journal_block_size = strtoull(config["journal_block_size"].c_str(), NULL, 10);
meta_block_size = strtoull(config["meta_block_size"].c_str(), NULL, 10);
bitmap_granularity = strtoull(config["bitmap_granularity"].c_str(), NULL, 10);
max_flusher_count = strtoull(config["max_flusher_count"].c_str(), NULL, 10);
if (!max_flusher_count)
max_flusher_count = strtoull(config["flusher_count"].c_str(), NULL, 10);
min_flusher_count = strtoull(config["min_flusher_count"].c_str(), NULL, 10);
max_write_iodepth = strtoull(config["max_write_iodepth"].c_str(), NULL, 10);
throttle_small_writes = config["throttle_small_writes"] == "true" || config["throttle_small_writes"] == "1" || config["throttle_small_writes"] == "yes";
throttle_target_iops = strtoull(config["throttle_target_iops"].c_str(), NULL, 10);
throttle_target_mbs = strtoull(config["throttle_target_mbs"].c_str(), NULL, 10);
throttle_target_parallelism = strtoull(config["throttle_target_parallelism"].c_str(), NULL, 10);
throttle_threshold_us = strtoull(config["throttle_threshold_us"].c_str(), NULL, 10);
flusher_count = strtoull(config["flusher_count"].c_str(), NULL, 10);
// Validate
if (!block_size)
{
@ -93,29 +60,21 @@ void blockstore_impl_t::parse_config(blockstore_config_t & config)
{
throw std::runtime_error("Bad block size");
}
if (!max_flusher_count)
if (!flusher_count)
{
max_flusher_count = 256;
}
if (!min_flusher_count || journal.flush_journal)
{
min_flusher_count = 1;
}
if (!max_write_iodepth)
{
max_write_iodepth = 128;
flusher_count = 32;
}
if (!disk_alignment)
{
disk_alignment = 4096;
disk_alignment = 512;
}
else if (disk_alignment % MEM_ALIGNMENT)
{
throw std::runtime_error("disk_alignment must be a multiple of "+std::to_string(MEM_ALIGNMENT));
throw std::runtime_error("disk_alingment must be a multiple of "+std::to_string(MEM_ALIGNMENT));
}
if (!journal_block_size)
{
journal_block_size = 4096;
journal_block_size = 512;
}
else if (journal_block_size % MEM_ALIGNMENT)
{
@ -123,7 +82,7 @@ void blockstore_impl_t::parse_config(blockstore_config_t & config)
}
if (!meta_block_size)
{
meta_block_size = 4096;
meta_block_size = 512;
}
else if (meta_block_size % MEM_ALIGNMENT)
{
@ -135,7 +94,7 @@ void blockstore_impl_t::parse_config(blockstore_config_t & config)
}
if (!bitmap_granularity)
{
bitmap_granularity = DEFAULT_BITMAP_GRANULARITY;
bitmap_granularity = 4096;
}
else if (bitmap_granularity % disk_alignment)
{
@ -169,41 +128,9 @@ void blockstore_impl_t::parse_config(blockstore_config_t & config)
{
metadata_buf_size = 4*1024*1024;
}
if (meta_device == "")
{
disable_meta_fsync = disable_data_fsync;
}
if (journal_device == "")
{
disable_journal_fsync = disable_meta_fsync;
}
if (immediate_commit != IMMEDIATE_NONE && !disable_journal_fsync)
{
throw std::runtime_error("immediate_commit requires disable_journal_fsync");
}
if (immediate_commit == IMMEDIATE_ALL && !disable_data_fsync)
{
throw std::runtime_error("immediate_commit=all requires disable_journal_fsync and disable_data_fsync");
}
if (!throttle_target_iops)
{
throttle_target_iops = 100;
}
if (!throttle_target_mbs)
{
throttle_target_mbs = 100;
}
if (!throttle_target_parallelism)
{
throttle_target_parallelism = 1;
}
if (!throttle_threshold_us)
{
throttle_threshold_us = 50;
}
// init some fields
clean_entry_bitmap_size = block_size / bitmap_granularity / 8;
clean_entry_size = sizeof(clean_disk_entry) + 2*clean_entry_bitmap_size;
clean_entry_size = sizeof(clean_disk_entry) + clean_entry_bitmap_size;
journal.block_size = journal_block_size;
journal.next_free = journal_block_size;
journal.used_start = journal_block_size;
@ -224,15 +151,6 @@ void blockstore_impl_t::calc_lengths()
data_len = data_len < journal.offset-data_offset
? data_len : journal.offset-data_offset;
}
if (cfg_data_size != 0)
{
if (data_len < cfg_data_size)
{
throw std::runtime_error("Data area ("+std::to_string(data_len)+
" bytes) is less than configured size ("+std::to_string(cfg_data_size)+" bytes)");
}
data_len = cfg_data_size;
}
// meta
meta_area = (meta_fd == data_fd ? data_size : meta_size) - meta_offset;
if (meta_fd == data_fd && meta_offset <= data_offset)
@ -257,7 +175,7 @@ void blockstore_impl_t::calc_lengths()
}
// required metadata size
block_count = data_len / block_size;
meta_len = (1 + (block_count - 1 + meta_block_size / clean_entry_size) / (meta_block_size / clean_entry_size)) * meta_block_size;
meta_len = ((block_count - 1 + meta_block_size / clean_entry_size) / (meta_block_size / clean_entry_size)) * meta_block_size;
if (meta_area < meta_len)
{
throw std::runtime_error("Metadata area is too small, need at least "+std::to_string(meta_len)+" bytes");
@ -270,7 +188,7 @@ void blockstore_impl_t::calc_lengths()
}
else if (clean_entry_bitmap_size)
{
clean_bitmap = (uint8_t*)malloc(block_count * 2*clean_entry_bitmap_size);
clean_bitmap = (uint8_t*)malloc(block_count * clean_entry_bitmap_size);
if (!clean_bitmap)
throw std::runtime_error("Failed to allocate memory for the metadata sparse write bitmap");
}
@ -334,10 +252,6 @@ void blockstore_impl_t::open_data()
{
throw std::runtime_error("data_offset exceeds device size = "+std::to_string(data_size));
}
if (!disable_flock && flock(data_fd, LOCK_EX|LOCK_NB) != 0)
{
throw std::runtime_error(std::string("Failed to lock data device: ") + strerror(errno));
}
}
void blockstore_impl_t::open_meta()
@ -355,14 +269,11 @@ void blockstore_impl_t::open_meta()
{
throw std::runtime_error("meta_offset exceeds device size = "+std::to_string(meta_size));
}
if (!disable_flock && flock(meta_fd, LOCK_EX|LOCK_NB) != 0)
{
throw std::runtime_error(std::string("Failed to lock metadata device: ") + strerror(errno));
}
}
else
{
meta_fd = data_fd;
disable_meta_fsync = disable_data_fsync;
meta_size = 0;
if (meta_offset >= data_size)
{
@ -380,15 +291,12 @@ void blockstore_impl_t::open_journal()
{
throw std::runtime_error("Failed to open journal device");
}
check_size(journal.fd, &journal.device_size, "journal device");
if (!disable_flock && flock(journal.fd, LOCK_EX|LOCK_NB) != 0)
{
throw std::runtime_error(std::string("Failed to lock journal device: ") + strerror(errno));
}
check_size(journal.fd, &journal.device_size, "metadata device");
}
else
{
journal.fd = meta_fd;
disable_journal_fsync = disable_meta_fsync;
journal.device_size = 0;
if (journal.offset >= data_size)
{

View File

@ -1,6 +1,3 @@
// Copyright (c) Vitaliy Filippov, 2019+
// License: VNPL-1.1 (see README.md for details)
#include "blockstore_impl.h"
int blockstore_impl_t::fulfill_read_push(blockstore_op_t *op, void *buf, uint64_t offset, uint64_t len,
@ -11,10 +8,12 @@ int blockstore_impl_t::fulfill_read_push(blockstore_op_t *op, void *buf, uint64_
// Zero-length version - skip
return 1;
}
else if (IS_IN_FLIGHT(item_state))
if (IS_IN_FLIGHT(item_state))
{
// Write not finished yet - skip
return 1;
// Pause until it's written somewhere
PRIV(op)->wait_for = WAIT_IN_FLIGHT;
PRIV(op)->wait_detail = item_version;
return 0;
}
else if (IS_DELETE(item_state))
{
@ -40,7 +39,6 @@ int blockstore_impl_t::fulfill_read_push(blockstore_op_t *op, void *buf, uint64_
return 1;
}
// FIXME I've seen a bug here so I want some tests
int blockstore_impl_t::fulfill_read(blockstore_op_t *read_op, uint64_t &fulfilled, uint32_t item_start, uint32_t item_end,
uint32_t item_state, uint64_t item_version, uint64_t item_location)
{
@ -53,20 +51,8 @@ int blockstore_impl_t::fulfill_read(blockstore_op_t *read_op, uint64_t &fulfille
while (1)
{
for (; it != PRIV(read_op)->read_vec.end(); it++)
{
if (it->offset >= cur_start)
{
break;
}
else if (it->offset + it->len > cur_start)
{
cur_start = it->offset + it->len;
if (cur_start >= item_end)
{
goto endwhile;
}
}
}
if (it == PRIV(read_op)->read_vec.end() || it->offset > cur_start)
{
fulfill_read_t el = {
@ -85,30 +71,12 @@ int blockstore_impl_t::fulfill_read(blockstore_op_t *read_op, uint64_t &fulfille
}
cur_start = it->offset + it->len;
if (it == PRIV(read_op)->read_vec.end() || cur_start >= item_end)
{
break;
}
}
}
endwhile:
return 1;
}
uint8_t* blockstore_impl_t::get_clean_entry_bitmap(uint64_t block_loc, int offset)
{
uint8_t *clean_entry_bitmap;
uint64_t meta_loc = block_loc >> block_order;
if (inmemory_meta)
{
uint64_t sector = (meta_loc / (meta_block_size / clean_entry_size)) * meta_block_size;
uint64_t pos = (meta_loc % (meta_block_size / clean_entry_size));
clean_entry_bitmap = (uint8_t*)(metadata_buffer + sector + pos*clean_entry_size + sizeof(clean_disk_entry) + offset);
}
else
clean_entry_bitmap = (uint8_t*)(clean_bitmap + meta_loc*2*clean_entry_bitmap_size + offset);
return clean_entry_bitmap;
}
int blockstore_impl_t::dequeue_read(blockstore_op_t *read_op)
{
auto clean_it = clean_db.find(read_op->oid);
@ -127,7 +95,7 @@ int blockstore_impl_t::dequeue_read(blockstore_op_t *read_op)
read_op->version = 0;
read_op->retval = read_op->len;
FINISH_OP(read_op);
return 2;
return 1;
}
uint64_t fulfilled = 0;
PRIV(read_op)->pending_ops = 0;
@ -149,11 +117,6 @@ int blockstore_impl_t::dequeue_read(blockstore_op_t *read_op)
if (!result_version)
{
result_version = dirty_it->first.version;
if (read_op->bitmap)
{
void *bmp_ptr = (clean_entry_bitmap_size > sizeof(void*) ? dirty_it->second.bitmap : &dirty_it->second.bitmap);
memcpy(read_op->bitmap, bmp_ptr, clean_entry_bitmap_size);
}
}
if (!fulfill_read(read_op, fulfilled, dirty.offset, dirty.offset + dirty.len,
dirty.state, dirty_it->first.version, dirty.location + (IS_JOURNAL(dirty.state) ? 0 : dirty.offset)))
@ -170,61 +133,63 @@ int blockstore_impl_t::dequeue_read(blockstore_op_t *read_op)
dirty_it--;
}
}
if (clean_it != clean_db.end())
if (clean_it != clean_db.end() && fulfilled < read_op->len)
{
if (!result_version)
{
result_version = clean_it->second.version;
if (read_op->bitmap)
}
if (!clean_entry_bitmap_size)
{
if (!fulfill_read(read_op, fulfilled, 0, block_size, ST_CURRENT, 0, clean_it->second.location))
{
void *bmp_ptr = get_clean_entry_bitmap(clean_it->second.location, clean_entry_bitmap_size);
memcpy(read_op->bitmap, bmp_ptr, clean_entry_bitmap_size);
// need to wait. undo added requests, don't dequeue op
PRIV(read_op)->read_vec.clear();
return 0;
}
}
if (fulfilled < read_op->len)
else
{
if (!clean_entry_bitmap_size)
uint64_t meta_loc = clean_it->second.location >> block_order;
uint8_t *clean_entry_bitmap;
if (inmemory_meta)
{
if (!fulfill_read(read_op, fulfilled, 0, block_size, (BS_ST_BIG_WRITE | BS_ST_STABLE), 0, clean_it->second.location))
{
// need to wait. undo added requests, don't dequeue op
PRIV(read_op)->read_vec.clear();
return 0;
}
uint64_t sector = (meta_loc / (meta_block_size / clean_entry_size)) * meta_block_size;
uint64_t pos = (meta_loc % (meta_block_size / clean_entry_size));
clean_entry_bitmap = (uint8_t*)(metadata_buffer + sector + pos*clean_entry_size + sizeof(clean_disk_entry));
}
else
{
uint8_t *clean_entry_bitmap = get_clean_entry_bitmap(clean_it->second.location, 0);
uint64_t bmp_start = 0, bmp_end = 0, bmp_size = block_size/bitmap_granularity;
while (bmp_start < bmp_size)
clean_entry_bitmap = (uint8_t*)(clean_bitmap + meta_loc*clean_entry_bitmap_size);
}
uint64_t bmp_start = 0, bmp_end = 0, bmp_size = block_size/bitmap_granularity;
while (bmp_start < bmp_size)
{
while (!(clean_entry_bitmap[bmp_end >> 3] & (1 << (bmp_end & 0x7))) && bmp_end < bmp_size)
{
while (!(clean_entry_bitmap[bmp_end >> 3] & (1 << (bmp_end & 0x7))) && bmp_end < bmp_size)
bmp_end++;
}
if (bmp_end > bmp_start)
{
// fill with zeroes
fulfill_read(read_op, fulfilled, bmp_start * bitmap_granularity,
bmp_end * bitmap_granularity, ST_DEL_STABLE, 0, 0);
}
bmp_start = bmp_end;
while (clean_entry_bitmap[bmp_end >> 3] & (1 << (bmp_end & 0x7)) && bmp_end < bmp_size)
{
bmp_end++;
}
if (bmp_end > bmp_start)
{
if (!fulfill_read(read_op, fulfilled, bmp_start * bitmap_granularity,
bmp_end * bitmap_granularity, ST_CURRENT, 0, clean_it->second.location + bmp_start * bitmap_granularity))
{
bmp_end++;
}
if (bmp_end > bmp_start)
{
// fill with zeroes
assert(fulfill_read(read_op, fulfilled, bmp_start * bitmap_granularity,
bmp_end * bitmap_granularity, (BS_ST_DELETE | BS_ST_STABLE), 0, 0));
// need to wait. undo added requests, don't dequeue op
PRIV(read_op)->read_vec.clear();
return 0;
}
bmp_start = bmp_end;
while (clean_entry_bitmap[bmp_end >> 3] & (1 << (bmp_end & 0x7)) && bmp_end < bmp_size)
{
bmp_end++;
}
if (bmp_end > bmp_start)
{
if (!fulfill_read(read_op, fulfilled, bmp_start * bitmap_granularity,
bmp_end * bitmap_granularity, (BS_ST_BIG_WRITE | BS_ST_STABLE), 0,
clean_it->second.location + bmp_start * bitmap_granularity))
{
// need to wait. undo added requests, don't dequeue op
PRIV(read_op)->read_vec.clear();
return 0;
}
bmp_start = bmp_end;
}
}
}
}
@ -232,7 +197,7 @@ int blockstore_impl_t::dequeue_read(blockstore_op_t *read_op)
else if (fulfilled < read_op->len)
{
// fill remaining parts with zeroes
assert(fulfill_read(read_op, fulfilled, 0, block_size, (BS_ST_DELETE | BS_ST_STABLE), 0, 0));
fulfill_read(read_op, fulfilled, 0, block_size, ST_DEL_STABLE, 0, 0);
}
assert(fulfilled == read_op->len);
read_op->version = result_version;
@ -246,10 +211,10 @@ int blockstore_impl_t::dequeue_read(blockstore_op_t *read_op)
}
read_op->retval = read_op->len;
FINISH_OP(read_op);
return 2;
return 1;
}
read_op->retval = 0;
return 2;
return 1;
}
void blockstore_impl_t::handle_read_event(ring_data_t *data, blockstore_op_t *op)
@ -268,50 +233,3 @@ void blockstore_impl_t::handle_read_event(ring_data_t *data, blockstore_op_t *op
FINISH_OP(op);
}
}
int blockstore_impl_t::read_bitmap(object_id oid, uint64_t target_version, void *bitmap, uint64_t *result_version)
{
auto dirty_it = dirty_db.upper_bound((obj_ver_id){
.oid = oid,
.version = UINT64_MAX,
});
if (dirty_it != dirty_db.begin())
dirty_it--;
if (dirty_it != dirty_db.end())
{
while (dirty_it->first.oid == oid)
{
if (target_version >= dirty_it->first.version)
{
if (result_version)
*result_version = dirty_it->first.version;
if (bitmap)
{
void *bmp_ptr = (clean_entry_bitmap_size > sizeof(void*) ? dirty_it->second.bitmap : &dirty_it->second.bitmap);
memcpy(bitmap, bmp_ptr, clean_entry_bitmap_size);
}
return 0;
}
if (dirty_it == dirty_db.begin())
break;
dirty_it--;
}
}
auto clean_it = clean_db.find(oid);
if (clean_it != clean_db.end())
{
if (result_version)
*result_version = clean_it->second.version;
if (bitmap)
{
void *bmp_ptr = get_clean_entry_bitmap(clean_it->second.location, clean_entry_bitmap_size);
memcpy(bitmap, bmp_ptr, clean_entry_bitmap_size);
}
return 0;
}
if (result_version)
*result_version = 0;
if (bitmap)
memset(bitmap, 0, clean_entry_bitmap_size);
return -ENOENT;
}

187
blockstore_rollback.cpp Normal file
View File

@ -0,0 +1,187 @@
#include "blockstore_impl.h"
int blockstore_impl_t::dequeue_rollback(blockstore_op_t *op)
{
obj_ver_id* v;
int i, todo = op->len;
for (i = 0, v = (obj_ver_id*)op->buf; i < op->len; i++, v++)
{
// Check that there are some versions greater than v->version (which may be zero),
// check that they're unstable, synced, and not currently written to
auto dirty_it = dirty_db.lower_bound((obj_ver_id){
.oid = v->oid,
.version = UINT64_MAX,
});
if (dirty_it == dirty_db.begin())
{
bad_op:
op->retval = -EINVAL;
FINISH_OP(op);
return 1;
}
else
{
dirty_it--;
if (dirty_it->first.oid != v->oid || dirty_it->first.version < v->version)
{
goto bad_op;
}
while (dirty_it->first.oid == v->oid && dirty_it->first.version > v->version)
{
if (!IS_SYNCED(dirty_it->second.state) ||
IS_STABLE(dirty_it->second.state))
{
goto bad_op;
}
if (dirty_it == dirty_db.begin())
{
break;
}
dirty_it--;
}
}
}
// Check journal space
blockstore_journal_check_t space_check(this);
if (!space_check.check_available(op, todo, sizeof(journal_entry_rollback), 0))
{
return 0;
}
// There is sufficient space. Get SQEs
struct io_uring_sqe *sqe[space_check.sectors_required];
for (i = 0; i < space_check.sectors_required; i++)
{
BS_SUBMIT_GET_SQE_DECL(sqe[i]);
}
// Prepare and submit journal entries
auto cb = [this, op](ring_data_t *data) { handle_rollback_event(data, op); };
int s = 0, cur_sector = -1;
if ((journal_block_size - journal.in_sector_pos) < sizeof(journal_entry_rollback) &&
journal.sector_info[journal.cur_sector].dirty)
{
if (cur_sector == -1)
PRIV(op)->min_used_journal_sector = 1 + journal.cur_sector;
cur_sector = journal.cur_sector;
prepare_journal_sector_write(journal, cur_sector, sqe[s++], cb);
}
for (i = 0, v = (obj_ver_id*)op->buf; i < op->len; i++, v++)
{
// FIXME This is here only for the purpose of tracking unstable_writes. Remove if not required
// FIXME ...aaaand this is similar to blockstore_init.cpp - maybe dedup it?
auto dirty_it = dirty_db.lower_bound((obj_ver_id){
.oid = v->oid,
.version = UINT64_MAX,
});
uint64_t max_unstable = 0;
while (dirty_it != dirty_db.begin())
{
dirty_it--;
if (dirty_it->first.oid != v->oid)
break;
else if (dirty_it->first.version <= v->version)
{
if (!IS_STABLE(dirty_it->second.state))
max_unstable = dirty_it->first.version;
break;
}
}
auto unstab_it = unstable_writes.find(v->oid);
if (unstab_it != unstable_writes.end())
{
if (max_unstable == 0)
unstable_writes.erase(unstab_it);
else
unstab_it->second = max_unstable;
}
journal_entry_rollback *je = (journal_entry_rollback*)
prefill_single_journal_entry(journal, JE_ROLLBACK, sizeof(journal_entry_rollback));
journal.sector_info[journal.cur_sector].dirty = false;
je->oid = v->oid;
je->version = v->version;
je->crc32 = je_crc32((journal_entry*)je);
journal.crc32_last = je->crc32;
if (cur_sector != journal.cur_sector)
{
if (cur_sector == -1)
PRIV(op)->min_used_journal_sector = 1 + journal.cur_sector;
cur_sector = journal.cur_sector;
prepare_journal_sector_write(journal, cur_sector, sqe[s++], cb);
}
}
PRIV(op)->max_used_journal_sector = 1 + journal.cur_sector;
PRIV(op)->pending_ops = s;
return 1;
}
void blockstore_impl_t::handle_rollback_event(ring_data_t *data, blockstore_op_t *op)
{
live = true;
if (data->res != data->iov.iov_len)
{
throw std::runtime_error(
"write operation failed ("+std::to_string(data->res)+" != "+std::to_string(data->iov.iov_len)+
"). in-memory state is corrupted. AAAAAAAaaaaaaaaa!!!111"
);
}
PRIV(op)->pending_ops--;
if (PRIV(op)->pending_ops == 0)
{
// Release used journal sectors
release_journal_sectors(op);
obj_ver_id* v;
int i;
for (i = 0, v = (obj_ver_id*)op->buf; i < op->len; i++, v++)
{
// Erase dirty_db entries
auto rm_end = dirty_db.lower_bound((obj_ver_id){
.oid = v->oid,
.version = UINT64_MAX,
});
rm_end--;
auto rm_start = rm_end;
while (1)
{
if (rm_end->first.oid != v->oid)
break;
else if (rm_end->first.version <= v->version)
break;
rm_start = rm_end;
if (rm_end == dirty_db.begin())
break;
rm_end--;
}
if (rm_end != rm_start)
erase_dirty(rm_start, rm_end, UINT64_MAX);
}
journal.trim();
// Acknowledge op
op->retval = 0;
FINISH_OP(op);
}
}
void blockstore_impl_t::erase_dirty(blockstore_dirty_db_t::iterator dirty_start, blockstore_dirty_db_t::iterator dirty_end, uint64_t clean_loc)
{
auto dirty_it = dirty_end;
while (dirty_it != dirty_start)
{
dirty_it--;
if (IS_BIG_WRITE(dirty_it->second.state) && dirty_it->second.location != clean_loc)
{
#ifdef BLOCKSTORE_DEBUG
printf("Free block %lu\n", dirty_it->second.location >> block_order);
#endif
data_alloc->set(dirty_it->second.location >> block_order, false);
}
#ifdef BLOCKSTORE_DEBUG
printf("remove usage of journal offset %lu by %lu:%lu v%lu\n", dirty_it->second.journal_sector,
dirty_it->first.oid.inode, dirty_it->first.oid.stripe, dirty_it->first.version);
#endif
int used = --journal.used_sectors[dirty_it->second.journal_sector];
if (used == 0)
{
journal.used_sectors.erase(dirty_it->second.journal_sector);
}
}
dirty_db.erase(dirty_start, dirty_end);
}

195
blockstore_stable.cpp Normal file
View File

@ -0,0 +1,195 @@
#include "blockstore_impl.h"
// Stabilize small write:
// 1) Copy data from the journal to the data device
// 2) Increase version on the metadata device and sync it
// 3) Advance clean_db entry's version, clear previous journal entries
//
// This makes 1 4K small write+sync look like:
// 512b+4K (journal) + sync + 512b (journal) + sync + 4K (data) [+ sync?] + 512b (metadata) + sync.
// WA = 2.375. It's not the best, SSD FTL-like redirect-write could probably be lower
// even with defragmentation. But it's fixed and it's still better than in Ceph. :)
// except for HDD-only clusters, because each write results in 3 seeks.
// Stabilize big write:
// 1) Copy metadata from the journal to the metadata device
// 2) Move dirty_db entry to clean_db and clear previous journal entries
//
// This makes 1 128K big write+sync look like:
// 128K (data) + sync + 512b (journal) + sync + 512b (journal) + sync + 512b (metadata) + sync.
// WA = 1.012. Very good :)
// Stabilize delete:
// 1) Remove metadata entry and sync it
// 2) Remove dirty_db entry and clear previous journal entries
// We have 2 problems here:
// - In the cluster environment, we must store the "tombstones" of deleted objects until
// all replicas (not just quorum) agrees about their deletion. That is, "stabilize" is
// not possible for deletes in degraded placement groups
// - With simple "fixed" metadata tables we can't just clear the metadata entry of the latest
// object version. We must clear all previous entries, too.
// FIXME Fix both problems - probably, by switching from "fixed" metadata tables to "dynamic"
// AND We must do it in batches, for the sake of reduced fsync call count
// AND We must know what we stabilize. Basic workflow is like:
// 1) primary OSD receives sync request
// 2) it submits syncs to blockstore and peers
// 3) after everyone acks sync it acks sync to the client
// 4) after a while it takes his synced object list and sends stabilize requests
// to peers and to its own blockstore, thus freeing the old version
int blockstore_impl_t::dequeue_stable(blockstore_op_t *op)
{
obj_ver_id* v;
int i, todo = 0;
for (i = 0, v = (obj_ver_id*)op->buf; i < op->len; i++, v++)
{
auto dirty_it = dirty_db.find(*v);
if (dirty_it == dirty_db.end())
{
auto clean_it = clean_db.find(v->oid);
if (clean_it == clean_db.end() || clean_it->second.version < v->version)
{
// No such object version
op->retval = -EINVAL;
FINISH_OP(op);
return 1;
}
else
{
// Already stable
}
}
else if (IS_UNSYNCED(dirty_it->second.state))
{
// Object not synced yet. Caller must sync it first
op->retval = EAGAIN;
FINISH_OP(op);
return 1;
}
else if (!IS_STABLE(dirty_it->second.state))
{
todo++;
}
}
if (!todo)
{
// Already stable
op->retval = 0;
FINISH_OP(op);
return 1;
}
// Check journal space
blockstore_journal_check_t space_check(this);
if (!space_check.check_available(op, todo, sizeof(journal_entry_stable), 0))
{
return 0;
}
// There is sufficient space. Get SQEs
struct io_uring_sqe *sqe[space_check.sectors_required];
for (i = 0; i < space_check.sectors_required; i++)
{
BS_SUBMIT_GET_SQE_DECL(sqe[i]);
}
// Prepare and submit journal entries
auto cb = [this, op](ring_data_t *data) { handle_stable_event(data, op); };
int s = 0, cur_sector = -1;
if ((journal_block_size - journal.in_sector_pos) < sizeof(journal_entry_stable) &&
journal.sector_info[journal.cur_sector].dirty)
{
if (cur_sector == -1)
PRIV(op)->min_used_journal_sector = 1 + journal.cur_sector;
cur_sector = journal.cur_sector;
prepare_journal_sector_write(journal, cur_sector, sqe[s++], cb);
}
for (i = 0, v = (obj_ver_id*)op->buf; i < op->len; i++, v++)
{
auto unstab_it = unstable_writes.find(v->oid);
if (unstab_it != unstable_writes.end() &&
unstab_it->second <= v->version)
{
unstable_writes.erase(unstab_it);
}
journal_entry_stable *je = (journal_entry_stable*)
prefill_single_journal_entry(journal, JE_STABLE, sizeof(journal_entry_stable));
journal.sector_info[journal.cur_sector].dirty = false;
je->oid = v->oid;
je->version = v->version;
je->crc32 = je_crc32((journal_entry*)je);
journal.crc32_last = je->crc32;
if (cur_sector != journal.cur_sector)
{
if (cur_sector == -1)
PRIV(op)->min_used_journal_sector = 1 + journal.cur_sector;
cur_sector = journal.cur_sector;
prepare_journal_sector_write(journal, cur_sector, sqe[s++], cb);
}
}
PRIV(op)->max_used_journal_sector = 1 + journal.cur_sector;
PRIV(op)->pending_ops = s;
return 1;
}
void blockstore_impl_t::handle_stable_event(ring_data_t *data, blockstore_op_t *op)
{
live = true;
if (data->res != data->iov.iov_len)
{
throw std::runtime_error(
"write operation failed ("+std::to_string(data->res)+" != "+std::to_string(data->iov.iov_len)+
"). in-memory state is corrupted. AAAAAAAaaaaaaaaa!!!111"
);
}
PRIV(op)->pending_ops--;
if (PRIV(op)->pending_ops == 0)
{
// Release used journal sectors
release_journal_sectors(op);
// Mark dirty_db entries as stable, acknowledge op completion
obj_ver_id* v;
int i;
for (i = 0, v = (obj_ver_id*)op->buf; i < op->len; i++, v++)
{
// Mark all dirty_db entries up to op->version as stable
auto dirty_it = dirty_db.find(*v);
if (dirty_it != dirty_db.end())
{
while (1)
{
if (dirty_it->second.state == ST_J_SYNCED)
{
dirty_it->second.state = ST_J_STABLE;
}
else if (dirty_it->second.state == ST_D_META_SYNCED)
{
dirty_it->second.state = ST_D_STABLE;
}
else if (dirty_it->second.state == ST_DEL_SYNCED)
{
dirty_it->second.state = ST_DEL_STABLE;
}
else if (IS_STABLE(dirty_it->second.state))
{
break;
}
if (dirty_it == dirty_db.begin())
{
break;
}
dirty_it--;
if (dirty_it->first.oid != v->oid)
{
break;
}
}
#ifdef BLOCKSTORE_DEBUG
printf("enqueue_flush %lu:%lu v%lu\n", v->oid.inode, v->oid.stripe, v->version);
#endif
flusher->enqueue_flush(*v);
}
}
// Acknowledge op
op->retval = 0;
FINISH_OP(op);
}
}

269
blockstore_sync.cpp Normal file
View File

@ -0,0 +1,269 @@
#include "blockstore_impl.h"
#define SYNC_HAS_SMALL 1
#define SYNC_HAS_BIG 2
#define SYNC_DATA_SYNC_SENT 3
#define SYNC_DATA_SYNC_DONE 4
#define SYNC_JOURNAL_WRITE_SENT 5
#define SYNC_JOURNAL_WRITE_DONE 6
#define SYNC_JOURNAL_SYNC_SENT 7
#define SYNC_DONE 8
int blockstore_impl_t::dequeue_sync(blockstore_op_t *op)
{
if (PRIV(op)->sync_state == 0)
{
stop_sync_submitted = false;
PRIV(op)->sync_big_writes.swap(unsynced_big_writes);
PRIV(op)->sync_small_writes.swap(unsynced_small_writes);
PRIV(op)->sync_small_checked = 0;
PRIV(op)->sync_big_checked = 0;
unsynced_big_writes.clear();
unsynced_small_writes.clear();
if (PRIV(op)->sync_big_writes.size() > 0)
PRIV(op)->sync_state = SYNC_HAS_BIG;
else if (PRIV(op)->sync_small_writes.size() > 0)
PRIV(op)->sync_state = SYNC_HAS_SMALL;
else
PRIV(op)->sync_state = SYNC_DONE;
// Always add sync to in_progress_syncs because we clear unsynced_big_writes and unsynced_small_writes
PRIV(op)->prev_sync_count = in_progress_syncs.size();
PRIV(op)->in_progress_ptr = in_progress_syncs.insert(in_progress_syncs.end(), op);
}
continue_sync(op);
// Always dequeue because we always add syncs to in_progress_syncs
return 1;
}
int blockstore_impl_t::continue_sync(blockstore_op_t *op)
{
auto cb = [this, op](ring_data_t *data) { handle_sync_event(data, op); };
if (PRIV(op)->sync_state == SYNC_HAS_SMALL)
{
// No big writes, just fsync the journal
for (; PRIV(op)->sync_small_checked < PRIV(op)->sync_small_writes.size(); PRIV(op)->sync_small_checked++)
{
if (IS_IN_FLIGHT(dirty_db[PRIV(op)->sync_small_writes[PRIV(op)->sync_small_checked]].state))
{
// Wait for small inflight writes to complete
return 0;
}
}
if (journal.sector_info[journal.cur_sector].dirty)
{
// Write out the last journal sector if it happens to be dirty
BS_SUBMIT_GET_ONLY_SQE(sqe);
prepare_journal_sector_write(journal, journal.cur_sector, sqe, cb);
PRIV(op)->min_used_journal_sector = PRIV(op)->max_used_journal_sector = 1 + journal.cur_sector;
PRIV(op)->pending_ops = 1;
PRIV(op)->sync_state = SYNC_JOURNAL_WRITE_SENT;
return 1;
}
else
{
PRIV(op)->sync_state = SYNC_JOURNAL_WRITE_DONE;
}
}
if (PRIV(op)->sync_state == SYNC_HAS_BIG)
{
for (; PRIV(op)->sync_big_checked < PRIV(op)->sync_big_writes.size(); PRIV(op)->sync_big_checked++)
{
if (IS_IN_FLIGHT(dirty_db[PRIV(op)->sync_big_writes[PRIV(op)->sync_big_checked]].state))
{
// Wait for big inflight writes to complete
return 0;
}
}
// 1st step: fsync data
if (!disable_data_fsync)
{
BS_SUBMIT_GET_SQE(sqe, data);
my_uring_prep_fsync(sqe, data_fd, IORING_FSYNC_DATASYNC);
data->iov = { 0 };
data->callback = cb;
PRIV(op)->min_used_journal_sector = PRIV(op)->max_used_journal_sector = 0;
PRIV(op)->pending_ops = 1;
PRIV(op)->sync_state = SYNC_DATA_SYNC_SENT;
return 1;
}
else
{
PRIV(op)->sync_state = SYNC_DATA_SYNC_DONE;
}
}
if (PRIV(op)->sync_state == SYNC_DATA_SYNC_DONE)
{
for (; PRIV(op)->sync_small_checked < PRIV(op)->sync_small_writes.size(); PRIV(op)->sync_small_checked++)
{
if (IS_IN_FLIGHT(dirty_db[PRIV(op)->sync_small_writes[PRIV(op)->sync_small_checked]].state))
{
// Wait for small inflight writes to complete
return 0;
}
}
// 2nd step: Data device is synced, prepare & write journal entries
// Check space in the journal and journal memory buffers
blockstore_journal_check_t space_check(this);
if (!space_check.check_available(op, PRIV(op)->sync_big_writes.size(), sizeof(journal_entry_big_write), 0))
{
return 0;
}
// Get SQEs. Don't bother about merging, submit each journal sector as a separate request
struct io_uring_sqe *sqe[space_check.sectors_required];
for (int i = 0; i < space_check.sectors_required; i++)
{
BS_SUBMIT_GET_SQE_DECL(sqe[i]);
}
// Prepare and submit journal entries
auto it = PRIV(op)->sync_big_writes.begin();
int s = 0, cur_sector = -1;
if ((journal_block_size - journal.in_sector_pos) < sizeof(journal_entry_big_write) &&
journal.sector_info[journal.cur_sector].dirty)
{
if (cur_sector == -1)
PRIV(op)->min_used_journal_sector = 1 + journal.cur_sector;
cur_sector = journal.cur_sector;
prepare_journal_sector_write(journal, cur_sector, sqe[s++], cb);
}
while (it != PRIV(op)->sync_big_writes.end())
{
journal_entry_big_write *je = (journal_entry_big_write*)
prefill_single_journal_entry(journal, JE_BIG_WRITE, sizeof(journal_entry_big_write));
dirty_db[*it].journal_sector = journal.sector_info[journal.cur_sector].offset;
journal.sector_info[journal.cur_sector].dirty = false;
journal.used_sectors[journal.sector_info[journal.cur_sector].offset]++;
#ifdef BLOCKSTORE_DEBUG
printf("journal offset %lu is used by %lu:%lu v%lu\n", dirty_db[*it].journal_sector, it->oid.inode, it->oid.stripe, it->version);
#endif
je->oid = it->oid;
je->version = it->version;
je->offset = dirty_db[*it].offset;
je->len = dirty_db[*it].len;
je->location = dirty_db[*it].location;
je->crc32 = je_crc32((journal_entry*)je);
journal.crc32_last = je->crc32;
it++;
if (cur_sector != journal.cur_sector)
{
if (cur_sector == -1)
PRIV(op)->min_used_journal_sector = 1 + journal.cur_sector;
cur_sector = journal.cur_sector;
prepare_journal_sector_write(journal, cur_sector, sqe[s++], cb);
}
}
PRIV(op)->max_used_journal_sector = 1 + journal.cur_sector;
PRIV(op)->pending_ops = s;
PRIV(op)->sync_state = SYNC_JOURNAL_WRITE_SENT;
return 1;
}
if (PRIV(op)->sync_state == SYNC_JOURNAL_WRITE_DONE)
{
if (!disable_journal_fsync)
{
BS_SUBMIT_GET_SQE(sqe, data);
my_uring_prep_fsync(sqe, journal.fd, IORING_FSYNC_DATASYNC);
data->iov = { 0 };
data->callback = cb;
PRIV(op)->pending_ops = 1;
PRIV(op)->sync_state = SYNC_JOURNAL_SYNC_SENT;
return 1;
}
else
{
PRIV(op)->sync_state = SYNC_DONE;
}
}
if (PRIV(op)->sync_state == SYNC_DONE)
{
ack_sync(op);
}
return 1;
}
void blockstore_impl_t::handle_sync_event(ring_data_t *data, blockstore_op_t *op)
{
live = true;
if (data->res != data->iov.iov_len)
{
throw std::runtime_error(
"write operation failed ("+std::to_string(data->res)+" != "+std::to_string(data->iov.iov_len)+
"). in-memory state is corrupted. AAAAAAAaaaaaaaaa!!!111"
);
}
PRIV(op)->pending_ops--;
if (PRIV(op)->pending_ops == 0)
{
// Release used journal sectors
release_journal_sectors(op);
// Handle states
if (PRIV(op)->sync_state == SYNC_DATA_SYNC_SENT)
{
PRIV(op)->sync_state = SYNC_DATA_SYNC_DONE;
}
else if (PRIV(op)->sync_state == SYNC_JOURNAL_WRITE_SENT)
{
PRIV(op)->sync_state = SYNC_JOURNAL_WRITE_DONE;
}
else if (PRIV(op)->sync_state == SYNC_JOURNAL_SYNC_SENT)
{
PRIV(op)->sync_state = SYNC_DONE;
ack_sync(op);
}
else
{
throw std::runtime_error("BUG: unexpected sync op state");
}
}
}
int blockstore_impl_t::ack_sync(blockstore_op_t *op)
{
if (PRIV(op)->sync_state == SYNC_DONE && PRIV(op)->prev_sync_count == 0)
{
// Remove dependency of subsequent syncs
auto it = PRIV(op)->in_progress_ptr;
int done_syncs = 1;
++it;
// Acknowledge sync
ack_one_sync(op);
while (it != in_progress_syncs.end())
{
auto & next_sync = *it++;
PRIV(next_sync)->prev_sync_count -= done_syncs;
if (PRIV(next_sync)->prev_sync_count == 0 && PRIV(next_sync)->sync_state == SYNC_DONE)
{
done_syncs++;
// Acknowledge next_sync
ack_one_sync(next_sync);
}
}
return 1;
}
return 0;
}
void blockstore_impl_t::ack_one_sync(blockstore_op_t *op)
{
// Handle states
for (auto it = PRIV(op)->sync_big_writes.begin(); it != PRIV(op)->sync_big_writes.end(); it++)
{
#ifdef BLOCKSTORE_DEBUG
printf("Ack sync big %lu:%lu v%lu\n", it->oid.inode, it->oid.stripe, it->version);
#endif
auto & unstab = unstable_writes[it->oid];
unstab = unstab < it->version ? it->version : unstab;
dirty_db[*it].state = ST_D_META_SYNCED;
}
for (auto it = PRIV(op)->sync_small_writes.begin(); it != PRIV(op)->sync_small_writes.end(); it++)
{
#ifdef BLOCKSTORE_DEBUG
printf("Ack sync small %lu:%lu v%lu\n", it->oid.inode, it->oid.stripe, it->version);
#endif
auto & unstab = unstable_writes[it->oid];
unstab = unstab < it->version ? it->version : unstab;
dirty_db[*it].state = dirty_db[*it].state == ST_DEL_WRITTEN ? ST_DEL_SYNCED : ST_J_SYNCED;
}
in_progress_syncs.erase(PRIV(op)->in_progress_ptr);
op->retval = 0;
FINISH_OP(op);
}

328
blockstore_write.cpp Normal file
View File

@ -0,0 +1,328 @@
#include "blockstore_impl.h"
bool blockstore_impl_t::enqueue_write(blockstore_op_t *op)
{
// Check or assign version number
bool found = false, deleted = false, is_del = (op->opcode == BS_OP_DELETE);
uint64_t version = 1;
if (dirty_db.size() > 0)
{
auto dirty_it = dirty_db.upper_bound((obj_ver_id){
.oid = op->oid,
.version = UINT64_MAX,
});
dirty_it--; // segfaults when dirty_db is empty
if (dirty_it != dirty_db.end() && dirty_it->first.oid == op->oid)
{
found = true;
version = dirty_it->first.version + 1;
deleted = IS_DELETE(dirty_it->second.state);
}
}
if (!found)
{
auto clean_it = clean_db.find(op->oid);
if (clean_it != clean_db.end())
{
version = clean_it->second.version + 1;
}
else
{
deleted = true;
}
}
if (op->version == 0)
{
op->version = version;
}
else if (op->version < version)
{
// Invalid version requested
op->retval = -EINVAL;
return false;
}
if (deleted && is_del)
{
// Already deleted
op->retval = 0;
return false;
}
// Immediately add the operation into dirty_db, so subsequent reads could see it
#ifdef BLOCKSTORE_DEBUG
printf("%s %lu:%lu v%lu\n", is_del ? "Delete" : "Write", op->oid.inode, op->oid.stripe, op->version);
#endif
dirty_db.emplace((obj_ver_id){
.oid = op->oid,
.version = op->version,
}, (dirty_entry){
.state = (uint32_t)(
is_del
? ST_DEL_IN_FLIGHT
: (op->len == block_size || deleted ? ST_D_IN_FLIGHT : ST_J_IN_FLIGHT)
),
.flags = 0,
.location = 0,
.offset = is_del ? 0 : op->offset,
.len = is_del ? 0 : op->len,
.journal_sector = 0,
});
return true;
}
// First step of the write algorithm: dequeue operation and submit initial write(s)
int blockstore_impl_t::dequeue_write(blockstore_op_t *op)
{
auto dirty_it = dirty_db.find((obj_ver_id){
.oid = op->oid,
.version = op->version,
});
if (dirty_it->second.state == ST_D_IN_FLIGHT)
{
blockstore_journal_check_t space_check(this);
if (!space_check.check_available(op, unsynced_big_writes.size() + 1, sizeof(journal_entry_big_write), JOURNAL_STABILIZE_RESERVATION))
{
return 0;
}
// Big (redirect) write
uint64_t loc = data_alloc->find_free();
if (loc == UINT64_MAX)
{
// no space
if (flusher->is_active())
{
// hope that some space will be available after flush
PRIV(op)->wait_for = WAIT_FREE;
return 0;
}
op->retval = -ENOSPC;
FINISH_OP(op);
return 1;
}
BS_SUBMIT_GET_SQE(sqe, data);
dirty_it->second.location = loc << block_order;
dirty_it->second.state = ST_D_SUBMITTED;
#ifdef BLOCKSTORE_DEBUG
printf("Allocate block %lu\n", loc);
#endif
data_alloc->set(loc, true);
uint64_t stripe_offset = (op->offset % bitmap_granularity);
uint64_t stripe_end = (op->offset + op->len) % bitmap_granularity;
// Zero fill up to bitmap_granularity
int vcnt = 0;
if (stripe_offset)
{
PRIV(op)->iov_zerofill[vcnt++] = (struct iovec){ zero_object, stripe_offset };
}
PRIV(op)->iov_zerofill[vcnt++] = (struct iovec){ op->buf, op->len };
if (stripe_end)
{
stripe_end = bitmap_granularity - stripe_end;
PRIV(op)->iov_zerofill[vcnt++] = (struct iovec){ zero_object, stripe_end };
}
data->iov.iov_len = op->len + stripe_offset + stripe_end; // to check it in the callback
data->callback = [this, op](ring_data_t *data) { handle_write_event(data, op); };
my_uring_prep_writev(
sqe, data_fd, PRIV(op)->iov_zerofill, vcnt, data_offset + (loc << block_order) + op->offset - stripe_offset
);
PRIV(op)->pending_ops = 1;
PRIV(op)->min_used_journal_sector = PRIV(op)->max_used_journal_sector = 0;
// Remember big write as unsynced
unsynced_big_writes.push_back((obj_ver_id){
.oid = op->oid,
.version = op->version,
});
}
else
{
// Small (journaled) write
// First check if the journal has sufficient space
blockstore_journal_check_t space_check(this);
if (unsynced_big_writes.size() && !space_check.check_available(op, unsynced_big_writes.size(), sizeof(journal_entry_big_write), 0)
|| !space_check.check_available(op, 1, sizeof(journal_entry_small_write), op->len + JOURNAL_STABILIZE_RESERVATION))
{
return 0;
}
// There is sufficient space. Get SQE(s)
struct io_uring_sqe *sqe1 = NULL;
if ((journal_block_size - journal.in_sector_pos) < sizeof(journal_entry_small_write) &&
journal.sector_info[journal.cur_sector].dirty)
{
// Write current journal sector only if it's dirty and full
BS_SUBMIT_GET_SQE_DECL(sqe1);
}
struct io_uring_sqe *sqe2 = NULL;
if (op->len > 0)
{
BS_SUBMIT_GET_SQE_DECL(sqe2);
}
// Got SQEs. Prepare previous journal sector write if required
auto cb = [this, op](ring_data_t *data) { handle_write_event(data, op); };
if (sqe1)
{
prepare_journal_sector_write(journal, journal.cur_sector, sqe1, cb);
// FIXME rename to min/max _flushing
PRIV(op)->min_used_journal_sector = PRIV(op)->max_used_journal_sector = 1 + journal.cur_sector;
PRIV(op)->pending_ops++;
}
else
{
PRIV(op)->min_used_journal_sector = PRIV(op)->max_used_journal_sector = 0;
}
// Then pre-fill journal entry
journal_entry_small_write *je = (journal_entry_small_write*)
prefill_single_journal_entry(journal, JE_SMALL_WRITE, sizeof(journal_entry_small_write));
dirty_it->second.journal_sector = journal.sector_info[journal.cur_sector].offset;
journal.used_sectors[journal.sector_info[journal.cur_sector].offset]++;
#ifdef BLOCKSTORE_DEBUG
printf("journal offset %lu is used by %lu:%lu v%lu\n", dirty_it->second.journal_sector, dirty_it->first.oid.inode, dirty_it->first.oid.stripe, dirty_it->first.version);
#endif
// Figure out where data will be
journal.next_free = (journal.next_free + op->len) <= journal.len ? journal.next_free : journal_block_size;
je->oid = op->oid;
je->version = op->version;
je->offset = op->offset;
je->len = op->len;
je->data_offset = journal.next_free;
je->crc32_data = crc32c(0, op->buf, op->len);
je->crc32 = je_crc32((journal_entry*)je);
journal.crc32_last = je->crc32;
if (op->len > 0)
{
// Prepare journal data write
if (journal.inmemory)
{
// Copy data
memcpy(journal.buffer + journal.next_free, op->buf, op->len);
}
ring_data_t *data2 = ((ring_data_t*)sqe2->user_data);
data2->iov = (struct iovec){ op->buf, op->len };
data2->callback = cb;
my_uring_prep_writev(
sqe2, journal.fd, &data2->iov, 1, journal.offset + journal.next_free
);
PRIV(op)->pending_ops++;
}
else
{
// Zero-length overwrite. Allowed to bump object version in EC placement groups without actually writing data
}
dirty_it->second.location = journal.next_free;
dirty_it->second.state = ST_J_SUBMITTED;
journal.next_free += op->len;
if (journal.next_free >= journal.len)
{
journal.next_free = journal_block_size;
}
// Remember small write as unsynced
unsynced_small_writes.push_back((obj_ver_id){
.oid = op->oid,
.version = op->version,
});
if (!PRIV(op)->pending_ops)
{
ack_write(op);
}
}
return 1;
}
void blockstore_impl_t::handle_write_event(ring_data_t *data, blockstore_op_t *op)
{
live = true;
if (data->res != data->iov.iov_len)
{
// FIXME: our state becomes corrupted after a write error. maybe do something better than just die
throw std::runtime_error(
"write operation failed ("+std::to_string(data->res)+" != "+std::to_string(data->iov.iov_len)+
"). in-memory state is corrupted. AAAAAAAaaaaaaaaa!!!111"
);
}
PRIV(op)->pending_ops--;
if (PRIV(op)->pending_ops == 0)
{
release_journal_sectors(op);
ack_write(op);
}
}
void blockstore_impl_t::release_journal_sectors(blockstore_op_t *op)
{
// Release used journal sectors
if (PRIV(op)->min_used_journal_sector > 0 &&
PRIV(op)->max_used_journal_sector > 0)
{
uint64_t s = PRIV(op)->min_used_journal_sector;
while (1)
{
journal.sector_info[s-1].usage_count--;
if (s == PRIV(op)->max_used_journal_sector)
break;
s = 1 + s % journal.sector_count;
}
PRIV(op)->min_used_journal_sector = PRIV(op)->max_used_journal_sector = 0;
}
}
void blockstore_impl_t::ack_write(blockstore_op_t *op)
{
// Switch object state
auto & dirty_entry = dirty_db[(obj_ver_id){
.oid = op->oid,
.version = op->version,
}];
#ifdef BLOCKSTORE_DEBUG
printf("Ack write %lu:%lu v%lu = %d\n", op->oid.inode, op->oid.stripe, op->version, dirty_entry.state);
#endif
if (dirty_entry.state == ST_J_SUBMITTED)
{
dirty_entry.state = ST_J_WRITTEN;
}
else if (dirty_entry.state == ST_D_SUBMITTED)
{
dirty_entry.state = ST_D_WRITTEN;
}
else if (dirty_entry.state == ST_DEL_SUBMITTED)
{
dirty_entry.state = ST_DEL_WRITTEN;
}
// Acknowledge write without sync
op->retval = op->len;
FINISH_OP(op);
}
int blockstore_impl_t::dequeue_del(blockstore_op_t *op)
{
auto dirty_it = dirty_db.find((obj_ver_id){
.oid = op->oid,
.version = op->version,
});
blockstore_journal_check_t space_check(this);
if (!space_check.check_available(op, 1, sizeof(journal_entry_del), 0))
{
return 0;
}
BS_SUBMIT_GET_ONLY_SQE(sqe);
// Prepare journal sector write
journal_entry_del *je = (journal_entry_del*)
prefill_single_journal_entry(journal, JE_DELETE, sizeof(struct journal_entry_del));
dirty_it->second.journal_sector = journal.sector_info[journal.cur_sector].offset;
journal.used_sectors[journal.sector_info[journal.cur_sector].offset]++;
#ifdef BLOCKSTORE_DEBUG
printf("journal offset %lu is used by %lu:%lu v%lu\n", dirty_it->second.journal_sector, dirty_it->first.oid.inode, dirty_it->first.oid.stripe, dirty_it->first.version);
#endif
je->oid = op->oid;
je->version = op->version;
je->crc32 = je_crc32((journal_entry*)je);
journal.crc32_last = je->crc32;
auto cb = [this, op](ring_data_t *data) { handle_write_event(data, op); };
prepare_journal_sector_write(journal, journal.cur_sector, sqe, cb);
PRIV(op)->min_used_journal_sector = PRIV(op)->max_used_journal_sector = 1 + journal.cur_sector;
PRIV(op)->pending_ops = 1;
dirty_it->second.state = ST_DEL_SUBMITTED;
// Remember small write as unsynced
unsynced_small_writes.push_back((obj_ver_id){
.oid = op->oid,
.version = op->version,
});
return 1;
}

View File

@ -1,13 +0,0 @@
#!/bin/bash
gcc -I. -E -o fio_headers.i src/fio_headers.h
rm -rf fio-copy
for i in `grep -Po 'fio/[^"]+' fio_headers.i | sort | uniq`; do
j=${i##fio/}
p=$(dirname $j)
mkdir -p fio-copy/$p
cp $i fio-copy/$j
done
rm fio_headers.i

View File

@ -1,18 +0,0 @@
#!/bin/bash
#cd qemu
#debian/rules b/configure-stamp
#cd b/qemu; make qapi
gcc -I qemu/b/qemu `pkg-config glib-2.0 --cflags` \
-I qemu/include -E -o qemu_driver.i src/qemu_driver.c
rm -rf qemu-copy
for i in `grep -Po 'qemu/[^"]+' qemu_driver.i | sort | uniq`; do
j=${i##qemu/}
p=$(dirname $j)
mkdir -p qemu-copy/$p
cp $i qemu-copy/$j
done
rm qemu_driver.i

@ -1 +0,0 @@
Subproject commit 5dc108754ad40d3b1d024f9bd7cca0595ef1a1db

View File

@ -8,10 +8,4 @@
// unsigned __int64 _mm_crc32_u64 (unsigned __int64 crc, unsigned __int64 v)
// unsigned int _mm_crc32_u8 (unsigned int crc, unsigned char v)
#ifdef __cplusplus
extern "C" {
#endif
uint32_t crc32c(uint32_t crc, const void *buf, size_t len);
#ifdef __cplusplus
};
#endif

View File

@ -1,3 +0,0 @@
vitastor-csi
go.sum
Dockerfile

View File

@ -1,32 +0,0 @@
# Compile stage
FROM golang:buster AS build
ADD go.mod /app/
RUN cd /app; CGO_ENABLED=1 GOOS=linux GOARCH=amd64 go mod download -x
ADD . /app
RUN perl -i -e '$/ = undef; while(<>) { s/\n\s*(\{\s*\n)/$1\n/g; s/\}(\s*\n\s*)else\b/$1} else/g; print; }' `find /app -name '*.go'`
RUN cd /app; CGO_ENABLED=1 GOOS=linux GOARCH=amd64 go build -o vitastor-csi
# Final stage
FROM debian:buster
LABEL maintainers="Vitaliy Filippov <vitalif@yourcmc.ru>"
LABEL description="Vitastor CSI Driver"
ENV NODE_ID=""
ENV CSI_ENDPOINT=""
RUN apt-get update && \
apt-get install -y wget && \
wget -q -O /etc/apt/trusted.gpg.d/vitastor.gpg https://vitastor.io/debian/pubkey.gpg && \
(echo deb http://vitastor.io/debian buster main > /etc/apt/sources.list.d/vitastor.list) && \
(echo deb http://deb.debian.org/debian buster-backports main > /etc/apt/sources.list.d/backports.list) && \
(echo "APT::Install-Recommends false;" > /etc/apt/apt.conf) && \
apt-get update && \
apt-get install -y e2fsprogs xfsprogs vitastor kmod && \
apt-get clean && \
(echo options nbd nbds_max=128 > /etc/modprobe.d/nbd.conf)
COPY --from=build /app/vitastor-csi /bin/
ENTRYPOINT ["/bin/vitastor-csi"]

View File

@ -1,9 +0,0 @@
VERSION ?= v0.6.5
all: build push
build:
@docker build --rm -t vitalif/vitastor-csi:$(VERSION) .
push:
@docker push vitalif/vitastor-csi:$(VERSION)

View File

@ -1,5 +0,0 @@
---
apiVersion: v1
kind: Namespace
metadata:
name: vitastor-system

View File

@ -1,9 +0,0 @@
---
apiVersion: v1
kind: ConfigMap
data:
vitastor.conf: |-
{"etcd_address":"http://192.168.7.2:2379","etcd_prefix":"/vitastor"}
metadata:
namespace: vitastor-system
name: vitastor-config

View File

@ -1,37 +0,0 @@
---
apiVersion: v1
kind: ServiceAccount
metadata:
namespace: vitastor-system
name: vitastor-csi-nodeplugin
---
kind: ClusterRole
apiVersion: rbac.authorization.k8s.io/v1
metadata:
namespace: vitastor-system
name: vitastor-csi-nodeplugin
rules:
- apiGroups: [""]
resources: ["nodes"]
verbs: ["get"]
# allow to read Vault Token and connection options from the Tenants namespace
- apiGroups: [""]
resources: ["secrets"]
verbs: ["get"]
- apiGroups: [""]
resources: ["configmaps"]
verbs: ["get"]
---
kind: ClusterRoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
namespace: vitastor-system
name: vitastor-csi-nodeplugin
subjects:
- kind: ServiceAccount
name: vitastor-csi-nodeplugin
namespace: vitastor-system
roleRef:
kind: ClusterRole
name: vitastor-csi-nodeplugin
apiGroup: rbac.authorization.k8s.io

View File

@ -1,72 +0,0 @@
---
apiVersion: policy/v1beta1
kind: PodSecurityPolicy
metadata:
namespace: vitastor-system
name: vitastor-csi-nodeplugin-psp
spec:
allowPrivilegeEscalation: true
allowedCapabilities:
- 'SYS_ADMIN'
fsGroup:
rule: RunAsAny
privileged: true
hostNetwork: true
hostPID: true
runAsUser:
rule: RunAsAny
seLinux:
rule: RunAsAny
supplementalGroups:
rule: RunAsAny
volumes:
- 'configMap'
- 'emptyDir'
- 'projected'
- 'secret'
- 'downwardAPI'
- 'hostPath'
allowedHostPaths:
- pathPrefix: '/dev'
readOnly: false
- pathPrefix: '/run/mount'
readOnly: false
- pathPrefix: '/sys'
readOnly: false
- pathPrefix: '/lib/modules'
readOnly: true
- pathPrefix: '/var/lib/kubelet/pods'
readOnly: false
- pathPrefix: '/var/lib/kubelet/plugins/csi.vitastor.io'
readOnly: false
- pathPrefix: '/var/lib/kubelet/plugins_registry'
readOnly: false
- pathPrefix: '/var/lib/kubelet/plugins'
readOnly: false
---
kind: Role
apiVersion: rbac.authorization.k8s.io/v1
metadata:
namespace: vitastor-system
name: vitastor-csi-nodeplugin-psp
rules:
- apiGroups: ['policy']
resources: ['podsecuritypolicies']
verbs: ['use']
resourceNames: ['vitastor-csi-nodeplugin-psp']
---
kind: RoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
namespace: vitastor-system
name: vitastor-csi-nodeplugin-psp
subjects:
- kind: ServiceAccount
name: vitastor-csi-nodeplugin
namespace: vitastor-system
roleRef:
kind: Role
name: vitastor-csi-nodeplugin-psp
apiGroup: rbac.authorization.k8s.io

View File

@ -1,140 +0,0 @@
---
kind: DaemonSet
apiVersion: apps/v1
metadata:
namespace: vitastor-system
name: csi-vitastor
spec:
selector:
matchLabels:
app: csi-vitastor
template:
metadata:
namespace: vitastor-system
labels:
app: csi-vitastor
spec:
serviceAccountName: vitastor-csi-nodeplugin
hostNetwork: true
hostPID: true
priorityClassName: system-node-critical
# to use e.g. Rook orchestrated cluster, and mons' FQDN is
# resolved through k8s service, set dns policy to cluster first
dnsPolicy: ClusterFirstWithHostNet
containers:
- name: driver-registrar
# This is necessary only for systems with SELinux, where
# non-privileged sidecar containers cannot access unix domain socket
# created by privileged CSI driver container.
securityContext:
privileged: true
image: k8s.gcr.io/sig-storage/csi-node-driver-registrar:v2.2.0
args:
- "--v=5"
- "--csi-address=/csi/csi.sock"
- "--kubelet-registration-path=/var/lib/kubelet/plugins/csi.vitastor.io/csi.sock"
env:
- name: KUBE_NODE_NAME
valueFrom:
fieldRef:
fieldPath: spec.nodeName
volumeMounts:
- name: socket-dir
mountPath: /csi
- name: registration-dir
mountPath: /registration
- name: csi-vitastor
securityContext:
privileged: true
capabilities:
add: ["SYS_ADMIN"]
allowPrivilegeEscalation: true
image: vitalif/vitastor-csi:v0.6.5
args:
- "--node=$(NODE_ID)"
- "--endpoint=$(CSI_ENDPOINT)"
env:
- name: NODE_ID
valueFrom:
fieldRef:
fieldPath: spec.nodeName
- name: CSI_ENDPOINT
value: unix:///csi/csi.sock
imagePullPolicy: "IfNotPresent"
ports:
- containerPort: 9898
name: healthz
protocol: TCP
livenessProbe:
failureThreshold: 5
httpGet:
path: /healthz
port: healthz
initialDelaySeconds: 10
timeoutSeconds: 3
periodSeconds: 2
volumeMounts:
- name: socket-dir
mountPath: /csi
- mountPath: /dev
name: host-dev
- mountPath: /sys
name: host-sys
- mountPath: /run/mount
name: host-mount
- mountPath: /lib/modules
name: lib-modules
readOnly: true
- name: vitastor-config
mountPath: /etc/vitastor
- name: plugin-dir
mountPath: /var/lib/kubelet/plugins
mountPropagation: "Bidirectional"
- name: mountpoint-dir
mountPath: /var/lib/kubelet/pods
mountPropagation: "Bidirectional"
- name: liveness-probe
securityContext:
privileged: true
image: quay.io/k8scsi/livenessprobe:v1.1.0
args:
- "--csi-address=$(CSI_ENDPOINT)"
- "--health-port=9898"
env:
- name: CSI_ENDPOINT
value: unix://csi/csi.sock
volumeMounts:
- mountPath: /csi
name: socket-dir
volumes:
- name: socket-dir
hostPath:
path: /var/lib/kubelet/plugins/csi.vitastor.io
type: DirectoryOrCreate
- name: plugin-dir
hostPath:
path: /var/lib/kubelet/plugins
type: Directory
- name: mountpoint-dir
hostPath:
path: /var/lib/kubelet/pods
type: DirectoryOrCreate
- name: registration-dir
hostPath:
path: /var/lib/kubelet/plugins_registry/
type: Directory
- name: host-dev
hostPath:
path: /dev
- name: host-sys
hostPath:
path: /sys
- name: host-mount
hostPath:
path: /run/mount
- name: lib-modules
hostPath:
path: /lib/modules
- name: vitastor-config
configMap:
name: vitastor-config

View File

@ -1,102 +0,0 @@
---
apiVersion: v1
kind: ServiceAccount
metadata:
namespace: vitastor-system
name: vitastor-csi-provisioner
---
kind: ClusterRole
apiVersion: rbac.authorization.k8s.io/v1
metadata:
namespace: vitastor-system
name: vitastor-external-provisioner-runner
rules:
- apiGroups: [""]
resources: ["nodes"]
verbs: ["get", "list", "watch"]
- apiGroups: [""]
resources: ["secrets"]
verbs: ["get", "list", "watch"]
- apiGroups: [""]
resources: ["events"]
verbs: ["list", "watch", "create", "update", "patch"]
- apiGroups: [""]
resources: ["persistentvolumes"]
verbs: ["get", "list", "watch", "create", "update", "delete", "patch"]
- apiGroups: [""]
resources: ["persistentvolumeclaims"]
verbs: ["get", "list", "watch", "update"]
- apiGroups: [""]
resources: ["persistentvolumeclaims/status"]
verbs: ["update", "patch"]
- apiGroups: ["storage.k8s.io"]
resources: ["storageclasses"]
verbs: ["get", "list", "watch"]
- apiGroups: ["snapshot.storage.k8s.io"]
resources: ["volumesnapshots"]
verbs: ["get", "list"]
- apiGroups: ["snapshot.storage.k8s.io"]
resources: ["volumesnapshotcontents"]
verbs: ["create", "get", "list", "watch", "update", "delete"]
- apiGroups: ["snapshot.storage.k8s.io"]
resources: ["volumesnapshotclasses"]
verbs: ["get", "list", "watch"]
- apiGroups: ["storage.k8s.io"]
resources: ["volumeattachments"]
verbs: ["get", "list", "watch", "update", "patch"]
- apiGroups: ["storage.k8s.io"]
resources: ["volumeattachments/status"]
verbs: ["patch"]
- apiGroups: ["storage.k8s.io"]
resources: ["csinodes"]
verbs: ["get", "list", "watch"]
- apiGroups: ["snapshot.storage.k8s.io"]
resources: ["volumesnapshotcontents/status"]
verbs: ["update"]
- apiGroups: [""]
resources: ["configmaps"]
verbs: ["get"]
---
kind: ClusterRoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
namespace: vitastor-system
name: vitastor-csi-provisioner-role
subjects:
- kind: ServiceAccount
name: vitastor-csi-provisioner
namespace: vitastor-system
roleRef:
kind: ClusterRole
name: vitastor-external-provisioner-runner
apiGroup: rbac.authorization.k8s.io
---
kind: Role
apiVersion: rbac.authorization.k8s.io/v1
metadata:
namespace: vitastor-system
name: vitastor-external-provisioner-cfg
rules:
- apiGroups: [""]
resources: ["configmaps"]
verbs: ["get", "list", "watch", "create", "update", "delete"]
- apiGroups: ["coordination.k8s.io"]
resources: ["leases"]
verbs: ["get", "watch", "list", "delete", "update", "create"]
---
kind: RoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
name: vitastor-csi-provisioner-role-cfg
namespace: vitastor-system
subjects:
- kind: ServiceAccount
name: vitastor-csi-provisioner
namespace: vitastor-system
roleRef:
kind: Role
name: vitastor-external-provisioner-cfg
apiGroup: rbac.authorization.k8s.io

View File

@ -1,60 +0,0 @@
---
apiVersion: policy/v1beta1
kind: PodSecurityPolicy
metadata:
namespace: vitastor-system
name: vitastor-csi-provisioner-psp
spec:
allowPrivilegeEscalation: true
allowedCapabilities:
- 'SYS_ADMIN'
fsGroup:
rule: RunAsAny
privileged: true
runAsUser:
rule: RunAsAny
seLinux:
rule: RunAsAny
supplementalGroups:
rule: RunAsAny
volumes:
- 'configMap'
- 'emptyDir'
- 'projected'
- 'secret'
- 'downwardAPI'
- 'hostPath'
allowedHostPaths:
- pathPrefix: '/dev'
readOnly: false
- pathPrefix: '/sys'
readOnly: false
- pathPrefix: '/lib/modules'
readOnly: true
---
kind: Role
apiVersion: rbac.authorization.k8s.io/v1
metadata:
namespace: vitastor-system
name: vitastor-csi-provisioner-psp
rules:
- apiGroups: ['policy']
resources: ['podsecuritypolicies']
verbs: ['use']
resourceNames: ['vitastor-csi-provisioner-psp']
---
kind: RoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
name: vitastor-csi-provisioner-psp
namespace: vitastor-system
subjects:
- kind: ServiceAccount
name: vitastor-csi-provisioner
namespace: vitastor-system
roleRef:
kind: Role
name: vitastor-csi-provisioner-psp
apiGroup: rbac.authorization.k8s.io

View File

@ -1,159 +0,0 @@
---
kind: Service
apiVersion: v1
metadata:
namespace: vitastor-system
name: csi-vitastor-provisioner
labels:
app: csi-metrics
spec:
selector:
app: csi-vitastor-provisioner
ports:
- name: http-metrics
port: 8080
protocol: TCP
targetPort: 8680
---
kind: Deployment
apiVersion: apps/v1
metadata:
namespace: vitastor-system
name: csi-vitastor-provisioner
spec:
replicas: 3
selector:
matchLabels:
app: csi-vitastor-provisioner
template:
metadata:
namespace: vitastor-system
labels:
app: csi-vitastor-provisioner
spec:
affinity:
podAntiAffinity:
requiredDuringSchedulingIgnoredDuringExecution:
- labelSelector:
matchExpressions:
- key: app
operator: In
values:
- csi-vitastor-provisioner
topologyKey: "kubernetes.io/hostname"
serviceAccountName: vitastor-csi-provisioner
priorityClassName: system-cluster-critical
containers:
- name: csi-provisioner
image: k8s.gcr.io/sig-storage/csi-provisioner:v2.2.0
args:
- "--csi-address=$(ADDRESS)"
- "--v=5"
- "--timeout=150s"
- "--retry-interval-start=500ms"
- "--leader-election=true"
# set it to true to use topology based provisioning
- "--feature-gates=Topology=false"
# if fstype is not specified in storageclass, ext4 is default
- "--default-fstype=ext4"
- "--extra-create-metadata=true"
env:
- name: ADDRESS
value: unix:///csi/csi-provisioner.sock
imagePullPolicy: "IfNotPresent"
volumeMounts:
- name: socket-dir
mountPath: /csi
- name: csi-snapshotter
image: k8s.gcr.io/sig-storage/csi-snapshotter:v4.0.0
args:
- "--csi-address=$(ADDRESS)"
- "--v=5"
- "--timeout=150s"
- "--leader-election=true"
env:
- name: ADDRESS
value: unix:///csi/csi-provisioner.sock
imagePullPolicy: "IfNotPresent"
securityContext:
privileged: true
volumeMounts:
- name: socket-dir
mountPath: /csi
- name: csi-attacher
image: k8s.gcr.io/sig-storage/csi-attacher:v3.1.0
args:
- "--v=5"
- "--csi-address=$(ADDRESS)"
- "--leader-election=true"
- "--retry-interval-start=500ms"
env:
- name: ADDRESS
value: /csi/csi-provisioner.sock
imagePullPolicy: "IfNotPresent"
volumeMounts:
- name: socket-dir
mountPath: /csi
- name: csi-resizer
image: k8s.gcr.io/sig-storage/csi-resizer:v1.1.0
args:
- "--csi-address=$(ADDRESS)"
- "--v=5"
- "--timeout=150s"
- "--leader-election"
- "--retry-interval-start=500ms"
- "--handle-volume-inuse-error=false"
env:
- name: ADDRESS
value: unix:///csi/csi-provisioner.sock
imagePullPolicy: "IfNotPresent"
volumeMounts:
- name: socket-dir
mountPath: /csi
- name: csi-vitastor
securityContext:
privileged: true
capabilities:
add: ["SYS_ADMIN"]
image: vitalif/vitastor-csi:v0.6.5
args:
- "--node=$(NODE_ID)"
- "--endpoint=$(CSI_ENDPOINT)"
env:
- name: NODE_ID
valueFrom:
fieldRef:
fieldPath: spec.nodeName
- name: CSI_ENDPOINT
value: unix:///csi/csi-provisioner.sock
imagePullPolicy: "IfNotPresent"
volumeMounts:
- name: socket-dir
mountPath: /csi
- mountPath: /dev
name: host-dev
- mountPath: /sys
name: host-sys
- mountPath: /lib/modules
name: lib-modules
readOnly: true
- name: vitastor-config
mountPath: /etc/vitastor
volumes:
- name: host-dev
hostPath:
path: /dev
- name: host-sys
hostPath:
path: /sys
- name: lib-modules
hostPath:
path: /lib/modules
- name: socket-dir
emptyDir: {
medium: "Memory"
}
- name: vitastor-config
configMap:
name: vitastor-config

View File

@ -1,11 +0,0 @@
---
# if Kubernetes version is less than 1.18 change
# apiVersion to storage.k8s.io/v1betav1
apiVersion: storage.k8s.io/v1
kind: CSIDriver
metadata:
namespace: vitastor-system
name: csi.vitastor.io
spec:
attachRequired: true
podInfoOnMount: false

View File

@ -1,19 +0,0 @@
---
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
namespace: vitastor-system
name: vitastor
annotations:
storageclass.kubernetes.io/is-default-class: "true"
provisioner: csi.vitastor.io
volumeBindingMode: Immediate
parameters:
etcdVolumePrefix: ""
poolId: "1"
# you can choose other configuration file if you have it in the config map
#configPath: "/etc/vitastor/vitastor.conf"
# you can also specify etcdUrl here, maybe to connect to another Vitastor cluster
# multiple etcdUrls may be specified, delimited by comma
#etcdUrl: "http://192.168.7.2:2379"
#etcdPrefix: "/vitastor"

View File

@ -1,12 +0,0 @@
---
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
name: test-vitastor-pvc
spec:
storageClassName: vitastor
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 10Gi

View File

@ -1,35 +0,0 @@
module vitastor.io/csi
go 1.15
require (
github.com/container-storage-interface/spec v1.4.0
github.com/coreos/bbolt v0.0.0-00010101000000-000000000000 // indirect
github.com/coreos/etcd v3.3.25+incompatible // indirect
github.com/coreos/go-semver v0.3.0 // indirect
github.com/coreos/go-systemd v0.0.0-20191104093116-d3cd4ed1dbcf // indirect
github.com/coreos/pkg v0.0.0-20180928190104-399ea9e2e55f // indirect
github.com/dustin/go-humanize v1.0.0 // indirect
github.com/golang/glog v0.0.0-20160126235308-23def4e6c14b
github.com/gorilla/websocket v1.4.2 // indirect
github.com/grpc-ecosystem/go-grpc-middleware v1.3.0 // indirect
github.com/grpc-ecosystem/go-grpc-prometheus v1.2.0 // indirect
github.com/grpc-ecosystem/grpc-gateway v1.16.0 // indirect
github.com/jonboulle/clockwork v0.2.2 // indirect
github.com/kubernetes-csi/csi-lib-utils v0.9.1
github.com/soheilhy/cmux v0.1.5 // indirect
github.com/tmc/grpc-websocket-proxy v0.0.0-20201229170055-e5319fda7802 // indirect
github.com/xiang90/probing v0.0.0-20190116061207-43a291ad63a2 // indirect
go.etcd.io/bbolt v0.0.0-00010101000000-000000000000 // indirect
go.etcd.io/etcd v3.3.25+incompatible
golang.org/x/net v0.0.0-20201202161906-c7110b5ffcbb
google.golang.org/grpc v1.33.1
k8s.io/klog v1.0.0
k8s.io/utils v0.0.0-20210305010621-2afb4311ab10
)
replace github.com/coreos/bbolt => go.etcd.io/bbolt v1.3.5
replace go.etcd.io/bbolt => github.com/coreos/bbolt v1.3.5
replace google.golang.org/grpc => google.golang.org/grpc v1.25.1

View File

@ -1,22 +0,0 @@
// Copyright (c) Vitaliy Filippov, 2019+
// License: VNPL-1.1 or GNU GPL-2.0+ (see README.md for details)
package vitastor
const (
vitastorCSIDriverName = "csi.vitastor.io"
vitastorCSIDriverVersion = "0.6.5"
)
// Config struct fills the parameters of request or user input
type Config struct
{
Endpoint string
NodeID string
}
// NewConfig returns config struct to initialize new driver
func NewConfig() *Config
{
return &Config{}
}

View File

@ -1,530 +0,0 @@
// Copyright (c) Vitaliy Filippov, 2019+
// License: VNPL-1.1 or GNU GPL-2.0+ (see README.md for details)
package vitastor
import (
"context"
"encoding/json"
"strings"
"bytes"
"strconv"
"time"
"fmt"
"os"
"os/exec"
"io/ioutil"
"github.com/kubernetes-csi/csi-lib-utils/protosanitizer"
"k8s.io/klog"
"google.golang.org/grpc/codes"
"google.golang.org/grpc/status"
"go.etcd.io/etcd/clientv3"
"github.com/container-storage-interface/spec/lib/go/csi"
)
const (
KB int64 = 1024
MB int64 = 1024 * KB
GB int64 = 1024 * MB
TB int64 = 1024 * GB
ETCD_TIMEOUT time.Duration = 15*time.Second
)
type InodeIndex struct
{
Id uint64 `json:"id"`
PoolId uint64 `json:"pool_id"`
}
type InodeConfig struct
{
Name string `json:"name"`
Size uint64 `json:"size,omitempty"`
ParentPool uint64 `json:"parent_pool,omitempty"`
ParentId uint64 `json:"parent_id,omitempty"`
Readonly bool `json:"readonly,omitempty"`
}
type ControllerServer struct
{
*Driver
}
// NewControllerServer create new instance controller
func NewControllerServer(driver *Driver) *ControllerServer
{
return &ControllerServer{
Driver: driver,
}
}
func GetConnectionParams(params map[string]string) (map[string]string, []string, string)
{
ctxVars := make(map[string]string)
configPath := params["configPath"]
if (configPath == "")
{
configPath = "/etc/vitastor/vitastor.conf"
}
else
{
ctxVars["configPath"] = configPath
}
config := make(map[string]interface{})
if configFD, err := os.Open(configPath); err == nil
{
defer configFD.Close()
data, _ := ioutil.ReadAll(configFD)
json.Unmarshal(data, &config)
}
// Try to load prefix & etcd URL from the config
var etcdUrl []string
if (params["etcdUrl"] != "")
{
ctxVars["etcdUrl"] = params["etcdUrl"]
etcdUrl = strings.Split(params["etcdUrl"], ",")
}
if (len(etcdUrl) == 0)
{
switch config["etcd_address"].(type)
{
case string:
etcdUrl = strings.Split(config["etcd_address"].(string), ",")
case []string:
etcdUrl = config["etcd_address"].([]string)
}
}
etcdPrefix := params["etcdPrefix"]
if (etcdPrefix == "")
{
etcdPrefix, _ = config["etcd_prefix"].(string)
if (etcdPrefix == "")
{
etcdPrefix = "/vitastor"
}
}
else
{
ctxVars["etcdPrefix"] = etcdPrefix
}
return ctxVars, etcdUrl, etcdPrefix
}
// Create the volume
func (cs *ControllerServer) CreateVolume(ctx context.Context, req *csi.CreateVolumeRequest) (*csi.CreateVolumeResponse, error)
{
klog.Infof("received controller create volume request %+v", protosanitizer.StripSecrets(req))
if (req == nil)
{
return nil, status.Errorf(codes.InvalidArgument, "request cannot be empty")
}
if (req.GetName() == "")
{
return nil, status.Error(codes.InvalidArgument, "name is a required field")
}
volumeCapabilities := req.GetVolumeCapabilities()
if (volumeCapabilities == nil)
{
return nil, status.Error(codes.InvalidArgument, "volume capabilities is a required field")
}
etcdVolumePrefix := req.Parameters["etcdVolumePrefix"]
poolId, _ := strconv.ParseUint(req.Parameters["poolId"], 10, 64)
if (poolId == 0)
{
return nil, status.Error(codes.InvalidArgument, "poolId is missing in storage class configuration")
}
volName := etcdVolumePrefix + req.GetName()
volSize := 1 * GB
if capRange := req.GetCapacityRange(); capRange != nil
{
volSize = ((capRange.GetRequiredBytes() + MB - 1) / MB) * MB
}
// FIXME: The following should PROBABLY be implemented externally in a management tool
ctxVars, etcdUrl, etcdPrefix := GetConnectionParams(req.Parameters)
if (len(etcdUrl) == 0)
{
return nil, status.Error(codes.InvalidArgument, "no etcdUrl in storage class configuration and no etcd_address in vitastor.conf")
}
// Connect to etcd
cli, err := clientv3.New(clientv3.Config{
DialTimeout: ETCD_TIMEOUT,
Endpoints: etcdUrl,
})
if (err != nil)
{
return nil, status.Error(codes.Internal, "failed to connect to etcd at "+strings.Join(etcdUrl, ",")+": "+err.Error())
}
defer cli.Close()
var imageId uint64 = 0
for
{
// Check if the image exists
ctx, cancel := context.WithTimeout(context.Background(), ETCD_TIMEOUT)
resp, err := cli.Get(ctx, etcdPrefix+"/index/image/"+volName)
cancel()
if (err != nil)
{
return nil, status.Error(codes.Internal, "failed to read key from etcd: "+err.Error())
}
if (len(resp.Kvs) > 0)
{
kv := resp.Kvs[0]
var v InodeIndex
err := json.Unmarshal(kv.Value, &v)
if (err != nil)
{
return nil, status.Error(codes.Internal, "invalid /index/image/"+volName+" key in etcd: "+err.Error())
}
poolId = v.PoolId
imageId = v.Id
inodeCfgKey := fmt.Sprintf("/config/inode/%d/%d", poolId, imageId)
ctx, cancel := context.WithTimeout(context.Background(), ETCD_TIMEOUT)
resp, err := cli.Get(ctx, etcdPrefix+inodeCfgKey)
cancel()
if (err != nil)
{
return nil, status.Error(codes.Internal, "failed to read key from etcd: "+err.Error())
}
if (len(resp.Kvs) == 0)
{
return nil, status.Error(codes.Internal, "missing "+inodeCfgKey+" key in etcd")
}
var inodeCfg InodeConfig
err = json.Unmarshal(resp.Kvs[0].Value, &inodeCfg)
if (err != nil)
{
return nil, status.Error(codes.Internal, "invalid "+inodeCfgKey+" key in etcd: "+err.Error())
}
if (inodeCfg.Size < uint64(volSize))
{
return nil, status.Error(codes.Internal, "image "+volName+" is already created, but size is less than expected")
}
}
else
{
// Find a free ID
// Create image metadata in a transaction verifying that the image doesn't exist yet AND ID is still free
maxIdKey := fmt.Sprintf("%s/index/maxid/%d", etcdPrefix, poolId)
ctx, cancel := context.WithTimeout(context.Background(), ETCD_TIMEOUT)
resp, err := cli.Get(ctx, maxIdKey)
cancel()
if (err != nil)
{
return nil, status.Error(codes.Internal, "failed to read key from etcd: "+err.Error())
}
var modRev int64
var nextId uint64
if (len(resp.Kvs) > 0)
{
var err error
nextId, err = strconv.ParseUint(string(resp.Kvs[0].Value), 10, 64)
if (err != nil)
{
return nil, status.Error(codes.Internal, maxIdKey+" contains invalid ID")
}
modRev = resp.Kvs[0].ModRevision
nextId++
}
else
{
nextId = 1
}
inodeIdxJson, _ := json.Marshal(InodeIndex{
Id: nextId,
PoolId: poolId,
})
inodeCfgJson, _ := json.Marshal(InodeConfig{
Name: volName,
Size: uint64(volSize),
})
ctx, cancel = context.WithTimeout(context.Background(), ETCD_TIMEOUT)
txnResp, err := cli.Txn(ctx).If(
clientv3.Compare(clientv3.ModRevision(fmt.Sprintf("%s/index/maxid/%d", etcdPrefix, poolId)), "=", modRev),
clientv3.Compare(clientv3.CreateRevision(fmt.Sprintf("%s/index/image/%s", etcdPrefix, volName)), "=", 0),
clientv3.Compare(clientv3.CreateRevision(fmt.Sprintf("%s/config/inode/%d/%d", etcdPrefix, poolId, nextId)), "=", 0),
).Then(
clientv3.OpPut(fmt.Sprintf("%s/index/maxid/%d", etcdPrefix, poolId), fmt.Sprintf("%d", nextId)),
clientv3.OpPut(fmt.Sprintf("%s/index/image/%s", etcdPrefix, volName), string(inodeIdxJson)),
clientv3.OpPut(fmt.Sprintf("%s/config/inode/%d/%d", etcdPrefix, poolId, nextId), string(inodeCfgJson)),
).Commit()
cancel()
if (err != nil)
{
return nil, status.Error(codes.Internal, "failed to commit transaction in etcd: "+err.Error())
}
if (txnResp.Succeeded)
{
imageId = nextId
break
}
// Start over if the transaction fails
}
}
ctxVars["name"] = volName
volumeIdJson, _ := json.Marshal(ctxVars)
return &csi.CreateVolumeResponse{
Volume: &csi.Volume{
// Ugly, but VolumeContext isn't passed to DeleteVolume :-(
VolumeId: string(volumeIdJson),
CapacityBytes: volSize,
},
}, nil
}
// DeleteVolume deletes the given volume
func (cs *ControllerServer) DeleteVolume(ctx context.Context, req *csi.DeleteVolumeRequest) (*csi.DeleteVolumeResponse, error)
{
klog.Infof("received controller delete volume request %+v", protosanitizer.StripSecrets(req))
if (req == nil)
{
return nil, status.Error(codes.InvalidArgument, "request cannot be empty")
}
ctxVars := make(map[string]string)
err := json.Unmarshal([]byte(req.VolumeId), &ctxVars)
if (err != nil)
{
return nil, status.Error(codes.Internal, "volume ID not in JSON format")
}
volName := ctxVars["name"]
_, etcdUrl, etcdPrefix := GetConnectionParams(ctxVars)
if (len(etcdUrl) == 0)
{
return nil, status.Error(codes.InvalidArgument, "no etcdUrl in storage class configuration and no etcd_address in vitastor.conf")
}
cli, err := clientv3.New(clientv3.Config{
DialTimeout: ETCD_TIMEOUT,
Endpoints: etcdUrl,
})
if (err != nil)
{
return nil, status.Error(codes.Internal, "failed to connect to etcd at "+strings.Join(etcdUrl, ",")+": "+err.Error())
}
defer cli.Close()
// Find inode by name
ctx, cancel := context.WithTimeout(context.Background(), ETCD_TIMEOUT)
resp, err := cli.Get(ctx, etcdPrefix+"/index/image/"+volName)
cancel()
if (err != nil)
{
return nil, status.Error(codes.Internal, "failed to read key from etcd: "+err.Error())
}
if (len(resp.Kvs) == 0)
{
return nil, status.Error(codes.NotFound, "volume "+volName+" does not exist")
}
var idx InodeIndex
err = json.Unmarshal(resp.Kvs[0].Value, &idx)
if (err != nil)
{
return nil, status.Error(codes.Internal, "invalid /index/image/"+volName+" key in etcd: "+err.Error())
}
// Get inode config
inodeCfgKey := fmt.Sprintf("%s/config/inode/%d/%d", etcdPrefix, idx.PoolId, idx.Id)
ctx, cancel = context.WithTimeout(context.Background(), ETCD_TIMEOUT)
resp, err = cli.Get(ctx, inodeCfgKey)
cancel()
if (err != nil)
{
return nil, status.Error(codes.Internal, "failed to read key from etcd: "+err.Error())
}
if (len(resp.Kvs) == 0)
{
return nil, status.Error(codes.NotFound, "volume "+volName+" does not exist")
}
var inodeCfg InodeConfig
err = json.Unmarshal(resp.Kvs[0].Value, &inodeCfg)
if (err != nil)
{
return nil, status.Error(codes.Internal, "invalid "+inodeCfgKey+" key in etcd: "+err.Error())
}
// Delete inode data by invoking vitastor-rm
args := []string{
"--etcd_address", strings.Join(etcdUrl, ","),
"--pool", fmt.Sprintf("%d", idx.PoolId),
"--inode", fmt.Sprintf("%d", idx.Id),
}
if (ctxVars["configPath"] != "")
{
args = append(args, "--config_path", ctxVars["configPath"])
}
c := exec.Command("/usr/bin/vitastor-rm", args...)
var stderr bytes.Buffer
c.Stdout = nil
c.Stderr = &stderr
err = c.Run()
stderrStr := string(stderr.Bytes())
if (err != nil)
{
klog.Errorf("vitastor-rm failed: %s, status %s\n", stderrStr, err)
return nil, status.Error(codes.Internal, stderrStr+" (status "+err.Error()+")")
}
// Delete inode config in etcd
ctx, cancel = context.WithTimeout(context.Background(), ETCD_TIMEOUT)
txnResp, err := cli.Txn(ctx).Then(
clientv3.OpDelete(fmt.Sprintf("%s/index/image/%s", etcdPrefix, volName)),
clientv3.OpDelete(fmt.Sprintf("%s/config/inode/%d/%d", etcdPrefix, idx.PoolId, idx.Id)),
).Commit()
cancel()
if (err != nil)
{
return nil, status.Error(codes.Internal, "failed to delete keys in etcd: "+err.Error())
}
if (!txnResp.Succeeded)
{
return nil, status.Error(codes.Internal, "failed to delete keys in etcd: transaction failed")
}
return &csi.DeleteVolumeResponse{}, nil
}
// ControllerPublishVolume return Unimplemented error
func (cs *ControllerServer) ControllerPublishVolume(ctx context.Context, req *csi.ControllerPublishVolumeRequest) (*csi.ControllerPublishVolumeResponse, error)
{
return nil, status.Error(codes.Unimplemented, "")
}
// ControllerUnpublishVolume return Unimplemented error
func (cs *ControllerServer) ControllerUnpublishVolume(ctx context.Context, req *csi.ControllerUnpublishVolumeRequest) (*csi.ControllerUnpublishVolumeResponse, error)
{
return nil, status.Error(codes.Unimplemented, "")
}
// ValidateVolumeCapabilities checks whether the volume capabilities requested are supported.
func (cs *ControllerServer) ValidateVolumeCapabilities(ctx context.Context, req *csi.ValidateVolumeCapabilitiesRequest) (*csi.ValidateVolumeCapabilitiesResponse, error)
{
klog.Infof("received controller validate volume capability request %+v", protosanitizer.StripSecrets(req))
if (req == nil)
{
return nil, status.Errorf(codes.InvalidArgument, "request is nil")
}
volumeID := req.GetVolumeId()
if (volumeID == "")
{
return nil, status.Error(codes.InvalidArgument, "volumeId is nil")
}
volumeCapabilities := req.GetVolumeCapabilities()
if (volumeCapabilities == nil)
{
return nil, status.Error(codes.InvalidArgument, "volumeCapabilities is nil")
}
var volumeCapabilityAccessModes []*csi.VolumeCapability_AccessMode
for _, mode := range []csi.VolumeCapability_AccessMode_Mode{
csi.VolumeCapability_AccessMode_SINGLE_NODE_WRITER,
csi.VolumeCapability_AccessMode_MULTI_NODE_MULTI_WRITER,
} {
volumeCapabilityAccessModes = append(volumeCapabilityAccessModes, &csi.VolumeCapability_AccessMode{Mode: mode})
}
capabilitySupport := false
for _, capability := range volumeCapabilities
{
for _, volumeCapabilityAccessMode := range volumeCapabilityAccessModes
{
if (volumeCapabilityAccessMode.Mode == capability.AccessMode.Mode)
{
capabilitySupport = true
}
}
}
if (!capabilitySupport)
{
return nil, status.Errorf(codes.NotFound, "%v not supported", req.GetVolumeCapabilities())
}
return &csi.ValidateVolumeCapabilitiesResponse{
Confirmed: &csi.ValidateVolumeCapabilitiesResponse_Confirmed{
VolumeCapabilities: req.VolumeCapabilities,
},
}, nil
}
// ListVolumes returns a list of volumes
func (cs *ControllerServer) ListVolumes(ctx context.Context, req *csi.ListVolumesRequest) (*csi.ListVolumesResponse, error)
{
return nil, status.Error(codes.Unimplemented, "")
}
// GetCapacity returns the capacity of the storage pool
func (cs *ControllerServer) GetCapacity(ctx context.Context, req *csi.GetCapacityRequest) (*csi.GetCapacityResponse, error)
{
return nil, status.Error(codes.Unimplemented, "")
}
// ControllerGetCapabilities returns the capabilities of the controller service.
func (cs *ControllerServer) ControllerGetCapabilities(ctx context.Context, req *csi.ControllerGetCapabilitiesRequest) (*csi.ControllerGetCapabilitiesResponse, error)
{
functionControllerServerCapabilities := func(cap csi.ControllerServiceCapability_RPC_Type) *csi.ControllerServiceCapability
{
return &csi.ControllerServiceCapability{
Type: &csi.ControllerServiceCapability_Rpc{
Rpc: &csi.ControllerServiceCapability_RPC{
Type: cap,
},
},
}
}
var controllerServerCapabilities []*csi.ControllerServiceCapability
for _, capability := range []csi.ControllerServiceCapability_RPC_Type{
csi.ControllerServiceCapability_RPC_CREATE_DELETE_VOLUME,
csi.ControllerServiceCapability_RPC_LIST_VOLUMES,
csi.ControllerServiceCapability_RPC_EXPAND_VOLUME,
csi.ControllerServiceCapability_RPC_CREATE_DELETE_SNAPSHOT,
} {
controllerServerCapabilities = append(controllerServerCapabilities, functionControllerServerCapabilities(capability))
}
return &csi.ControllerGetCapabilitiesResponse{
Capabilities: controllerServerCapabilities,
}, nil
}
// CreateSnapshot create snapshot of an existing PV
func (cs *ControllerServer) CreateSnapshot(ctx context.Context, req *csi.CreateSnapshotRequest) (*csi.CreateSnapshotResponse, error)
{
return nil, status.Error(codes.Unimplemented, "")
}
// DeleteSnapshot delete provided snapshot of a PV
func (cs *ControllerServer) DeleteSnapshot(ctx context.Context, req *csi.DeleteSnapshotRequest) (*csi.DeleteSnapshotResponse, error)
{
return nil, status.Error(codes.Unimplemented, "")
}
// ListSnapshots list the snapshots of a PV
func (cs *ControllerServer) ListSnapshots(ctx context.Context, req *csi.ListSnapshotsRequest) (*csi.ListSnapshotsResponse, error)
{
return nil, status.Error(codes.Unimplemented, "")
}
// ControllerExpandVolume resizes a volume
func (cs *ControllerServer) ControllerExpandVolume(ctx context.Context, req *csi.ControllerExpandVolumeRequest) (*csi.ControllerExpandVolumeResponse, error)
{
return nil, status.Error(codes.Unimplemented, "")
}
// ControllerGetVolume get volume info
func (cs *ControllerServer) ControllerGetVolume(ctx context.Context, req *csi.ControllerGetVolumeRequest) (*csi.ControllerGetVolumeResponse, error)
{
return nil, status.Error(codes.Unimplemented, "")
}

View File

@ -1,137 +0,0 @@
/*
Copyright 2017 The Kubernetes Authors.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package vitastor
import (
"fmt"
"net"
"os"
"strings"
"sync"
"github.com/golang/glog"
"golang.org/x/net/context"
"google.golang.org/grpc"
"github.com/container-storage-interface/spec/lib/go/csi"
"github.com/kubernetes-csi/csi-lib-utils/protosanitizer"
)
// Defines Non blocking GRPC server interfaces
type NonBlockingGRPCServer interface {
// Start services at the endpoint
Start(endpoint string, ids csi.IdentityServer, cs csi.ControllerServer, ns csi.NodeServer)
// Waits for the service to stop
Wait()
// Stops the service gracefully
Stop()
// Stops the service forcefully
ForceStop()
}
func NewNonBlockingGRPCServer() NonBlockingGRPCServer {
return &nonBlockingGRPCServer{}
}
// NonBlocking server
type nonBlockingGRPCServer struct {
wg sync.WaitGroup
server *grpc.Server
}
func (s *nonBlockingGRPCServer) Start(endpoint string, ids csi.IdentityServer, cs csi.ControllerServer, ns csi.NodeServer) {
s.wg.Add(1)
go s.serve(endpoint, ids, cs, ns)
return
}
func (s *nonBlockingGRPCServer) Wait() {
s.wg.Wait()
}
func (s *nonBlockingGRPCServer) Stop() {
s.server.GracefulStop()
}
func (s *nonBlockingGRPCServer) ForceStop() {
s.server.Stop()
}
func (s *nonBlockingGRPCServer) serve(endpoint string, ids csi.IdentityServer, cs csi.ControllerServer, ns csi.NodeServer) {
proto, addr, err := ParseEndpoint(endpoint)
if err != nil {
glog.Fatal(err.Error())
}
if proto == "unix" {
addr = "/" + addr
if err := os.Remove(addr); err != nil && !os.IsNotExist(err) {
glog.Fatalf("Failed to remove %s, error: %s", addr, err.Error())
}
}
listener, err := net.Listen(proto, addr)
if err != nil {
glog.Fatalf("Failed to listen: %v", err)
}
opts := []grpc.ServerOption{
grpc.UnaryInterceptor(logGRPC),
}
server := grpc.NewServer(opts...)
s.server = server
if ids != nil {
csi.RegisterIdentityServer(server, ids)
}
if cs != nil {
csi.RegisterControllerServer(server, cs)
}
if ns != nil {
csi.RegisterNodeServer(server, ns)
}
glog.Infof("Listening for connections on address: %#v", listener.Addr())
server.Serve(listener)
}
func ParseEndpoint(ep string) (string, string, error) {
if strings.HasPrefix(strings.ToLower(ep), "unix://") || strings.HasPrefix(strings.ToLower(ep), "tcp://") {
s := strings.SplitN(ep, "://", 2)
if s[1] != "" {
return s[0], s[1], nil
}
}
return "", "", fmt.Errorf("Invalid endpoint: %v", ep)
}
func logGRPC(ctx context.Context, req interface{}, info *grpc.UnaryServerInfo, handler grpc.UnaryHandler) (interface{}, error) {
glog.V(3).Infof("GRPC call: %s", info.FullMethod)
glog.V(5).Infof("GRPC request: %s", protosanitizer.StripSecrets(req))
resp, err := handler(ctx, req)
if err != nil {
glog.Errorf("GRPC error: %v", err)
} else {
glog.V(5).Infof("GRPC response: %s", protosanitizer.StripSecrets(resp))
}
return resp, err
}

View File

@ -1,60 +0,0 @@
// Copyright (c) Vitaliy Filippov, 2019+
// License: VNPL-1.1 or GNU GPL-2.0+ (see README.md for details)
package vitastor
import (
"context"
"github.com/kubernetes-csi/csi-lib-utils/protosanitizer"
"k8s.io/klog"
"github.com/container-storage-interface/spec/lib/go/csi"
)
// IdentityServer struct of Vitastor CSI driver with supported methods of CSI identity server spec.
type IdentityServer struct
{
*Driver
}
// NewIdentityServer create new instance identity
func NewIdentityServer(driver *Driver) *IdentityServer
{
return &IdentityServer{
Driver: driver,
}
}
// GetPluginInfo returns metadata of the plugin
func (is *IdentityServer) GetPluginInfo(ctx context.Context, req *csi.GetPluginInfoRequest) (*csi.GetPluginInfoResponse, error)
{
klog.Infof("received identity plugin info request %+v", protosanitizer.StripSecrets(req))
return &csi.GetPluginInfoResponse{
Name: vitastorCSIDriverName,
VendorVersion: vitastorCSIDriverVersion,
}, nil
}
// GetPluginCapabilities returns available capabilities of the plugin
func (is *IdentityServer) GetPluginCapabilities(ctx context.Context, req *csi.GetPluginCapabilitiesRequest) (*csi.GetPluginCapabilitiesResponse, error)
{
klog.Infof("received identity plugin capabilities request %+v", protosanitizer.StripSecrets(req))
return &csi.GetPluginCapabilitiesResponse{
Capabilities: []*csi.PluginCapability{
{
Type: &csi.PluginCapability_Service_{
Service: &csi.PluginCapability_Service{
Type: csi.PluginCapability_Service_CONTROLLER_SERVICE,
},
},
},
},
}, nil
}
// Probe returns the health and readiness of the plugin
func (is *IdentityServer) Probe(ctx context.Context, req *csi.ProbeRequest) (*csi.ProbeResponse, error)
{
return &csi.ProbeResponse{}, nil
}

View File

@ -1,279 +0,0 @@
// Copyright (c) Vitaliy Filippov, 2019+
// License: VNPL-1.1 or GNU GPL-2.0+ (see README.md for details)
package vitastor
import (
"context"
"os"
"os/exec"
"encoding/json"
"strings"
"bytes"
"google.golang.org/grpc/codes"
"google.golang.org/grpc/status"
"k8s.io/utils/mount"
utilexec "k8s.io/utils/exec"
"github.com/container-storage-interface/spec/lib/go/csi"
"github.com/kubernetes-csi/csi-lib-utils/protosanitizer"
"k8s.io/klog"
)
// NodeServer struct of Vitastor CSI driver with supported methods of CSI node server spec.
type NodeServer struct
{
*Driver
mounter mount.Interface
}
// NewNodeServer create new instance node
func NewNodeServer(driver *Driver) *NodeServer
{
return &NodeServer{
Driver: driver,
mounter: mount.New(""),
}
}
// NodeStageVolume mounts the volume to a staging path on the node.
func (ns *NodeServer) NodeStageVolume(ctx context.Context, req *csi.NodeStageVolumeRequest) (*csi.NodeStageVolumeResponse, error)
{
return &csi.NodeStageVolumeResponse{}, nil
}
// NodeUnstageVolume unstages the volume from the staging path
func (ns *NodeServer) NodeUnstageVolume(ctx context.Context, req *csi.NodeUnstageVolumeRequest) (*csi.NodeUnstageVolumeResponse, error)
{
return &csi.NodeUnstageVolumeResponse{}, nil
}
func Contains(list []string, s string) bool
{
for i := 0; i < len(list); i++
{
if (list[i] == s)
{
return true
}
}
return false
}
// NodePublishVolume mounts the volume mounted to the staging path to the target path
func (ns *NodeServer) NodePublishVolume(ctx context.Context, req *csi.NodePublishVolumeRequest) (*csi.NodePublishVolumeResponse, error)
{
klog.Infof("received node publish volume request %+v", protosanitizer.StripSecrets(req))
targetPath := req.GetTargetPath()
// Check that it's not already mounted
free, error := mount.IsNotMountPoint(ns.mounter, targetPath)
if (error != nil)
{
if (os.IsNotExist(error))
{
error := os.MkdirAll(targetPath, 0777)
if (error != nil)
{
return nil, status.Error(codes.Internal, error.Error())
}
free = true
}
else
{
return nil, status.Error(codes.Internal, error.Error())
}
}
if (!free)
{
return &csi.NodePublishVolumeResponse{}, nil
}
ctxVars := make(map[string]string)
err := json.Unmarshal([]byte(req.VolumeId), &ctxVars)
if (err != nil)
{
return nil, status.Error(codes.Internal, "volume ID not in JSON format")
}
volName := ctxVars["name"]
_, etcdUrl, etcdPrefix := GetConnectionParams(ctxVars)
if (len(etcdUrl) == 0)
{
return nil, status.Error(codes.InvalidArgument, "no etcdUrl in storage class configuration and no etcd_address in vitastor.conf")
}
// Map NBD device
// FIXME: Check if already mapped
args := []string{
"map", "--etcd_address", strings.Join(etcdUrl, ","),
"--etcd_prefix", etcdPrefix,
"--image", volName,
};
if (ctxVars["configPath"] != "")
{
args = append(args, "--config_path", ctxVars["configPath"])
}
if (req.GetReadonly())
{
args = append(args, "--readonly", "1")
}
c := exec.Command("/usr/bin/vitastor-nbd", args...)
var stdout, stderr bytes.Buffer
c.Stdout, c.Stderr = &stdout, &stderr
err = c.Run()
stdoutStr, stderrStr := string(stdout.Bytes()), string(stderr.Bytes())
if (err != nil)
{
klog.Errorf("vitastor-nbd map failed: %s, status %s\n", stdoutStr+stderrStr, err)
return nil, status.Error(codes.Internal, stdoutStr+stderrStr+" (status "+err.Error()+")")
}
devicePath := strings.TrimSpace(stdoutStr)
// Check existing format
diskMounter := &mount.SafeFormatAndMount{Interface: ns.mounter, Exec: utilexec.New()}
existingFormat, err := diskMounter.GetDiskFormat(devicePath)
if (err != nil)
{
klog.Errorf("failed to get disk format for path %s, error: %v", err)
// unmap NBD device
unmapOut, unmapErr := exec.Command("/usr/bin/vitastor-nbd", "unmap", devicePath).CombinedOutput()
if (unmapErr != nil)
{
klog.Errorf("failed to unmap NBD device %s: %s, error: %v", devicePath, unmapOut, unmapErr)
}
return nil, err
}
// Format the device (ext4 or xfs)
fsType := req.GetVolumeCapability().GetMount().GetFsType()
isBlock := req.GetVolumeCapability().GetBlock() != nil
opt := req.GetVolumeCapability().GetMount().GetMountFlags()
opt = append(opt, "_netdev")
if ((req.VolumeCapability.AccessMode.Mode == csi.VolumeCapability_AccessMode_MULTI_NODE_READER_ONLY ||
req.VolumeCapability.AccessMode.Mode == csi.VolumeCapability_AccessMode_SINGLE_NODE_READER_ONLY) &&
!Contains(opt, "ro"))
{
opt = append(opt, "ro")
}
if (fsType == "xfs")
{
opt = append(opt, "nouuid")
}
readOnly := Contains(opt, "ro")
if (existingFormat == "" && !readOnly)
{
args := []string{}
switch fsType
{
case "ext4":
args = []string{"-m0", "-Enodiscard,lazy_itable_init=1,lazy_journal_init=1", devicePath}
case "xfs":
args = []string{"-K", devicePath}
}
if (len(args) > 0)
{
cmdOut, cmdErr := diskMounter.Exec.Command("mkfs."+fsType, args...).CombinedOutput()
if (cmdErr != nil)
{
klog.Errorf("failed to run mkfs error: %v, output: %v", cmdErr, string(cmdOut))
// unmap NBD device
unmapOut, unmapErr := exec.Command("/usr/bin/vitastor-nbd", "unmap", devicePath).CombinedOutput()
if (unmapErr != nil)
{
klog.Errorf("failed to unmap NBD device %s: %s, error: %v", devicePath, unmapOut, unmapErr)
}
return nil, status.Error(codes.Internal, cmdErr.Error())
}
}
}
if (isBlock)
{
opt = append(opt, "bind")
err = diskMounter.Mount(devicePath, targetPath, fsType, opt)
}
else
{
err = diskMounter.FormatAndMount(devicePath, targetPath, fsType, opt)
}
if (err != nil)
{
klog.Errorf(
"failed to mount device path (%s) to path (%s) for volume (%s) error: %s",
devicePath, targetPath, volName, err,
)
// unmap NBD device
unmapOut, unmapErr := exec.Command("/usr/bin/vitastor-nbd", "unmap", devicePath).CombinedOutput()
if (unmapErr != nil)
{
klog.Errorf("failed to unmap NBD device %s: %s, error: %v", devicePath, unmapOut, unmapErr)
}
return nil, status.Error(codes.Internal, err.Error())
}
return &csi.NodePublishVolumeResponse{}, nil
}
// NodeUnpublishVolume unmounts the volume from the target path
func (ns *NodeServer) NodeUnpublishVolume(ctx context.Context, req *csi.NodeUnpublishVolumeRequest) (*csi.NodeUnpublishVolumeResponse, error)
{
klog.Infof("received node unpublish volume request %+v", protosanitizer.StripSecrets(req))
targetPath := req.GetTargetPath()
devicePath, refCount, err := mount.GetDeviceNameFromMount(ns.mounter, targetPath)
if (err != nil)
{
if (os.IsNotExist(err))
{
return nil, status.Error(codes.NotFound, "Target path not found")
}
return nil, status.Error(codes.Internal, err.Error())
}
if (devicePath == "")
{
return nil, status.Error(codes.NotFound, "Volume not mounted")
}
// unmount
err = mount.CleanupMountPoint(targetPath, ns.mounter, false)
if (err != nil)
{
return nil, status.Error(codes.Internal, err.Error())
}
// unmap NBD device
if (refCount == 1)
{
unmapOut, unmapErr := exec.Command("/usr/bin/vitastor-nbd", "unmap", devicePath).CombinedOutput()
if (unmapErr != nil)
{
klog.Errorf("failed to unmap NBD device %s: %s, error: %v", devicePath, unmapOut, unmapErr)
}
}
return &csi.NodeUnpublishVolumeResponse{}, nil
}
// NodeGetVolumeStats returns volume capacity statistics available for the volume
func (ns *NodeServer) NodeGetVolumeStats(ctx context.Context, req *csi.NodeGetVolumeStatsRequest) (*csi.NodeGetVolumeStatsResponse, error)
{
return nil, status.Error(codes.Unimplemented, "")
}
// NodeExpandVolume expanding the file system on the node
func (ns *NodeServer) NodeExpandVolume(ctx context.Context, req *csi.NodeExpandVolumeRequest) (*csi.NodeExpandVolumeResponse, error)
{
return nil, status.Error(codes.Unimplemented, "")
}
// NodeGetCapabilities returns the supported capabilities of the node server
func (ns *NodeServer) NodeGetCapabilities(ctx context.Context, req *csi.NodeGetCapabilitiesRequest) (*csi.NodeGetCapabilitiesResponse, error)
{
return &csi.NodeGetCapabilitiesResponse{}, nil
}
// NodeGetInfo returns NodeGetInfoResponse for CO.
func (ns *NodeServer) NodeGetInfo(ctx context.Context, req *csi.NodeGetInfoRequest) (*csi.NodeGetInfoResponse, error)
{
klog.Infof("received node get info request %+v", protosanitizer.StripSecrets(req))
return &csi.NodeGetInfoResponse{
NodeId: ns.NodeID,
}, nil
}

View File

@ -1,36 +0,0 @@
// Copyright (c) Vitaliy Filippov, 2019+
// License: VNPL-1.1 or GNU GPL-2.0+ (see README.md for details)
package vitastor
import (
"k8s.io/klog"
)
type Driver struct
{
*Config
}
// NewDriver create new instance driver
func NewDriver(config *Config) (*Driver, error)
{
if (config == nil)
{
klog.Errorf("Vitastor CSI driver initialization failed")
return nil, nil
}
driver := &Driver{
Config: config,
}
klog.Infof("Vitastor CSI driver initialized")
return driver, nil
}
// Start server
func (driver *Driver) Run()
{
server := NewNonBlockingGRPCServer()
server.Start(driver.Endpoint, NewIdentityServer(driver), NewControllerServer(driver), NewNodeServer(driver))
server.Wait()
}

View File

@ -1,39 +0,0 @@
// Copyright (c) Vitaliy Filippov, 2019+
// License: VNPL-1.1 or GNU GPL-2.0+ (see README.md for details)
package main
import (
"flag"
"fmt"
"os"
"k8s.io/klog"
"vitastor.io/csi/src"
)
func main()
{
var config = vitastor.NewConfig()
flag.StringVar(&config.Endpoint, "endpoint", "", "CSI endpoint")
flag.StringVar(&config.NodeID, "node", "", "Node ID")
flag.Parse()
if (config.Endpoint == "")
{
config.Endpoint = os.Getenv("CSI_ENDPOINT")
}
if (config.NodeID == "")
{
config.NodeID = os.Getenv("NODE_ID")
}
if (config.Endpoint == "" && config.NodeID == "")
{
fmt.Fprintf(os.Stderr, "Please set -endpoint and -node / CSI_ENDPOINT & NODE_ID env vars\n")
os.Exit(1)
}
drv, err := vitastor.NewDriver(config)
if (err != nil)
{
klog.Fatalln(err)
}
drv.Run()
}

View File

@ -1,7 +0,0 @@
#!/bin/bash
sed 's/$REL/bullseye/g' < vitastor.Dockerfile > ../Dockerfile
cd ..
mkdir -p packages
sudo podman build -v `pwd`/packages:/root/packages -f Dockerfile .
rm Dockerfile

View File

@ -1,7 +0,0 @@
#!/bin/bash
sed 's/$REL/buster/g' < vitastor.Dockerfile > ../Dockerfile
cd ..
mkdir -p packages
sudo podman build -v `pwd`/packages:/root/packages -f Dockerfile .
rm Dockerfile

27
debian/changelog vendored
View File

@ -1,27 +0,0 @@
vitastor (0.6.5-1) unstable; urgency=medium
* RDMA support
* Bugfixes
-- Vitaliy Filippov <vitalif@yourcmc.ru> Sat, 01 May 2021 18:46:10 +0300
vitastor (0.6.0-1) unstable; urgency=medium
* Snapshots and Copy-on-Write clones
* Image metadata in etcd (name, size)
* Image I/O and space statistics in etcd
* Write throttling for smoothing random write workloads in SSD+HDD configurations
-- Vitaliy Filippov <vitalif@yourcmc.ru> Sun, 11 Apr 2021 00:49:18 +0300
vitastor (0.5.1-1) unstable; urgency=medium
* Add jerasure support
-- Vitaliy Filippov <vitalif@yourcmc.ru> Sat, 05 Dec 2020 17:02:26 +0300
vitastor (0.5-1) unstable; urgency=medium
* First packaging for Debian
-- Vitaliy Filippov <vitalif@yourcmc.ru> Thu, 05 Nov 2020 02:20:59 +0300

1
debian/compat vendored
View File

@ -1 +0,0 @@
13

17
debian/control vendored
View File

@ -1,17 +0,0 @@
Source: vitastor
Section: admin
Priority: optional
Maintainer: Vitaliy Filippov <vitalif@yourcmc.ru>
Build-Depends: debhelper, liburing-dev (>= 0.6), g++ (>= 8), libstdc++6 (>= 8), linux-libc-dev, libgoogle-perftools-dev, libjerasure-dev, libgf-complete-dev, libibverbs-dev
Standards-Version: 4.5.0
Homepage: https://vitastor.io/
Rules-Requires-Root: no
Package: vitastor
Architecture: amd64
Depends: ${shlibs:Depends}, ${misc:Depends}, fio (= ${dep:fio}), qemu (= ${dep:qemu}), nodejs (>= 10), node-sprintf-js, node-ws (>= 7), libjerasure2, lp-solve
Description: Vitastor, a fast software-defined clustered block storage
Vitastor is a small, simple and fast clustered block storage (storage for VM drives),
architecturally similar to Ceph which means strong consistency, primary-replication,
symmetric clustering and automatic data distribution over any number of drives of any
size with configurable redundancy (replication or erasure codes/XOR).

21
debian/copyright vendored
View File

@ -1,21 +0,0 @@
Format: https://www.debian.org/doc/packaging-manuals/copyright-format/1.0/
Upstream-Name: vitastor
Upstream-Contact: Vitaliy Filippov <vitalif@yourcmc.ru>
Source: https://vitastor.io
Files: *
Copyright: 2019+ Vitaliy Filippov <vitalif@yourcmc.ru>
License: Multiple licenses VNPL-1.1 and/or GPL-2.0+
All server-side code (OSD, Monitor and so on) is licensed under the terms of
Vitastor Network Public License 1.1 (VNPL 1.1), a copyleft license based on
GNU GPLv3.0 with the additional "Network Interaction" clause which requires
opensourcing all programs directly or indirectly interacting with Vitastor
through a computer network and expressly designed to be used in conjunction
with it ("Proxy Programs"). Proxy Programs may be made public not only under
the terms of the same license, but also under the terms of any GPL-Compatible
Free Software License, as listed by the Free Software Foundation.
This is a stricter copyleft license than the Affero GPL.
.
Client libraries (cluster_client and so on) are dual-licensed under the same
VNPL 1.1 and also GNU GPL 2.0 or later to allow for compatibility with GPLed
software like QEMU and fio.

3
debian/install vendored
View File

@ -1,3 +0,0 @@
VNPL-1.1.txt usr/share/doc/vitastor
GPL-2.0.txt usr/share/doc/vitastor
mon usr/lib/vitastor

View File

@ -1,50 +0,0 @@
# Build patched QEMU for Debian Buster or Bullseye/Sid inside a container
# cd ..; podman build --build-arg REL=bullseye -v `pwd`/packages:/root/packages -f debian/patched-qemu.Dockerfile .
FROM debian:$REL
WORKDIR /root
RUN if [ "$REL" = "buster" ]; then \
echo 'deb http://deb.debian.org/debian buster-backports main' >> /etc/apt/sources.list; \
echo >> /etc/apt/preferences; \
echo 'Package: *' >> /etc/apt/preferences; \
echo 'Pin: release a=buster-backports' >> /etc/apt/preferences; \
echo 'Pin-Priority: 500' >> /etc/apt/preferences; \
echo >> /etc/apt/preferences; \
echo 'Package: libglvnd* libgles* libglx* libgl1 libegl* libopengl* mesa*' >> /etc/apt/preferences; \
echo 'Pin: release a=buster-backports' >> /etc/apt/preferences; \
echo 'Pin-Priority: 50' >> /etc/apt/preferences; \
fi; \
grep '^deb ' /etc/apt/sources.list | perl -pe 's/^deb/deb-src/' >> /etc/apt/sources.list; \
echo 'APT::Install-Recommends false;' >> /etc/apt/apt.conf; \
echo 'APT::Install-Suggests false;' >> /etc/apt/apt.conf
RUN apt-get update
RUN apt-get -y install qemu fio liburing1 liburing-dev libgoogle-perftools-dev devscripts
RUN apt-get -y build-dep qemu
RUN apt-get -y build-dep fio
# To build a custom version
#RUN cp /root/packages/qemu-orig/* /root
RUN apt-get --download-only source qemu
RUN apt-get --download-only source fio
ADD patches/qemu-5.0-vitastor.patch patches/qemu-5.1-vitastor.patch /root/vitastor/patches/
RUN set -e; \
mkdir -p /root/packages/qemu-$REL; \
rm -rf /root/packages/qemu-$REL/*; \
cd /root/packages/qemu-$REL; \
dpkg-source -x /root/qemu*.dsc; \
if [ -d /root/packages/qemu-$REL/qemu-5.0 ]; then \
cp /root/vitastor/patches/qemu-5.0-vitastor.patch /root/packages/qemu-$REL/qemu-5.0/debian/patches; \
echo qemu-5.0-vitastor.patch >> /root/packages/qemu-$REL/qemu-5.0/debian/patches/series; \
else \
cp /root/vitastor/patches/qemu-5.1-vitastor.patch /root/packages/qemu-$REL/qemu-*/debian/patches; \
P=`ls -d /root/packages/qemu-$REL/qemu-*/debian/patches`; \
echo qemu-5.1-vitastor.patch >> $P/series; \
fi; \
cd /root/packages/qemu-$REL/qemu-*/; \
V=$(head -n1 debian/changelog | perl -pe 's/^.*\((.*?)(~bpo[\d\+]*)?\).*$/$1/')+vitastor1; \
DEBFULLNAME="Vitaliy Filippov <vitalif@yourcmc.ru>" dch -D $REL -v $V 'Plug Vitastor block driver'; \
DEB_BUILD_OPTIONS=nocheck dpkg-buildpackage --jobs=auto -sa; \
rm -rf /root/packages/qemu-$REL/qemu-*/

9
debian/rules vendored
View File

@ -1,9 +0,0 @@
#!/usr/bin/make -f
export DH_VERBOSE = 1
%:
dh $@
override_dh_installdeb:
cat debian/substvars >> debian/vitastor.substvars
dh_installdeb

View File

@ -1 +0,0 @@
3.0 (quilt)

2
debian/substvars vendored
View File

@ -1,2 +0,0 @@
dep:fio=3.16-1
dep:qemu=1:5.1+dfsg-4+vitastor1

View File

@ -1,67 +0,0 @@
# Build Vitastor packages for Debian Buster or Bullseye/Sid inside a container
# cd ..; podman build --build-arg REL=bullseye -v `pwd`/packages:/root/packages -f debian/vitastor.Dockerfile .
FROM debian:$REL
WORKDIR /root
RUN if [ "$REL" = "buster" ]; then \
echo 'deb http://deb.debian.org/debian buster-backports main' >> /etc/apt/sources.list; \
echo >> /etc/apt/preferences; \
echo 'Package: *' >> /etc/apt/preferences; \
echo 'Pin: release a=buster-backports' >> /etc/apt/preferences; \
echo 'Pin-Priority: 500' >> /etc/apt/preferences; \
fi; \
grep '^deb ' /etc/apt/sources.list | perl -pe 's/^deb/deb-src/' >> /etc/apt/sources.list; \
echo 'APT::Install-Recommends false;' >> /etc/apt/apt.conf; \
echo 'APT::Install-Suggests false;' >> /etc/apt/apt.conf
RUN apt-get update
RUN apt-get -y install qemu fio liburing1 liburing-dev libgoogle-perftools-dev devscripts
RUN apt-get -y build-dep qemu
RUN apt-get -y build-dep fio
RUN apt-get --download-only source qemu
RUN apt-get --download-only source fio
RUN apt-get update && apt-get -y install libjerasure-dev cmake libibverbs-dev
ADD . /root/vitastor
RUN set -e -x; \
mkdir -p /root/fio-build/; \
cd /root/fio-build/; \
rm -rf /root/fio-build/*; \
dpkg-source -x /root/fio*.dsc; \
cd /root/packages/qemu-$REL/; \
rm -rf qemu*/; \
dpkg-source -x qemu*.dsc; \
cd /root/packages/qemu-$REL/qemu*/; \
debian/rules b/configure-stamp; \
cd b/qemu; \
make -j8 qapi/qapi-builtin-types.h; \
mkdir -p /root/packages/vitastor-$REL; \
rm -rf /root/packages/vitastor-$REL/*; \
cd /root/packages/vitastor-$REL; \
cp -r /root/vitastor vitastor-0.6.5; \
ln -s /root/packages/qemu-$REL/qemu-*/ vitastor-0.6.5/qemu; \
ln -s /root/fio-build/fio-*/ vitastor-0.6.5/fio; \
cd vitastor-0.6.5; \
FIO=$(head -n1 fio/debian/changelog | perl -pe 's/^.*\((.*?)\).*$/$1/'); \
QEMU=$(head -n1 qemu/debian/changelog | perl -pe 's/^.*\((.*?)\).*$/$1/'); \
sh copy-qemu-includes.sh; \
sh copy-fio-includes.sh; \
rm qemu fio; \
mkdir -p a b debian/patches; \
mv qemu-copy b/qemu; \
mv fio-copy b/fio; \
diff -NaurpbB a b > debian/patches/qemu-fio-headers.patch || true; \
echo qemu-fio-headers.patch >> debian/patches/series; \
rm -rf a b; \
rm -rf /root/packages/qemu-$REL/qemu*/; \
echo "dep:fio=$FIO" > debian/substvars; \
echo "dep:qemu=$QEMU" >> debian/substvars; \
cd /root/packages/vitastor-$REL; \
tar --sort=name --mtime='2020-01-01' --owner=0 --group=0 --exclude=debian -cJf vitastor_0.6.5.orig.tar.xz vitastor-0.6.5; \
cd vitastor-0.6.5; \
V=$(head -n1 debian/changelog | perl -pe 's/^.*\((.*?)\).*$/$1/'); \
DEBFULLNAME="Vitaliy Filippov <vitalif@yourcmc.ru>" dch -D $REL -v "$V""$REL" "Rebuild for $REL"; \
DEB_BUILD_OPTIONS=nocheck dpkg-buildpackage --jobs=auto -sa; \
rm -rf /root/packages/vitastor-$REL/vitastor-*/

View File

@ -1,6 +1,3 @@
// Copyright (c) Vitaliy Filippov, 2019+
// License: VNPL-1.1 (see README.md for details)
// FIO engine to test Blockstore
//
// Initialize storage for tests:
@ -25,15 +22,17 @@
// -bs_config='{"data_device":"./test_data.bin"}' -size=1000M
#include "blockstore.h"
#include "epoll_manager.h"
#include "fio_headers.h"
extern "C" {
#define CONFIG_PWRITEV2
#include "fio/fio.h"
#include "fio/optgroup.h"
}
#include "json11/json11.hpp"
struct bs_data
{
blockstore_t *bs;
epoll_manager_t *epmgr;
ring_loop_t *ringloop;
/* The list of completed io_u structs. */
std::vector<io_u*> completed;
@ -101,12 +100,11 @@ static void bs_cleanup(struct thread_data *td)
bsd->ringloop->loop();
if (bsd->bs->is_safe_to_stop())
goto safe;
} while (bsd->ringloop->has_work());
} while (bsd->ringloop->get_loop_again());
bsd->ringloop->wait();
}
safe:
delete bsd->bs;
delete bsd->epmgr;
delete bsd->ringloop;
delete bsd;
}
@ -132,8 +130,7 @@ static int bs_init(struct thread_data *td)
}
}
bsd->ringloop = new ring_loop_t(512);
bsd->epmgr = new epoll_manager_t(bsd->ringloop);
bsd->bs = new blockstore_t(config, bsd->ringloop, bsd->epmgr->tfd);
bsd->bs = new blockstore_t(config, bsd->ringloop);
while (1)
{
bsd->ringloop->loop();
@ -292,7 +289,7 @@ static int bs_invalidate(struct thread_data *td, struct fio_file *f)
}
struct ioengine_ops ioengine = {
.name = "vitastor_blockstore",
.name = "microceph_blockstore",
.version = FIO_IOOPS_VERSION,
.flags = FIO_MEMALIGN | FIO_DISKLESSIO | FIO_NOEXTEND,
.setup = bs_setup,

View File

@ -1,6 +1,3 @@
// Copyright (c) Vitaliy Filippov, 2019+
// License: VNPL-1.1 or GNU GPL-2.0+ (see README.md for details)
// FIO engine to test Blockstore through Secondary OSD interface
//
// Prepare storage like in fio_engine.cpp, then start OSD with ./osd, then test it
@ -8,7 +5,7 @@
// Random write:
//
// fio -thread -ioengine=./libfio_sec_osd.so -name=test -bs=4k -direct=1 -fsync=16 -iodepth=16 -rw=randwrite \
// -host=127.0.0.1 -port=11203 [-block_size_order=17] [-single_primary=1] -size=1000M
// -host=127.0.0.1 -port=11203 [-single_primary=1] -size=1000M
//
// Linear write:
//
@ -30,7 +27,11 @@
#include "rw_blocking.h"
#include "osd_ops.h"
#include "fio_headers.h"
extern "C" {
#define CONFIG_PWRITEV2
#include "fio/fio.h"
#include "fio/optgroup.h"
}
struct sec_data
{
@ -51,7 +52,6 @@ struct sec_options
int port = 0;
int single_primary = 0;
int trace = 0;
int block_order = 17;
};
static struct fio_option options[] = {
@ -73,15 +73,6 @@ static struct fio_option options[] = {
.category = FIO_OPT_C_ENGINE,
.group = FIO_OPT_G_FILENAME,
},
{
.name = "block_size_order",
.lname = "Blockstore block size order",
.type = FIO_OPT_INT,
.off1 = offsetof(struct sec_options, block_order),
.help = "Blockstore block size order (size = 2^order)",
.category = FIO_OPT_C_ENGINE,
.group = FIO_OPT_G_FILENAME,
},
{
.name = "single_primary",
.lname = "Single Primary",
@ -140,7 +131,6 @@ static void sec_cleanup(struct thread_data *td)
if (bsd)
{
close(bsd->connect_fd);
delete bsd;
}
}
@ -149,8 +139,6 @@ static int sec_init(struct thread_data *td)
{
sec_options *o = (sec_options*)td->eo;
sec_data *bsd = (sec_data*)td->io_ops_data;
bsd->block_order = o->block_order == 0 ? 17 : o->block_order;
bsd->block_size = 1 << o->block_order;
struct sockaddr_in addr;
int r;
@ -204,7 +192,7 @@ static enum fio_q_status sec_queue(struct thread_data *td, struct io_u *io)
case DDIR_READ:
if (!opt->single_primary)
{
op.hdr.opcode = OSD_OP_SEC_READ;
op.hdr.opcode = OSD_OP_SECONDARY_READ;
op.sec_rw.oid = {
.inode = 1,
.stripe = io->offset >> bsd->block_order,
@ -225,7 +213,7 @@ static enum fio_q_status sec_queue(struct thread_data *td, struct io_u *io)
case DDIR_WRITE:
if (!opt->single_primary)
{
op.hdr.opcode = OSD_OP_SEC_WRITE;
op.hdr.opcode = OSD_OP_SECONDARY_WRITE;
op.sec_rw.oid = {
.inode = 1,
.stripe = io->offset >> bsd->block_order,
@ -313,7 +301,6 @@ static int sec_getevents(struct thread_data *td, unsigned int min, unsigned int
exit(1);
}
io_u* io = it->second;
bsd->queue.erase(it);
if (io->ddir == DDIR_READ)
{
if (reply.hdr.retval != io->xfer_buflen)
@ -381,7 +368,7 @@ static int sec_invalidate(struct thread_data *td, struct fio_file *f)
}
struct ioengine_ops ioengine = {
.name = "vitastor_secondary_osd",
.name = "microceph_secondary_osd",
.version = FIO_IOOPS_VERSION,
.flags = FIO_MEMALIGN | FIO_DISKLESSIO | FIO_NOEXTEND,
.setup = sec_setup,

1
json11

@ -1 +0,0 @@
Subproject commit 97f06cb20c1e136fd37d58fb40f57dd8f8a3a4a7

48
lambda_size.cpp Normal file
View File

@ -0,0 +1,48 @@
#include <iostream>
#include <functional>
#include <array>
#include <cstdlib> // for malloc() and free()
using namespace std;
// replace operator new and delete to log allocations
void* operator new(std::size_t n)
{
cout << "Allocating " << n << " bytes" << endl;
return malloc(n);
}
void operator delete(void* p) throw()
{
free(p);
}
class test
{
public:
std::string s;
void a(std::function<void()> & f, const char *str)
{
auto l = [this, str]() { cout << str << " ? " << s << " from this\n"; };
cout << "Assigning lambda3 of size " << sizeof(l) << endl;
f = l;
}
};
int main()
{
std::array<char, 16> arr1;
auto lambda1 = [arr1](){};
cout << "Assigning lambda1 of size " << sizeof(lambda1) << endl;
std::function<void()> f1 = lambda1;
std::array<char, 17> arr2;
auto lambda2 = [arr2](){};
cout << "Assigning lambda2 of size " << sizeof(lambda2) << endl;
std::function<void()> f2 = lambda2;
test t;
std::function<void()> f3;
t.s = "str";
t.a(f3, "huyambda");
f3();
}

View File

@ -1,104 +0,0 @@
// Copyright (c) Vitaliy Filippov, 2019+
// License: VNPL-1.1 (see README.md for details)
module.exports = {
scale_pg_count,
};
function add_pg_history(new_pg_history, new_pg, prev_pgs, prev_pg_history, old_pg)
{
if (!new_pg_history[new_pg])
{
new_pg_history[new_pg] = {
osd_sets: {},
all_peers: {},
epoch: 0,
};
}
const nh = new_pg_history[new_pg], oh = prev_pg_history[old_pg];
nh.osd_sets[prev_pgs[old_pg].join(' ')] = prev_pgs[old_pg];
if (oh && oh.osd_sets && oh.osd_sets.length)
{
for (const pg of oh.osd_sets)
{
nh.osd_sets[pg.join(' ')] = pg;
}
}
if (oh && oh.all_peers && oh.all_peers.length)
{
for (const osd_num of oh.all_peers)
{
nh.all_peers[osd_num] = Number(osd_num);
}
}
if (oh && oh.epoch)
{
nh.epoch = nh.epoch < oh.epoch ? oh.epoch : nh.epoch;
}
}
function finish_pg_history(merged_history)
{
merged_history.osd_sets = Object.values(merged_history.osd_sets);
merged_history.all_peers = Object.values(merged_history.all_peers);
}
function scale_pg_count(prev_pgs, prev_pg_history, new_pg_history, new_pg_count)
{
const old_pg_count = prev_pgs.length;
// Add all possibly intersecting PGs to the history of new PGs
if (!(new_pg_count % old_pg_count))
{
// New PG count is a multiple of old PG count
for (let i = 0; i < new_pg_count; i++)
{
add_pg_history(new_pg_history, i, prev_pgs, prev_pg_history, i % old_pg_count);
finish_pg_history(new_pg_history[i]);
}
}
else if (!(old_pg_count % new_pg_count))
{
// Old PG count is a multiple of the new PG count
const mul = (old_pg_count / new_pg_count);
for (let i = 0; i < new_pg_count; i++)
{
for (let j = 0; j < mul; j++)
{
add_pg_history(new_pg_history, i, prev_pgs, prev_pg_history, i+j*new_pg_count);
}
finish_pg_history(new_pg_history[i]);
}
}
else
{
// Any PG may intersect with any PG after non-multiple PG count change
// So, merge ALL PGs history
let merged_history = {};
for (let i = 0; i < old_pg_count; i++)
{
add_pg_history(merged_history, 1, prev_pgs, prev_pg_history, i);
}
finish_pg_history(merged_history[1]);
for (let i = 0; i < new_pg_count; i++)
{
new_pg_history[i] = { ...merged_history[1] };
}
}
// Mark history keys for removed PGs as removed
for (let i = new_pg_count; i < old_pg_count; i++)
{
new_pg_history[i] = null;
}
// Just for the lp_solve optimizer - pick a "previous" PG for each "new" one
if (old_pg_count < new_pg_count)
{
for (let i = old_pg_count; i < new_pg_count; i++)
{
prev_pgs[i] = prev_pgs[i % old_pg_count];
}
}
else if (old_pg_count > new_pg_count)
{
prev_pgs.splice(new_pg_count, old_pg_count-new_pg_count);
}
}

View File

@ -1,89 +0,0 @@
// Functions to calculate Annualized Failure Rate of your cluster
// if you know AFR of your drives, number of drives, expected rebalance time
// and replication factor
// License: VNPL-1.1 (see https://yourcmc.ru/git/vitalif/vitastor/src/branch/master/README.md for details) or AGPL-3.0
// Author: Vitaliy Filippov, 2020+
module.exports = {
cluster_afr_fullmesh,
failure_rate_fullmesh,
cluster_afr,
c_n_k,
};
/******** "FULL MESH": ASSUME EACH OSD COMMUNICATES WITH ALL OTHER OSDS ********/
// Estimate AFR of the cluster
// n - number of drives
// afr - annualized failure rate of a single drive
// l - expected rebalance time in days after a single drive failure
// k - replication factor / number of drives that must fail at the same time for the cluster to fail
function cluster_afr_fullmesh(n, afr, l, k)
{
return 1 - (1 - afr * failure_rate_fullmesh(n-(k-1), afr*l/365, k-1)) ** (n-(k-1));
}
// Probability of at least <f> failures in a cluster with <n> drives with AFR=<a>
function failure_rate_fullmesh(n, a, f)
{
if (f <= 0)
{
return (1-a)**n;
}
let p = 1;
for (let i = 0; i < f; i++)
{
p -= c_n_k(n, i) * (1-a)**(n-i) * a**i;
}
return p;
}
/******** PGS: EACH OSD ONLY COMMUNICATES WITH <pgs> OTHER OSDs ********/
// <n> hosts of <m> drives of <capacity> GB, each able to backfill at <speed> GB/s,
// <k> replicas, <pgs> unique peer PGs per OSD (~50 for 100 PG-per-OSD in a big cluster)
//
// For each of n*m drives: P(drive fails in a year) * P(any of its peers fail in <l*365> next days).
// More peers per OSD increase rebalance speed (more drives work together to resilver) if you
// let them finish rebalance BEFORE replacing the failed drive (degraded_replacement=false).
// At the same time, more peers per OSD increase probability of any of them to fail!
// osd_rm=true means that failed OSDs' data is rebalanced over all other hosts,
// not over the same host as it's in Ceph by default (dead OSDs are marked 'out').
//
// Probability of all except one drives in a replica group to fail is (AFR^(k-1)).
// So with <x> PGs it becomes ~ (x * (AFR*L/365)^(k-1)). Interesting but reasonable consequence
// is that, with k=2, total failure rate doesn't depend on number of peers per OSD,
// because it gets increased linearly by increased number of peers to fail
// and decreased linearly by reduced rebalance time.
function cluster_afr({ n_hosts, n_drives, afr_drive, afr_host, capacity, speed, ec, ec_data, ec_parity, replicas, pgs = 1, osd_rm, degraded_replacement, down_out_interval = 600 })
{
const pg_size = (ec ? ec_data+ec_parity : replicas);
pgs = Math.min(pgs, (n_hosts-1)*n_drives/(pg_size-1));
const host_pgs = Math.min(pgs*n_drives, (n_hosts-1)*n_drives/(pg_size-1));
const resilver_disk = n_drives == 1 || osd_rm ? pgs : (n_drives-1);
const disk_heal_time = (down_out_interval + capacity/(degraded_replacement ? 1 : resilver_disk)/speed)/86400/365;
const host_heal_time = (down_out_interval + n_drives*capacity/pgs/speed)/86400/365;
const disk_heal_fail = ((afr_drive+afr_host/n_drives)*disk_heal_time);
const host_heal_fail = ((afr_drive+afr_host/n_drives)*host_heal_time);
const disk_pg_fail = ec
? failure_rate_fullmesh(ec_data+ec_parity-1, disk_heal_fail, ec_parity)
: disk_heal_fail**(replicas-1);
const host_pg_fail = ec
? failure_rate_fullmesh(ec_data+ec_parity-1, host_heal_fail, ec_parity)
: host_heal_fail**(replicas-1);
return 1 - ((1 - afr_drive * (1-(1-disk_pg_fail)**pgs)) ** (n_hosts*n_drives))
* ((1 - afr_host * (1-(1-host_pg_fail)**host_pgs)) ** n_hosts);
}
/******** UTILITY ********/
// Combination count
function c_n_k(n, k)
{
let r = 1;
for (let i = 0; i < k; i++)
{
r *= (n-i) / (i+1);
}
return r;
}

View File

@ -1,28 +0,0 @@
const { sprintf } = require('sprintf-js');
const { cluster_afr } = require('./afr.js');
print_cluster_afr({ n_hosts: 4, n_drives: 6, afr_drive: 0.03, afr_host: 0.05, capacity: 4000, speed: 0.1, replicas: 2 });
print_cluster_afr({ n_hosts: 4, n_drives: 3, afr_drive: 0.03, afr_host: 0, capacity: 4000, speed: 0.1, replicas: 2 });
print_cluster_afr({ n_hosts: 4, n_drives: 3, afr_drive: 0.03, afr_host: 0.05, capacity: 4000, speed: 0.1, replicas: 2 });
print_cluster_afr({ n_hosts: 4, n_drives: 3, afr_drive: 0.03, afr_host: 0, capacity: 4000, speed: 0.1, ec: true, ec_data: 2, ec_parity: 1 });
print_cluster_afr({ n_hosts: 4, n_drives: 3, afr_drive: 0.03, afr_host: 0.05, capacity: 4000, speed: 0.1, ec: true, ec_data: 2, ec_parity: 1 });
print_cluster_afr({ n_hosts: 10, n_drives: 10, afr_drive: 0.1, afr_host: 0, capacity: 8000, speed: 0.02, replicas: 2 });
print_cluster_afr({ n_hosts: 10, n_drives: 10, afr_drive: 0.1, afr_host: 0.05, capacity: 8000, speed: 0.02, replicas: 2 });
print_cluster_afr({ n_hosts: 10, n_drives: 10, afr_drive: 0.1, afr_host: 0, capacity: 8000, speed: 0.02, replicas: 3 });
print_cluster_afr({ n_hosts: 10, n_drives: 10, afr_drive: 0.1, afr_host: 0.05, capacity: 8000, speed: 0.02, replicas: 3 });
print_cluster_afr({ n_hosts: 10, n_drives: 10, afr_drive: 0.1, afr_host: 0, capacity: 8000, speed: 0.02, replicas: 3, pgs: 100 });
print_cluster_afr({ n_hosts: 10, n_drives: 10, afr_drive: 0.1, afr_host: 0.05, capacity: 8000, speed: 0.02, replicas: 3, pgs: 100 });
print_cluster_afr({ n_hosts: 10, n_drives: 10, afr_drive: 0.1, afr_host: 0.05, capacity: 8000, speed: 0.02, replicas: 3, pgs: 100, degraded_replacement: 1 });
function print_cluster_afr(config)
{
console.log(
`${config.n_hosts} nodes with ${config.n_drives} ${sprintf("%.1f", config.capacity/1000)}TB drives`+
`, capable to backfill at ${sprintf("%.1f", config.speed*1000)} MB/s, drive AFR ${sprintf("%.1f", config.afr_drive*100)}%`+
(config.afr_host ? `, host AFR ${sprintf("%.1f", config.afr_host*100)}%` : '')+
(config.ec ? `, EC ${config.ec_data}+${config.ec_parity}` : `, ${config.replicas} replicas`)+
`, ${config.pgs||1} PG per OSD`+
(config.degraded_replacement ? `\n...and you don't let the rebalance finish before replacing drives` : '')
);
console.log('-> '+sprintf("%.7f%%", 100*cluster_afr(config))+'\n');
}

View File

@ -1,729 +0,0 @@
// Copyright (c) Vitaliy Filippov, 2019+
// License: VNPL-1.1 (see README.md for details)
// Data distribution optimizer using linear programming (lp_solve)
const child_process = require('child_process');
const NO_OSD = 'Z';
async function lp_solve(text)
{
const cp = child_process.spawn('lp_solve');
let stdout = '', stderr = '', finish_cb;
cp.stdout.on('data', buf => stdout += buf.toString());
cp.stderr.on('data', buf => stderr += buf.toString());
cp.on('exit', () => finish_cb && finish_cb());
cp.stdin.write(text);
cp.stdin.end();
if (cp.exitCode == null)
{
await new Promise(ok => finish_cb = ok);
}
if (!stdout.trim())
{
return null;
}
let score = 0;
let vars = {};
for (const line of stdout.split(/\n/))
{
let m = /^(^Value of objective function: (-?[\d\.]+)|Actual values of the variables:)\s*$/.exec(line);
if (m)
{
if (m[2])
{
score = m[2];
}
continue;
}
else if (/This problem is (infeasible|unbounded)/.exec(line))
{
return null;
}
let [ k, v ] = line.trim().split(/\s+/, 2);
if (v)
{
vars[k] = v;
}
}
return { score, vars };
}
async function optimize_initial({ osd_tree, pg_count, pg_size = 3, pg_minsize = 2, max_combinations = 10000, parity_space = 1 })
{
if (!pg_count || !osd_tree)
{
return null;
}
const all_weights = Object.assign({}, ...Object.values(osd_tree));
const total_weight = Object.values(all_weights).reduce((a, c) => Number(a) + Number(c), 0);
const all_pgs = Object.values(random_combinations(osd_tree, pg_size, max_combinations, parity_space > 1));
const pg_per_osd = {};
for (const pg of all_pgs)
{
for (let i = 0; i < pg.length; i++)
{
const osd = pg[i];
pg_per_osd[osd] = pg_per_osd[osd] || [];
pg_per_osd[osd].push((i >= pg_minsize ? parity_space+'*' : '')+"pg_"+pg.join("_"));
}
}
const pg_effsize = Math.min(pg_minsize, Object.keys(osd_tree).length)
+ Math.max(0, Math.min(pg_size, Object.keys(osd_tree).length) - pg_minsize) * parity_space;
let lp = '';
lp += "max: "+all_pgs.map(pg => 'pg_'+pg.join('_')).join(' + ')+";\n";
for (const osd in pg_per_osd)
{
if (osd !== NO_OSD)
{
let osd_pg_count = all_weights[osd]/total_weight*pg_effsize*pg_count;
lp += pg_per_osd[osd].join(' + ')+' <= '+osd_pg_count+';\n';
}
}
for (const pg of all_pgs)
{
lp += 'pg_'+pg.join('_')+" >= 0;\n";
}
lp += "sec "+all_pgs.map(pg => 'pg_'+pg.join('_')).join(', ')+";\n";
const lp_result = await lp_solve(lp);
if (!lp_result)
{
console.log(lp);
throw new Error('Problem is infeasible or unbounded - is it a bug?');
}
const int_pgs = make_int_pgs(lp_result.vars, pg_count);
const eff = pg_list_space_efficiency(int_pgs, all_weights, pg_minsize, parity_space);
const res = {
score: lp_result.score,
weights: lp_result.vars,
int_pgs,
space: eff * pg_effsize,
total_space: total_weight,
};
return res;
}
function shuffle(array)
{
for (let i = array.length - 1, j, x; i > 0; i--)
{
j = Math.floor(Math.random() * (i + 1));
x = array[i];
array[i] = array[j];
array[j] = x;
}
}
function make_int_pgs(weights, pg_count)
{
const total_weight = Object.values(weights).reduce((a, c) => Number(a) + Number(c), 0);
let int_pgs = [];
let pg_left = pg_count;
let weight_left = total_weight;
for (const pg_name in weights)
{
let n = Math.round(weights[pg_name] / weight_left * pg_left);
for (let i = 0; i < n; i++)
{
int_pgs.push(pg_name.substr(3).split('_'));
}
weight_left -= weights[pg_name];
pg_left -= n;
}
shuffle(int_pgs);
return int_pgs;
}
function calc_intersect_weights(pg_size, pg_count, prev_weights, all_pgs)
{
const move_weights = {};
if ((1 << pg_size) < pg_count)
{
const intersect = {};
for (const pg_name in prev_weights)
{
const pg = pg_name.substr(3).split(/_/);
for (let omit = 1; omit < (1 << pg_size); omit++)
{
let pg_omit = [ ...pg ];
let intersect_count = pg_size;
for (let i = 0; i < pg_size; i++)
{
if (omit & (1 << i))
{
pg_omit[i] = '';
intersect_count--;
}
}
pg_omit = pg_omit.join(':');
intersect[pg_omit] = Math.max(intersect[pg_omit] || 0, intersect_count);
}
}
for (const pg of all_pgs)
{
let max_int = 0;
for (let omit = 1; omit < (1 << pg_size); omit++)
{
let pg_omit = [ ...pg ];
for (let i = 0; i < pg_size; i++)
{
if (omit & (1 << i))
{
pg_omit[i] = '';
}
}
pg_omit = pg_omit.join(':');
max_int = Math.max(max_int, intersect[pg_omit] || 0);
}
move_weights['pg_'+pg.join('_')] = pg_size-max_int;
}
}
else
{
const prev_pg_hashed = Object.keys(prev_weights).map(pg_name => pg_name.substr(3).split(/_/).reduce((a, c) => { a[c] = 1; return a; }, {}));
for (const pg of all_pgs)
{
if (!prev_weights['pg_'+pg.join('_')])
{
let max_int = 0;
for (const prev_hash in prev_pg_hashed)
{
const intersect_count = pg.reduce((a, osd) => a + (prev_hash[osd] ? 1 : 0), 0);
if (max_int < intersect_count)
{
max_int = intersect_count;
if (max_int >= pg_size)
{
break;
}
}
}
move_weights['pg_'+pg.join('_')] = pg_size-max_int;
}
}
}
return move_weights;
}
function add_valid_previous(osd_tree, prev_weights, all_pgs)
{
// Add previous combinations that are still valid
const hosts = Object.keys(osd_tree).sort();
const host_per_osd = {};
for (const host in osd_tree)
{
for (const osd in osd_tree[host])
{
host_per_osd[osd] = host;
}
}
skip_pg: for (const pg_name in prev_weights)
{
const seen_hosts = {};
const pg = pg_name.substr(3).split(/_/);
for (const osd of pg)
{
if (!host_per_osd[osd] || seen_hosts[host_per_osd[osd]])
{
continue skip_pg;
}
seen_hosts[host_per_osd[osd]] = true;
}
if (!all_pgs[pg_name])
{
all_pgs[pg_name] = pg;
}
}
}
// Try to minimize data movement
async function optimize_change({ prev_pgs: prev_int_pgs, osd_tree, pg_size = 3, pg_minsize = 2, max_combinations = 10000, parity_space = 1 })
{
if (!osd_tree)
{
return null;
}
// FIXME: use parity_chunks with parity_space instead of pg_minsize
const pg_effsize = Math.min(pg_minsize, Object.keys(osd_tree).length)
+ Math.max(0, Math.min(pg_size, Object.keys(osd_tree).length) - pg_minsize) * parity_space;
const pg_count = prev_int_pgs.length;
const prev_weights = {};
const prev_pg_per_osd = {};
for (const pg of prev_int_pgs)
{
const pg_name = 'pg_'+pg.join('_');
prev_weights[pg_name] = (prev_weights[pg_name]||0) + 1;
for (let i = 0; i < pg.length; i++)
{
const osd = pg[i];
prev_pg_per_osd[osd] = prev_pg_per_osd[osd] || [];
prev_pg_per_osd[osd].push([ pg_name, (i >= pg_minsize ? parity_space : 1) ]);
}
}
// Get all combinations
let all_pgs = random_combinations(osd_tree, pg_size, max_combinations, parity_space > 1);
add_valid_previous(osd_tree, prev_weights, all_pgs);
all_pgs = Object.values(all_pgs);
const pg_per_osd = {};
for (const pg of all_pgs)
{
const pg_name = 'pg_'+pg.join('_');
for (let i = 0; i < pg.length; i++)
{
const osd = pg[i];
pg_per_osd[osd] = pg_per_osd[osd] || [];
pg_per_osd[osd].push([ pg_name, (i >= pg_minsize ? parity_space : 1) ]);
}
}
// Penalize PGs based on their similarity to old PGs
const move_weights = calc_intersect_weights(pg_size, pg_count, prev_weights, all_pgs);
// Calculate total weight - old PG weights
const all_pg_names = all_pgs.map(pg => 'pg_'+pg.join('_'));
const all_pgs_hash = all_pg_names.reduce((a, c) => { a[c] = true; return a; }, {});
const all_weights = Object.assign({}, ...Object.values(osd_tree));
const total_weight = Object.values(all_weights).reduce((a, c) => Number(a) + Number(c), 0);
// Generate the LP problem
let lp = '';
lp += 'max: '+all_pg_names.map(pg_name => (
prev_weights[pg_name] ? `${pg_size+1}*add_${pg_name} - ${pg_size+1}*del_${pg_name}` : `${pg_size+1-move_weights[pg_name]}*${pg_name}`
)).join(' + ')+';\n';
lp += all_pg_names
.map(pg_name => (prev_weights[pg_name] ? `add_${pg_name} - del_${pg_name}` : `${pg_name}`))
.join(' + ')+' = '+(pg_count
- Object.keys(prev_weights).reduce((a, old_pg_name) => (a + (all_pgs_hash[old_pg_name] ? prev_weights[old_pg_name] : 0)), 0)
)+';\n';
for (const osd in pg_per_osd)
{
if (osd !== NO_OSD)
{
const osd_sum = (pg_per_osd[osd]||[]).map(([ pg_name, space ]) => (
prev_weights[pg_name] ? `${space} * add_${pg_name} - ${space} * del_${pg_name}` : `${space} * ${pg_name}`
)).join(' + ');
const rm_osd_pg_count = (prev_pg_per_osd[osd]||[])
.reduce((a, [ old_pg_name, space ]) => (a + (all_pgs_hash[old_pg_name] ? space : 0)), 0);
const osd_pg_count = all_weights[osd]*pg_effsize/total_weight*pg_count - rm_osd_pg_count;
lp += osd_sum + ' <= ' + osd_pg_count + ';\n';
}
}
let pg_vars = [];
for (const pg_name of all_pg_names)
{
if (prev_weights[pg_name])
{
pg_vars.push(`add_${pg_name}`, `del_${pg_name}`);
// Can't add or remove less than zero
lp += `add_${pg_name} >= 0;\n`;
lp += `del_${pg_name} >= 0;\n`;
// Can't remove more than the PG already has
lp += `add_${pg_name} - del_${pg_name} >= -${prev_weights[pg_name]};\n`;
}
else
{
pg_vars.push(pg_name);
lp += `${pg_name} >= 0;\n`;
}
}
lp += 'sec '+pg_vars.join(', ')+';\n';
// Solve it
const lp_result = await lp_solve(lp);
if (!lp_result)
{
console.log(lp);
throw new Error('Problem is infeasible or unbounded - is it a bug?');
}
// Generate the new distribution
const weights = { ...prev_weights };
for (const k in prev_weights)
{
if (!all_pgs_hash[k])
{
delete weights[k];
}
}
for (const k in lp_result.vars)
{
if (k.substr(0, 4) === 'add_')
{
weights[k.substr(4)] = (weights[k.substr(4)] || 0) + Number(lp_result.vars[k]);
}
else if (k.substr(0, 4) === 'del_')
{
weights[k.substr(4)] = (weights[k.substr(4)] || 0) - Number(lp_result.vars[k]);
}
else if (k.substr(0, 3) === 'pg_')
{
weights[k] = Number(lp_result.vars[k]);
}
}
for (const k in weights)
{
if (!weights[k])
{
delete weights[k];
}
}
const int_pgs = make_int_pgs(weights, pg_count);
// Align them with most similar previous PGs
const new_pgs = align_pgs(prev_int_pgs, int_pgs);
let differs = 0, osd_differs = 0;
for (let i = 0; i < pg_count; i++)
{
if (new_pgs[i].join('_') != prev_int_pgs[i].join('_'))
{
differs++;
}
for (let j = 0; j < pg_size; j++)
{
if (new_pgs[i][j] != prev_int_pgs[i][j])
{
osd_differs++;
}
}
}
return {
prev_pgs: prev_int_pgs,
score: lp_result.score,
weights,
int_pgs: new_pgs,
differs,
osd_differs,
space: pg_effsize * pg_list_space_efficiency(new_pgs, all_weights, pg_minsize, parity_space),
total_space: total_weight,
};
}
function print_change_stats(retval, detailed)
{
const new_pgs = retval.int_pgs;
const prev_int_pgs = retval.prev_pgs;
if (prev_int_pgs)
{
if (detailed)
{
for (let i = 0; i < new_pgs.length; i++)
{
if (new_pgs[i].join('_') != prev_int_pgs[i].join('_'))
{
console.log("pg "+i+": "+prev_int_pgs[i].join(' ')+" -> "+new_pgs[i].join(' '));
}
}
}
console.log(
"Data movement: "+retval.differs+" pgs, "+
retval.osd_differs+" pg*osds = "+Math.round(retval.osd_differs / prev_int_pgs.length / 3 * 10000)/100+" %"
);
}
console.log(
"Total space (raw): "+Math.round(retval.space*100)/100+" TB, space efficiency: "+
Math.round(retval.space/(retval.total_space||1)*10000)/100+" %"
);
}
function align_pgs(prev_int_pgs, int_pgs)
{
const aligned_pgs = [];
put_aligned_pgs(aligned_pgs, int_pgs, prev_int_pgs, (pg) => [ pg.join(':') ]);
put_aligned_pgs(aligned_pgs, int_pgs, prev_int_pgs, (pg) => [ pg[0]+'::'+pg[2], ':'+pg[1]+':'+pg[2], pg[0]+':'+pg[1]+':' ]);
put_aligned_pgs(aligned_pgs, int_pgs, prev_int_pgs, (pg) => [ pg[0]+'::', ':'+pg[1]+':', '::'+pg[2] ]);
const free_slots = prev_int_pgs.map((pg, i) => !aligned_pgs[i] ? i : null).filter(i => i != null);
for (const pg of int_pgs)
{
if (!free_slots.length)
{
throw new Error("Can't place unaligned PG");
}
aligned_pgs[free_slots.shift()] = pg;
}
return aligned_pgs;
}
function put_aligned_pgs(aligned_pgs, int_pgs, prev_int_pgs, keygen)
{
let prev_indexes = {};
for (let i = 0; i < prev_int_pgs.length; i++)
{
for (let k of keygen(prev_int_pgs[i]))
{
prev_indexes[k] = prev_indexes[k] || [];
prev_indexes[k].push(i);
}
}
PG: for (let i = int_pgs.length-1; i >= 0; i--)
{
let pg = int_pgs[i];
let keys = keygen(int_pgs[i]);
for (let k of keys)
{
while (prev_indexes[k] && prev_indexes[k].length)
{
let idx = prev_indexes[k].shift();
if (!aligned_pgs[idx])
{
aligned_pgs[idx] = pg;
int_pgs.splice(i, 1);
continue PG;
}
}
}
}
}
// Convert multi-level osd_tree = { level: number|string, id?: string, size?: number, children?: osd_tree }[]
// levels = { string: number }
// to a two-level osd_tree suitable for all_combinations()
function flatten_tree(osd_tree, levels, failure_domain_level, osd_level, domains = {}, i = { i: 1 })
{
osd_level = levels[osd_level] || osd_level;
failure_domain_level = levels[failure_domain_level] || failure_domain_level;
for (const node of osd_tree)
{
if ((levels[node.level] || node.level) < failure_domain_level)
{
flatten_tree(node.children||[], levels, failure_domain_level, osd_level, domains, i);
}
else
{
domains['dom'+(i.i++)] = extract_osds([ node ], levels, osd_level);
}
}
return domains;
}
function extract_osds(osd_tree, levels, osd_level, osds = {})
{
for (const node of osd_tree)
{
if ((levels[node.level] || node.level) >= osd_level)
{
osds[node.id] = node.size;
}
else
{
extract_osds(node.children||[], levels, osd_level, osds);
}
}
return osds;
}
// ordered = don't treat (x,y) and (y,x) as equal
function random_combinations(osd_tree, pg_size, count, ordered)
{
let seed = 0x5f020e43;
let rng = () =>
{
seed ^= seed << 13;
seed ^= seed >> 17;
seed ^= seed << 5;
return seed + 2147483648;
};
const hosts = Object.keys(osd_tree).sort();
const osds = Object.keys(osd_tree).reduce((a, c) => { a[c] = Object.keys(osd_tree[c]).sort(); return a; }, {});
const r = {};
// Generate random combinations including each OSD at least once
for (let h = 0; h < hosts.length; h++)
{
for (let o = 0; o < osds[hosts[h]].length; o++)
{
const pg = [ osds[hosts[h]][o] ];
const cur_hosts = [ ...hosts ];
cur_hosts.splice(h, 1);
for (let i = 1; i < pg_size && i < hosts.length; i++)
{
const next_host = rng() % cur_hosts.length;
const next_osd = rng() % osds[cur_hosts[next_host]].length;
pg.push(osds[cur_hosts[next_host]][next_osd]);
cur_hosts.splice(next_host, 1);
}
const cyclic_pgs = [ pg ];
if (ordered)
{
for (let i = 1; i < pg.size; i++)
{
cyclic_pgs.push([ ...pg.slice(i), ...pg.slice(0, i) ]);
}
}
for (const pg of cyclic_pgs)
{
while (pg.length < pg_size)
{
pg.push(NO_OSD);
}
r['pg_'+pg.join('_')] = pg;
}
}
}
// Generate purely random combinations
while (count > 0)
{
let host_idx = [];
const cur_hosts = [ ...hosts.map((h, i) => i) ];
const max_hosts = pg_size < hosts.length ? pg_size : hosts.length;
if (ordered)
{
for (let i = 0; i < max_hosts; i++)
{
const r = rng() % cur_hosts.length;
host_idx[i] = cur_hosts[r];
cur_hosts.splice(r, 1);
}
}
else
{
for (let i = 0; i < max_hosts; i++)
{
const r = rng() % (cur_hosts.length - (max_hosts - i - 1));
host_idx[i] = cur_hosts[r];
cur_hosts.splice(0, r+1);
}
}
let pg = host_idx.map(h => osds[hosts[h]][rng() % osds[hosts[h]].length]);
while (pg.length < pg_size)
{
pg.push(NO_OSD);
}
r['pg_'+pg.join('_')] = pg;
count--;
}
return r;
}
// Super-stupid algorithm. Given the current OSD tree, generate all possible OSD combinations
// osd_tree = { failure_domain1: { osd1: size1, ... }, ... }
// ordered = return combinations without duplicates having different order
function all_combinations(osd_tree, pg_size, ordered, count)
{
const hosts = Object.keys(osd_tree).sort();
const osds = Object.keys(osd_tree).reduce((a, c) => { a[c] = Object.keys(osd_tree[c]).sort(); return a; }, {});
while (hosts.length < pg_size)
{
osds[NO_OSD] = [ NO_OSD ];
hosts.push(NO_OSD);
}
let host_idx = [];
let osd_idx = [];
for (let i = 0; i < pg_size; i++)
{
host_idx.push(i);
osd_idx.push(0);
}
const r = [];
while (!count || count < 0 || r.length < count)
{
r.push(host_idx.map((hi, i) => osds[hosts[hi]][osd_idx[i]]));
let inc = pg_size-1;
while (inc >= 0)
{
osd_idx[inc]++;
if (osd_idx[inc] >= osds[hosts[host_idx[inc]]].length)
{
osd_idx[inc] = 0;
inc--;
}
else
{
break;
}
}
if (inc < 0)
{
// no osds left in the current host combination, select the next one
inc = pg_size-1;
same_again: while (inc >= 0)
{
host_idx[inc]++;
for (let prev_host = 0; prev_host < inc; prev_host++)
{
if (host_idx[prev_host] == host_idx[inc])
{
continue same_again;
}
}
if (host_idx[inc] < (ordered ? hosts.length-(pg_size-1-inc) : hosts.length))
{
while ((++inc) < pg_size)
{
host_idx[inc] = (ordered ? host_idx[inc-1]+1 : 0);
}
break;
}
else
{
inc--;
}
}
if (inc < 0)
{
break;
}
}
}
return r;
}
function pg_weights_space_efficiency(weights, pg_count, osd_sizes)
{
const per_osd = {};
for (const pg_name in weights)
{
for (const osd of pg_name.substr(3).split(/_/))
{
per_osd[osd] = (per_osd[osd]||0) + weights[pg_name];
}
}
return pg_per_osd_space_efficiency(per_osd, pg_count, osd_sizes);
}
function pg_list_space_efficiency(pgs, osd_sizes, pg_minsize, parity_space)
{
const per_osd = {};
for (const pg of pgs)
{
for (let i = 0; i < pg.length; i++)
{
const osd = pg[i];
per_osd[osd] = (per_osd[osd]||0) + (i >= pg_minsize ? (parity_space||1) : 1);
}
}
return pg_per_osd_space_efficiency(per_osd, pgs.length, osd_sizes);
}
function pg_per_osd_space_efficiency(per_osd, pg_count, osd_sizes)
{
// each PG gets randomly selected in 1/N cases
// & there are x PGs per OSD
// => an OSD is selected in x/N cases
// => total space * x/N <= OSD size
// => total space <= OSD size * N/x
let space;
for (let osd in per_osd)
{
if (osd in osd_sizes)
{
const space_estimate = osd_sizes[osd] * pg_count / per_osd[osd];
if (space == null || space > space_estimate)
{
space = space_estimate;
}
}
}
return space == null ? 0 : space;
}
module.exports = {
NO_OSD,
optimize_initial,
optimize_change,
print_change_stats,
pg_weights_space_efficiency,
pg_list_space_efficiency,
pg_per_osd_space_efficiency,
flatten_tree,
lp_solve,
make_int_pgs,
align_pgs,
random_combinations,
all_combinations,
};

View File

@ -1,75 +0,0 @@
#!/bin/bash
# Very simple systemd unit generator for vitastor-osd services
# Not the final solution yet, mostly for tests
# Copyright (c) Vitaliy Filippov, 2019+
# License: MIT
# USAGE: ./make-osd.sh /dev/disk/by-partuuid/xxx [ /dev/disk/by-partuuid/yyy]...
IP_SUBSTR="10.200.1."
ETCD_HOSTS="etcd0=http://10.200.1.10:2380,etcd1=http://10.200.1.11:2380,etcd2=http://10.200.1.12:2380"
set -e -x
IP=`ip -json a s | jq -r '.[].addr_info[] | select(.local | startswith("'$IP_SUBSTR'")) | .local'`
[ "$IP" != "" ] || exit 1
ETCD_MON=$(echo $ETCD_HOSTS | perl -pe 's/:2380/:2379/g; s/etcd\d*=//g;')
D=`dirname $0`
# Create OSDs on all passed devices
OSD_NUM=1
for DEV in $*; do
# Ugly :) -> node.js rework pending
while true; do
ST=$(etcdctl --endpoints="$ETCD_MON" get --print-value-only /vitastor/osd/stats/$OSD_NUM)
if [ "$ST" = "" ]; then
break
fi
OSD_NUM=$((OSD_NUM+1))
done
etcdctl --endpoints="$ETCD_MON" put /vitastor/osd/stats/$OSD_NUM '{}'
echo Creating OSD $OSD_NUM on $DEV
OPT=`node $D/simple-offsets.js --device $DEV --format options | tr '\n' ' '`
META=`echo $OPT | grep -Po '(?<=data_offset )\d+'`
dd if=/dev/zero of=$DEV bs=1048576 count=$(((META+1048575)/1048576)) oflag=direct
cat >/etc/systemd/system/vitastor-osd$OSD_NUM.service <<EOF
[Unit]
Description=Vitastor object storage daemon osd.$OSD_NUM
After=network-online.target local-fs.target time-sync.target
Wants=network-online.target local-fs.target time-sync.target
PartOf=vitastor.target
[Service]
LimitNOFILE=1048576
LimitNPROC=1048576
LimitMEMLOCK=infinity
ExecStart=/usr/bin/vitastor-osd \\
--etcd_address $IP:2379/v3 \\
--bind_address $IP \\
--osd_num $OSD_NUM \\
--disable_data_fsync 1 \\
--immediate_commit all \\
--disk_alignment 4096 --journal_block_size 4096 --meta_block_size 4096 \\
--journal_no_same_sector_overwrites true \\
--journal_sector_buffer_count 1024 \\
$OPT
WorkingDirectory=/
ExecStartPre=+chown vitastor:vitastor $DEV
User=vitastor
PrivateTmp=false
TasksMax=infinity
Restart=always
StartLimitInterval=0
RestartSec=10
[Install]
WantedBy=vitastor.target
EOF
systemctl enable vitastor-osd$OSD_NUM
done

View File

@ -1,86 +0,0 @@
#!/bin/bash
# Very simple systemd unit generator for etcd & vitastor-mon services
# Not the final solution yet, mostly for tests
# Copyright (c) Vitaliy Filippov, 2019+
# License: MIT
# USAGE: ./make-units.sh
IP_SUBSTR="10.200.1."
ETCD_HOSTS="etcd0=http://10.200.1.10:2380,etcd1=http://10.200.1.11:2380,etcd2=http://10.200.1.12:2380"
# determine IP
IP=`ip -json a s | jq -r '.[].addr_info[] | select(.local | startswith("'$IP_SUBSTR'")) | .local'`
[ "$IP" != "" ] || exit 1
ETCD_NUM=${ETCD_HOSTS/$IP*/}
[ "$ETCD_NUM" != "$ETCD_HOSTS" ] || exit 1
ETCD_NUM=$(echo $ETCD_NUM | tr -d -c , | wc -c)
# etcd
useradd etcd
mkdir -p /var/lib/etcd$ETCD_NUM.etcd
cat >/etc/systemd/system/etcd.service <<EOF
[Unit]
Description=etcd for vitastor
After=network-online.target local-fs.target time-sync.target
Wants=network-online.target local-fs.target time-sync.target
[Service]
Restart=always
ExecStart=/usr/local/bin/etcd -name etcd$ETCD_NUM --data-dir /var/lib/etcd$ETCD_NUM.etcd \\
--advertise-client-urls http://$IP:2379 --listen-client-urls http://$IP:2379 \\
--initial-advertise-peer-urls http://$IP:2380 --listen-peer-urls http://$IP:2380 \\
--initial-cluster-token vitastor-etcd-1 --initial-cluster $ETCD_HOSTS \\
--initial-cluster-state new --max-txn-ops=100000 --max-request-bytes=104857600 \\
--auto-compaction-retention=10 --auto-compaction-mode=revision
WorkingDirectory=/var/lib/etcd$ETCD_NUM.etcd
ExecStartPre=+chown -R etcd /var/lib/etcd$ETCD_NUM.etcd
User=etcd
PrivateTmp=false
TasksMax=infinity
Restart=always
StartLimitInterval=0
RestartSec=10
[Install]
WantedBy=local.target
EOF
systemctl daemon-reload
systemctl enable etcd
systemctl start etcd
useradd vitastor
chmod 755 /root
# Vitastor target
cat >/etc/systemd/system/vitastor.target <<EOF
[Unit]
Description=vitastor target
[Install]
WantedBy=multi-user.target
EOF
# Monitor unit
ETCD_MON=$(echo $ETCD_HOSTS | perl -pe 's/:2380/:2379/g; s/etcd\d*=//g;')
cat >/etc/systemd/system/vitastor-mon.service <<EOF
[Unit]
Description=Vitastor monitor
After=network-online.target local-fs.target time-sync.target
Wants=network-online.target local-fs.target time-sync.target
[Service]
Restart=always
ExecStart=node /usr/lib/vitastor/mon/mon-main.js --etcd_url '$ETCD_MON' --etcd_prefix '/vitastor' --etcd_start_timeout 5
WorkingDirectory=/
User=vitastor
PrivateTmp=false
TasksMax=infinity
Restart=always
StartLimitInterval=0
RestartSec=10
[Install]
WantedBy=vitastor.target
EOF

View File

@ -1,23 +0,0 @@
const fsp = require('fs').promises;
async function merge(file1, file2, out)
{
if (!out)
{
console.error('USAGE: nodejs merge.js layer1 layer2 output');
process.exit();
}
const layer1 = await fsp.readFile(file1);
const layer2 = await fsp.readFile(file2);
const zero = Buffer.alloc(4096);
for (let i = 0; i < layer2.length; i += 4096)
{
if (zero.compare(layer2, i, i+4096) != 0)
{
layer2.copy(layer1, i, i, i+4096);
}
}
await fsp.writeFile(out, layer1);
}
merge(process.argv[2], process.argv[3], process.argv[4]);

View File

@ -1,25 +0,0 @@
#!/usr/bin/node
// Copyright (c) Vitaliy Filippov, 2019+
// License: VNPL-1.1 (see README.md for details)
const Mon = require('./mon.js');
const options = {};
for (let i = 2; i < process.argv.length; i++)
{
if (process.argv[i].substr(0, 2) == '--')
{
options[process.argv[i].substr(2)] = process.argv[i+1];
i++;
}
}
if (!options.etcd_url)
{
console.error('USAGE: '+process.argv[0]+' '+process.argv[1]+' --etcd_url "http://127.0.0.1:2379,..." --etcd_prefix "/vitastor" --etcd_start_timeout 5 [--verbose 1]');
process.exit();
}
new Mon(options).start().catch(e => { console.error(e); process.exit(); });

1577
mon/mon.js

File diff suppressed because it is too large Load Diff

View File

@ -1,15 +0,0 @@
{
"name": "vitastor-mon",
"version": "1.0.0",
"description": "Vitastor SDS monitor service",
"main": "mon-main.js",
"scripts": {
"test": "echo \"Error: no test specified\" && exit 1"
},
"author": "Vitaliy Filippov",
"license": "UNLICENSED",
"dependencies": {
"sprintf-js": "^1.1.2",
"ws": "^7.2.5"
}
}

View File

@ -1,96 +0,0 @@
// Copyright (c) Vitaliy Filippov, 2019+
// License: MIT
// Simple tool to calculate journal and metadata offsets for a single device
// Will be replaced by smarter tools in the future
const fs = require('fs').promises;
const child_process = require('child_process');
async function run()
{
const options = {
object_size: 128*1024,
bitmap_granularity: 4096,
journal_size: 16*1024*1024,
device_block_size: 4096,
journal_offset: 0,
device_size: 0,
format: 'text',
};
for (let i = 2; i < process.argv.length; i++)
{
if (process.argv[i].substr(0, 2) == '--')
{
options[process.argv[i].substr(2)] = process.argv[i+1];
i++;
}
}
if (!options.device)
{
process.stderr.write('USAGE: nodejs '+process.argv[1]+' --device /dev/sdXXX\n');
process.exit(1);
}
options.device_size = Number(options.device_size);
let device_size = options.device_size;
if (!device_size)
{
const st = await fs.stat(options.device);
options.device_block_size = st.blksize;
if (st.isBlockDevice())
device_size = Number(await system("/sbin/blockdev --getsize64 "+options.device))
else
device_size = st.size;
}
if (!device_size)
{
process.stderr.write('Failed to get device size\n');
process.exit(1);
}
options.journal_offset = Math.ceil(options.journal_offset/options.device_block_size)*options.device_block_size;
const meta_offset = options.journal_offset + Math.ceil(options.journal_size/options.device_block_size)*options.device_block_size;
const entries_per_block = Math.floor(options.device_block_size / (24 + 2*options.object_size/options.bitmap_granularity/8));
const object_count = Math.floor((device_size-meta_offset)/options.object_size);
const meta_size = Math.ceil(1 + object_count / entries_per_block) * options.device_block_size;
const data_offset = meta_offset + meta_size;
const meta_size_fmt = (meta_size > 1024*1024*1024 ? Math.round(meta_size/1024/1024/1024*100)/100+" GB"
: Math.round(meta_size/1024/1024*100)/100+" MB");
if (options.format == 'text' || options.format == 'options')
{
if (options.format == 'text')
{
process.stderr.write(
`Metadata size: ${meta_size_fmt}\n`+
`Options for the OSD:\n`
);
}
process.stdout.write(
(options.device_block_size != 4096 ?
` --meta_block_size ${options.device}\n`+
` --journal_block-size ${options.device}\n` : '')+
` --data_device ${options.device}\n`+
` --journal_offset ${options.journal_offset}\n`+
` --meta_offset ${meta_offset}\n`+
` --data_offset ${data_offset}\n`+
(options.device_size ? ` --data_size ${device_size-data_offset}\n` : '')
);
}
else if (options.format == 'env')
{
process.stdout.write(
`journal_offset=${options.journal_offset}\n`+
`meta_offset=${meta_offset}\n`+
`data_offset=${data_offset}\n`+
`data_size=${device_size-data_offset}\n`
);
}
else
process.stdout.write('Unknown format: '+options.format);
}
function system(cmd)
{
return new Promise((ok, no) => child_process.exec(cmd, { maxBuffer: 64*1024*1024 }, (err, stdout, stderr) => (err ? no(err.message) : ok(stdout))));
}
run().catch(err => { console.error(err); process.exit(1); });

View File

@ -1,78 +0,0 @@
// Copyright (c) Vitaliy Filippov, 2019+
// License: MIT
function stableStringify(obj, opts)
{
if (!opts)
opts = {};
if (typeof opts === 'function')
opts = { cmp: opts };
let space = opts.space || '';
if (typeof space === 'number')
space = Array(space+1).join(' ');
const cycles = (typeof opts.cycles === 'boolean') ? opts.cycles : false;
const cmp = opts.cmp && (function (f)
{
return function (node)
{
return function (a, b)
{
let aobj = { key: a, value: node[a] };
let bobj = { key: b, value: node[b] };
return f(aobj, bobj);
};
};
})(opts.cmp);
const seen = new Map();
return (function stringify (parent, key, node, level)
{
const indent = space ? ('\n' + new Array(level + 1).join(space)) : '';
const colonSeparator = space ? ': ' : ':';
if (node === undefined)
{
return;
}
if (typeof node !== 'object' || node === null)
{
return JSON.stringify(node);
}
if (node instanceof Array)
{
const out = [];
for (let i = 0; i < node.length; i++)
{
const item = stringify(node, i, node[i], level+1) || JSON.stringify(null);
out.push(indent + space + item);
}
return '[' + out.join(',') + indent + ']';
}
else
{
if (seen.has(node))
{
if (cycles)
return JSON.stringify('__cycle__');
throw new TypeError('Converting circular structure to JSON');
}
else
seen.set(node, true);
const keys = Object.keys(node).sort(cmp && cmp(node));
const out = [];
for (let i = 0; i < keys.length; i++)
{
const key = keys[i];
const value = stringify(node, key, node[key], level+1);
if (!value)
continue;
const keyValue = JSON.stringify(key)
+ colonSeparator
+ value;
out.push(indent + space + keyValue);
}
seen.delete(node);
return '{' + out.join(',') + indent + '}';
}
})({ '': obj }, '', obj, 0);
}
module.exports = stableStringify;

View File

@ -1,130 +0,0 @@
// Copyright (c) Vitaliy Filippov, 2019+
// License: VNPL-1.1 (see README.md for details)
// Interesting real-world example coming from Ceph with EC and compression enabled.
// EC parity chunks can't be compressed as efficiently as data chunks,
// thus they occupy more space (2.26x more space) in OSD object stores.
// This leads to really uneven OSD fill ratio in Ceph even when PGs are perfectly balanced.
// But we support this case with the "parity_space" parameter in optimize_initial()/optimize_change().
const LPOptimizer = require('./lp-optimizer.js');
const osd_tree = {
ripper5: {
osd0: 3.493144989013672,
osd1: 3.493144989013672,
osd2: 3.454082489013672,
osd12: 3.461894989013672,
},
ripper7: {
osd4: 3.638690948486328,
osd5: 3.638690948486328,
osd6: 3.638690948486328,
},
ripper4: {
osd9: 3.4609375,
osd10: 3.4609375,
osd11: 3.4609375,
},
ripper6: {
osd3: 3.5849609375,
osd7: 3.5859336853027344,
osd8: 3.638690948486328,
osd13: 3.461894989013672
},
};
const prev_pgs = [[12,7,5],[6,11,12],[3,6,9],[10,0,5],[2,5,13],[9,8,6],[3,4,12],[7,4,12],[12,11,13],[13,6,0],[4,13,10],[9,7,6],[7,10,0],[10,8,0],[3,10,2],[3,0,4],[6,13,0],[13,10,0],[13,10,5],[8,11,6],[3,9,2],[2,8,5],[8,9,5],[3,12,11],[0,7,4],[13,11,1],[11,3,12],[12,8,10],[7,5,12],[2,13,5],[7,11,0],[13,2,6],[0,6,8],[13,1,6],[0,13,4],[0,8,10],[4,10,0],[8,12,4],[8,12,9],[12,7,4],[13,9,5],[3,2,11],[1,9,7],[1,8,5],[5,12,9],[3,5,12],[2,8,10],[0,8,4],[1,4,11],[7,10,2],[12,13,5],[3,1,11],[7,1,4],[4,12,8],[7,0,9],[11,1,8],[3,0,5],[11,13,0],[1,13,5],[12,7,10],[12,8,4],[11,13,5],[0,11,6],[2,11,3],[13,1,11],[2,7,10],[7,10,12],[7,12,10],[12,11,5],[13,12,10],[2,3,9],[4,3,9],[13,2,5],[7,12,6],[12,10,13],[9,8,1],[13,1,5],[9,5,12],[5,11,7],[6,2,9],[8,11,6],[12,5,8],[6,13,1],[7,6,11],[2,3,6],[8,5,9],[1,13,6],[9,3,2],[7,11,1],[3,10,1],[0,11,7],[3,0,5],[1,3,6],[6,0,9],[3,11,4],[8,10,2],[13,1,9],[12,6,9],[3,12,9],[12,8,9],[7,5,0],[8,12,5],[0,11,3],[12,11,13],[0,7,11],[0,3,10],[1,3,11],[2,7,11],[13,2,6],[9,12,13],[8,2,4],[0,7,4],[5,13,0],[13,12,9],[1,9,8],[0,10,3],[3,5,10],[7,12,9],[2,13,4],[12,7,5],[9,2,7],[3,2,9],[6,2,7],[3,1,9],[4,3,2],[5,3,11],[0,7,6],[1,6,13],[7,10,2],[12,4,8],[13,12,6],[7,5,11],[6,2,3],[2,7,6],[2,3,10],[2,7,10],[11,12,6],[0,13,5],[10,2,4],[13,0,11],[7,0,6],[8,9,4],[8,4,11],[7,11,2],[3,4,2],[6,1,3],[7,2,11],[8,9,4],[11,4,8],[10,3,1],[2,10,13],[1,7,11],[13,11,12],[2,6,9],[10,0,13],[7,10,4],[0,11,13],[13,10,1],[7,5,0],[7,12,10],[3,1,4],[7,1,5],[3,11,5],[7,5,0],[1,3,5],[10,5,12],[0,3,9],[7,1,11],[11,8,12],[3,6,2],[7,12,9],[7,11,12],[4,11,3],[0,11,13],[13,2,5],[1,5,8],[0,11,8],[3,5,1],[11,0,6],[3,11,2],[11,8,12],[4,1,3],[10,13,4],[13,9,6],[2,3,10],[12,7,9],[10,0,4],[10,13,2],[3,11,1],[7,2,9],[1,7,4],[13,1,4],[7,0,6],[5,3,9],[10,0,7],[0,7,10],[3,6,10],[13,0,5],[8,4,1],[3,1,10],[2,10,13],[13,0,5],[13,10,2],[12,7,9],[6,8,10],[6,1,8],[10,8,1],[13,5,0],[5,11,3],[7,6,1],[8,5,9],[2,13,11],[10,12,4],[13,4,1],[2,13,4],[11,7,0],[2,9,7],[1,7,6],[8,0,4],[8,1,9],[7,10,12],[13,9,6],[7,6,11],[13,0,4],[1,8,4],[3,12,5],[10,3,1],[10,2,13],[2,4,8],[6,2,3],[3,0,10],[6,7,12],[8,12,5],[3,0,6],[13,12,10],[11,3,6],[9,0,13],[10,0,6],[7,5,2],[1,3,11],[7,10,2],[2,9,8],[11,13,12],[0,8,4],[8,12,11],[6,0,3],[1,13,4],[11,8,2],[12,3,6],[4,7,1],[7,6,12],[3,10,6],[0,10,7],[8,9,1],[0,10,6],[8,10,1]]
.map(pg => pg.map(n => 'osd'+n));
const by_osd = {};
for (let i = 0; i < prev_pgs.length; i++)
{
for (let j = 0; j < prev_pgs[i].length; j++)
{
by_osd[prev_pgs[i][j]] = by_osd[prev_pgs[i][j]] || [];
by_osd[prev_pgs[i][j]][j] = (by_osd[prev_pgs[i][j]][j] || 0) + 1;
}
}
/*
This set of PGs was balanced by hand, by heavily tuning OSD weights in Ceph:
{
osd0: 4.2,
osd1: 3.5,
osd2: 3.45409,
osd3: 4.5,
osd4: 1.4,
osd5: 1.4,
osd6: 1.75,
osd7: 4.5,
osd8: 4.4,
osd9: 2.2,
osd10: 2.7,
osd11: 2,
osd12: 3.4,
osd13: 3.4,
}
EC+compression is a nightmare in Ceph, yeah :))
To calculate the average ratio between data chunks and parity chunks we
calculate the number of PG chunks for each chunk role for each OSD:
{
osd12: [ 18, 22, 17 ],
osd7: [ 35, 22, 8 ],
osd5: [ 6, 17, 27 ],
osd6: [ 13, 12, 28 ],
osd11: [ 13, 26, 20 ],
osd3: [ 30, 20, 10 ],
osd9: [ 8, 12, 26 ],
osd10: [ 15, 23, 20 ],
osd0: [ 22, 22, 14 ],
osd2: [ 22, 16, 16 ],
osd13: [ 29, 19, 13 ],
osd8: [ 20, 18, 12 ],
osd4: [ 8, 10, 28 ],
osd1: [ 17, 17, 17 ]
}
And now we can pick a pair of OSDs and determine the ratio by solving the following:
osd5 = 23*X + 27*Y = 3249728140
osd13 = 48*X + 13*Y = 2991675992
=>
osd5 - 27/13*osd13 = 23*X - 27/13*48*X = -76.6923076923077*X = -2963752766.46154
=>
X = 38644720.1243731
Y = (osd5-23*X)/27 = 87440725.0792377
Y/X = 2.26268232239284 ~= 2.26
Which means that parity chunks are compressed ~2.26 times worse than data chunks.
Fine, let's try to optimize for it.
*/
async function run()
{
const all_weights = Object.assign({}, ...Object.values(osd_tree));
const total_weight = Object.values(all_weights).reduce((a, c) => Number(a) + Number(c), 0);
const eff = LPOptimizer.pg_list_space_efficiency(prev_pgs, all_weights, 2, 2.26);
const orig = eff*4.26 / total_weight;
console.log('Original efficiency was: '+Math.round(orig*10000)/100+' %');
let prev = await LPOptimizer.optimize_initial({ osd_tree, pg_size: 3, pg_count: 256, parity_space: 2.26 });
LPOptimizer.print_change_stats(prev);
let next = await LPOptimizer.optimize_change({ prev_pgs, osd_tree, pg_size: 3, max_combinations: 10000, parity_space: 2.26 });
LPOptimizer.print_change_stats(next);
}
run().catch(console.error);

View File

@ -1,25 +0,0 @@
// Copyright (c) Vitaliy Filippov, 2019+
// License: VNPL-1.1 (see README.md for details)
const LPOptimizer = require('./lp-optimizer.js');
async function run()
{
const osd_tree = { a: { 1: 1 }, b: { 2: 1 }, c: { 3: 1 } };
let res;
console.log('16 PGs, size=3');
res = await LPOptimizer.optimize_initial({ osd_tree, pg_size: 3, pg_count: 16 });
LPOptimizer.print_change_stats(res, false);
console.log('\nReduce PG size to 2');
res = await LPOptimizer.optimize_change({ prev_pgs: res.int_pgs.map(pg => pg.slice(0, 2)), osd_tree, pg_size: 2 });
LPOptimizer.print_change_stats(res, false);
console.log('\nRemove OSD 3');
delete osd_tree['c'];
res = await LPOptimizer.optimize_change({ prev_pgs: res.int_pgs, osd_tree, pg_size: 2 });
LPOptimizer.print_change_stats(res, false);
}
run().catch(console.error);

View File

@ -1,74 +0,0 @@
// Copyright (c) Vitaliy Filippov, 2019+
// License: VNPL-1.1 (see README.md for details)
const LPOptimizer = require('./lp-optimizer.js');
const crush_tree = [
{ level: 1, children: [
{ level: 2, children: [
{ level: 3, id: 1, size: 3 },
{ level: 3, id: 2, size: 3 },
] },
{ level: 2, children: [
{ level: 3, id: 3, size: 3 },
{ level: 3, id: 4, size: 3 },
] },
] },
{ level: 1, children: [
{ level: 2, children: [
{ level: 3, id: 5, size: 3 },
{ level: 3, id: 6, size: 3 },
] },
{ level: 2, children: [
{ level: 3, id: 7, size: 3 },
{ level: 3, id: 8, size: 3 },
] },
] },
{ level: 1, children: [
{ level: 2, children: [
{ level: 3, id: 9, size: 3 },
{ level: 3, id: 10, size: 3 },
] },
{ level: 2, children: [
{ level: 3, id: 11, size: 3 },
{ level: 3, id: 12, size: 3 },
] },
] },
];
const osd_tree = LPOptimizer.flatten_tree(crush_tree, {}, 1, 3);
console.log(osd_tree);
async function run()
{
const cur_tree = {};
console.log('Empty tree:');
let res = await LPOptimizer.optimize_initial({ osd_tree: cur_tree, pg_size: 3, pg_count: 256 });
LPOptimizer.print_change_stats(res, false);
console.log('\nAdding 1st failure domain:');
cur_tree['dom1'] = osd_tree['dom1'];
res = await LPOptimizer.optimize_change({ prev_pgs: res.int_pgs, osd_tree: cur_tree, pg_size: 3 });
LPOptimizer.print_change_stats(res, false);
console.log('\nAdding 2nd failure domain:');
cur_tree['dom2'] = osd_tree['dom2'];
res = await LPOptimizer.optimize_change({ prev_pgs: res.int_pgs, osd_tree: cur_tree, pg_size: 3 });
LPOptimizer.print_change_stats(res, false);
console.log('\nAdding 3rd failure domain:');
cur_tree['dom3'] = osd_tree['dom3'];
res = await LPOptimizer.optimize_change({ prev_pgs: res.int_pgs, osd_tree: cur_tree, pg_size: 3 });
LPOptimizer.print_change_stats(res, false);
console.log('\nRemoving 3rd failure domain:');
delete cur_tree['dom3'];
res = await LPOptimizer.optimize_change({ prev_pgs: res.int_pgs, osd_tree: cur_tree, pg_size: 3 });
LPOptimizer.print_change_stats(res, false);
console.log('\nRemoving 2nd failure domain:');
delete cur_tree['dom2'];
res = await LPOptimizer.optimize_change({ prev_pgs: res.int_pgs, osd_tree: cur_tree, pg_size: 3 });
LPOptimizer.print_change_stats(res, false);
console.log('\nRemoving 1st failure domain:');
delete cur_tree['dom1'];
res = await LPOptimizer.optimize_change({ prev_pgs: res.int_pgs, osd_tree: cur_tree, pg_size: 3 });
LPOptimizer.print_change_stats(res, false);
}
run().catch(console.error);

View File

@ -1,115 +0,0 @@
// Copyright (c) Vitaliy Filippov, 2019+
// License: VNPL-1.1 (see README.md for details)
const LPOptimizer = require('./lp-optimizer.js');
const osd_tree = {
100: {
7: 3.63869,
},
300: {
10: 3.46089,
11: 3.46089,
12: 3.46089,
},
400: {
1: 3.49309,
2: 3.49309,
3: 3.49309,
},
500: {
4: 3.58498,
// 8: 3.58589,
9: 3.63869,
},
600: {
5: 3.63869,
6: 3.63869,
},
/* 100: {
1: 2.72800,
},
200: {
2: 2.72900,
},
300: {
3: 1.87000,
},
400: {
4: 1.87000,
},
500: {
5: 3.63869,
},*/
};
const crush_tree = [
{ level: 1, children: [
{ level: 2, children: [
{ level: 3, id: 1, size: 3 },
{ level: 3, id: 2, size: 2 },
] },
{ level: 2, children: [
{ level: 3, id: 3, size: 4 },
{ level: 3, id: 4, size: 4 },
] },
] },
{ level: 1, children: [
{ level: 2, children: [
{ level: 3, id: 5, size: 4 },
{ level: 3, id: 6, size: 1 },
] },
{ level: 2, children: [
{ level: 3, id: 7, size: 3 },
{ level: 3, id: 8, size: 5 },
] },
] },
{ level: 1, children: [
{ level: 2, children: [
{ level: 3, id: 9, size: 5 },
{ level: 3, id: 10, size: 2 },
] },
{ level: 2, children: [
{ level: 3, id: 11, size: 3 },
{ level: 3, id: 12, size: 3 },
] },
] },
];
async function run()
{
let res;
// Test: add 1 OSD of almost the same size. Ideal data movement could be 1/12 = 8.33%. Actual is ~13%
// Space efficiency is ~99% in all cases.
console.log('256 PGs, size=2');
res = await LPOptimizer.optimize_initial({ osd_tree, pg_size: 2, pg_count: 256 });
LPOptimizer.print_change_stats(res, false);
console.log('\nAdding osd.8');
osd_tree[500][8] = 3.58589;
res = await LPOptimizer.optimize_change({ prev_pgs: res.int_pgs, osd_tree, pg_size: 2 });
LPOptimizer.print_change_stats(res, false);
console.log('\nRemoving osd.8');
delete osd_tree[500][8];
res = await LPOptimizer.optimize_change({ prev_pgs: res.int_pgs, osd_tree, pg_size: 2 });
LPOptimizer.print_change_stats(res, false);
console.log('\n256 PGs, size=3');
res = await LPOptimizer.optimize_initial({ osd_tree, pg_size: 3, pg_count: 256 });
LPOptimizer.print_change_stats(res, false);
console.log('\nAdding osd.8');
osd_tree[500][8] = 3.58589;
res = await LPOptimizer.optimize_change({ prev_pgs: res.int_pgs, osd_tree, pg_size: 3 });
LPOptimizer.print_change_stats(res, false);
console.log('\nRemoving osd.8');
delete osd_tree[500][8];
res = await LPOptimizer.optimize_change({ prev_pgs: res.int_pgs, osd_tree, pg_size: 3 });
LPOptimizer.print_change_stats(res, false);
console.log('\n256 PGs, size=3, failure domain=rack');
res = await LPOptimizer.optimize_initial({ osd_tree: LPOptimizer.flatten_tree(crush_tree, {}, 1, 3), pg_size: 3, pg_count: 256 });
LPOptimizer.print_change_stats(res, false);
}
run().catch(console.error);

View File

@ -1,19 +1,14 @@
// Copyright (c) Vitaliy Filippov, 2019+
// License: VNPL-1.1 or GNU GPL-2.0+ (see README.md for details)
#pragma once
#include <stdint.h>
#include <functional>
typedef uint64_t inode_t;
// 16 bytes per object/stripe id
// stripe = (start of the parity stripe + peer role)
// i.e. for example (256KB + one of 0,1,2)
struct __attribute__((__packed__)) object_id
{
inode_t inode;
uint64_t inode;
uint64_t stripe;
};

400
osd.cpp Normal file
View File

@ -0,0 +1,400 @@
#include <sys/socket.h>
#include <sys/epoll.h>
#include <sys/poll.h>
#include <netinet/in.h>
#include <netinet/tcp.h>
#include <arpa/inet.h>
#include "osd.h"
static const char* osd_op_names[] = {
"",
"read",
"write",
"sync",
"stabilize",
"rollback",
"delete",
"sync_stab_all",
"list",
"show_config",
"primary_read",
"primary_write",
"primary_sync",
};
osd_t::osd_t(blockstore_config_t & config, blockstore_t *bs, ring_loop_t *ringloop)
{
this->config = config;
this->bs = bs;
this->ringloop = ringloop;
this->tick_tfd = new timerfd_interval(ringloop, 3, [this]()
{
for (int i = 0; i <= OSD_OP_MAX; i++)
{
if (op_stat_count[i] != 0)
{
printf("avg latency for op %d (%s): %ld us\n", i, osd_op_names[i], op_stat_sum[i]/op_stat_count[i]);
op_stat_count[i] = 0;
op_stat_sum[i] = 0;
}
}
for (int i = 0; i <= OSD_OP_MAX; i++)
{
if (subop_stat_count[i] != 0)
{
printf("avg latency for subop %d (%s): %ld us\n", i, osd_op_names[i], subop_stat_sum[i]/subop_stat_count[i]);
subop_stat_count[i] = 0;
subop_stat_sum[i] = 0;
}
}
if (send_stat_count != 0)
{
printf("avg latency to send stabilize subop: %ld us\n", send_stat_sum/send_stat_count);
send_stat_count = 0;
send_stat_sum = 0;
}
});
this->bs_block_size = bs->get_block_size();
// FIXME: use bitmap granularity instead
this->bs_disk_alignment = bs->get_disk_alignment();
bind_address = config["bind_address"];
if (bind_address == "")
bind_address = "0.0.0.0";
bind_port = strtoull(config["bind_port"].c_str(), NULL, 10);
if (!bind_port || bind_port > 65535)
bind_port = 11203;
osd_num = strtoull(config["osd_num"].c_str(), NULL, 10);
if (!osd_num)
throw std::runtime_error("osd_num is required in the configuration");
run_primary = config["run_primary"] == "true" || config["run_primary"] == "1" || config["run_primary"] == "yes";
if (run_primary)
init_primary();
listen_fd = socket(AF_INET, SOCK_STREAM, 0);
if (listen_fd < 0)
{
throw std::runtime_error(std::string("socket: ") + strerror(errno));
}
int enable = 1;
setsockopt(listen_fd, SOL_SOCKET, SO_REUSEADDR, &enable, sizeof(enable));
sockaddr_in addr;
int r;
if ((r = inet_pton(AF_INET, bind_address.c_str(), &addr.sin_addr)) != 1)
{
close(listen_fd);
throw std::runtime_error("bind address "+bind_address+(r == 0 ? " is not valid" : ": no ipv4 support"));
}
addr.sin_family = AF_INET;
addr.sin_port = htons(bind_port);
if (bind(listen_fd, (sockaddr*)&addr, sizeof(addr)) < 0)
{
close(listen_fd);
throw std::runtime_error(std::string("bind: ") + strerror(errno));
}
if (listen(listen_fd, listen_backlog) < 0)
{
close(listen_fd);
throw std::runtime_error(std::string("listen: ") + strerror(errno));
}
fcntl(listen_fd, F_SETFL, fcntl(listen_fd, F_GETFL, 0) | O_NONBLOCK);
epoll_fd = epoll_create(1);
if (epoll_fd < 0)
{
close(listen_fd);
throw std::runtime_error(std::string("epoll_create: ") + strerror(errno));
}
epoll_event ev;
ev.data.fd = listen_fd;
ev.events = EPOLLIN | EPOLLET;
if (epoll_ctl(epoll_fd, EPOLL_CTL_ADD, listen_fd, &ev) < 0)
{
close(listen_fd);
close(epoll_fd);
throw std::runtime_error(std::string("epoll_ctl: ") + strerror(errno));
}
consumer.loop = [this]() { loop(); };
ringloop->register_consumer(consumer);
}
osd_t::~osd_t()
{
delete tick_tfd;
ringloop->unregister_consumer(consumer);
close(epoll_fd);
close(listen_fd);
}
osd_op_t::~osd_op_t()
{
if (bs_op)
{
delete bs_op;
}
if (op_data)
{
free(op_data);
}
if (rmw_buf)
{
free(rmw_buf);
}
if (buf)
{
// Note: reusing osd_op_t WILL currently lead to memory leaks
// So we don't reuse it, but free it every time
free(buf);
}
}
bool osd_t::shutdown()
{
stopping = true;
if (inflight_ops > 0)
{
return false;
}
return bs->is_safe_to_stop();
}
void osd_t::loop()
{
if (!wait_state)
{
handle_epoll_events();
wait_state = 1;
}
handle_peers();
read_requests();
send_replies();
}
void osd_t::handle_epoll_events()
{
io_uring_sqe *sqe = ringloop->get_sqe();
if (!sqe)
{
throw std::runtime_error("can't get SQE, will fall out of sync with EPOLLET");
}
ring_data_t *data = ((ring_data_t*)sqe->user_data);
my_uring_prep_poll_add(sqe, epoll_fd, POLLIN);
data->callback = [this](ring_data_t *data)
{
if (data->res < 0)
{
throw std::runtime_error(std::string("epoll failed: ") + strerror(-data->res));
}
handle_epoll_events();
};
ringloop->submit();
int nfds;
epoll_event events[MAX_EPOLL_EVENTS];
restart:
nfds = epoll_wait(epoll_fd, events, MAX_EPOLL_EVENTS, 0);
for (int i = 0; i < nfds; i++)
{
if (events[i].data.fd == listen_fd)
{
// Accept new connections
sockaddr_in addr;
socklen_t peer_addr_size = sizeof(addr);
int peer_fd;
while ((peer_fd = accept(listen_fd, (sockaddr*)&addr, &peer_addr_size)) >= 0)
{
char peer_str[256];
printf("osd: new client %d: connection from %s port %d\n", peer_fd, inet_ntop(AF_INET, &addr.sin_addr, peer_str, 256), ntohs(addr.sin_port));
fcntl(peer_fd, F_SETFL, fcntl(listen_fd, F_GETFL, 0) | O_NONBLOCK);
int one = 1;
setsockopt(peer_fd, SOL_TCP, TCP_NODELAY, &one, sizeof(one));
clients[peer_fd] = {
.peer_addr = addr,
.peer_port = ntohs(addr.sin_port),
.peer_fd = peer_fd,
.peer_state = PEER_CONNECTED,
};
// Add FD to epoll
epoll_event ev;
ev.data.fd = peer_fd;
ev.events = EPOLLIN | EPOLLET | EPOLLRDHUP;
if (epoll_ctl(epoll_fd, EPOLL_CTL_ADD, peer_fd, &ev) < 0)
{
throw std::runtime_error(std::string("epoll_ctl: ") + strerror(errno));
}
// Try to accept next connection
peer_addr_size = sizeof(addr);
}
if (peer_fd == -1 && errno != EAGAIN)
{
throw std::runtime_error(std::string("accept: ") + strerror(errno));
}
}
else
{
auto & cl = clients[events[i].data.fd];
if (cl.peer_state == PEER_CONNECTING)
{
// Either OUT (connected) or HUP
handle_connect_result(cl.peer_fd);
}
else if (events[i].events & EPOLLRDHUP)
{
// Stop client
printf("osd: client %d disconnected\n", cl.peer_fd);
stop_client(cl.peer_fd);
}
else
{
// Mark client as ready (i.e. some data is available)
cl.read_ready++;
if (cl.read_ready == 1)
{
read_ready_clients.push_back(cl.peer_fd);
ringloop->wakeup();
}
}
}
}
if (nfds == MAX_EPOLL_EVENTS)
{
goto restart;
}
}
void osd_t::cancel_osd_ops(osd_client_t & cl)
{
for (auto p: cl.sent_ops)
{
cancel_op(p.second);
}
cl.sent_ops.clear();
for (auto op: cl.outbox)
{
cancel_op(op);
}
cl.outbox.clear();
if (cl.write_op)
{
cancel_op(cl.write_op);
cl.write_op = NULL;
}
}
void osd_t::cancel_op(osd_op_t *op)
{
if (op->op_type == OSD_OP_OUT)
{
op->reply.hdr.magic = SECONDARY_OSD_REPLY_MAGIC;
op->reply.hdr.id = op->req.hdr.id;
op->reply.hdr.opcode = op->req.hdr.opcode;
op->reply.hdr.retval = -EPIPE;
op->callback(op);
}
else
{
delete op;
}
}
void osd_t::stop_client(int peer_fd)
{
auto it = clients.find(peer_fd);
if (it == clients.end())
{
return;
}
auto & cl = it->second;
if (epoll_ctl(epoll_fd, EPOLL_CTL_DEL, peer_fd, NULL) < 0)
{
throw std::runtime_error(std::string("epoll_ctl: ") + strerror(errno));
}
if (cl.osd_num)
{
// Cancel outbound operations
cancel_osd_ops(cl);
osd_peer_fds.erase(cl.osd_num);
repeer_pgs(cl.osd_num, false);
peering_state |= OSD_PEERING_PEERS;
}
if (cl.read_op)
{
delete cl.read_op;
}
for (auto rit = read_ready_clients.begin(); rit != read_ready_clients.end(); rit++)
{
if (*rit == peer_fd)
{
read_ready_clients.erase(rit);
break;
}
}
for (auto wit = write_ready_clients.begin(); wit != write_ready_clients.end(); wit++)
{
if (*wit == peer_fd)
{
write_ready_clients.erase(wit);
break;
}
}
clients.erase(it);
close(peer_fd);
}
void osd_t::exec_op(osd_op_t *cur_op)
{
clock_gettime(CLOCK_REALTIME, &cur_op->tv_begin);
if (stopping)
{
// Throw operation away
delete cur_op;
return;
}
cur_op->send_list.push_back(cur_op->reply.buf, OSD_PACKET_SIZE);
if (cur_op->req.hdr.magic != SECONDARY_OSD_OP_MAGIC ||
cur_op->req.hdr.opcode < OSD_OP_MIN || cur_op->req.hdr.opcode > OSD_OP_MAX ||
(cur_op->req.hdr.opcode == OSD_OP_SECONDARY_READ || cur_op->req.hdr.opcode == OSD_OP_SECONDARY_WRITE) &&
(cur_op->req.sec_rw.len > OSD_RW_MAX || cur_op->req.sec_rw.len % OSD_RW_ALIGN || cur_op->req.sec_rw.offset % OSD_RW_ALIGN) ||
(cur_op->req.hdr.opcode == OSD_OP_READ || cur_op->req.hdr.opcode == OSD_OP_WRITE) &&
(cur_op->req.rw.len > OSD_RW_MAX || cur_op->req.rw.len % OSD_RW_ALIGN || cur_op->req.rw.offset % OSD_RW_ALIGN))
{
// Bad command
cur_op->reply.hdr.magic = SECONDARY_OSD_REPLY_MAGIC;
cur_op->reply.hdr.id = cur_op->req.hdr.id;
cur_op->reply.hdr.opcode = cur_op->req.hdr.opcode;
cur_op->reply.hdr.retval = -EINVAL;
outbox_push(this->clients[cur_op->peer_fd], cur_op);
return;
}
inflight_ops++;
if (cur_op->req.hdr.opcode == OSD_OP_TEST_SYNC_STAB_ALL)
{
exec_sync_stab_all(cur_op);
}
else if (cur_op->req.hdr.opcode == OSD_OP_SHOW_CONFIG)
{
exec_show_config(cur_op);
}
else if (cur_op->req.hdr.opcode == OSD_OP_READ)
{
continue_primary_read(cur_op);
}
else if (cur_op->req.hdr.opcode == OSD_OP_WRITE)
{
continue_primary_write(cur_op);
}
else if (cur_op->req.hdr.opcode == OSD_OP_SYNC)
{
continue_primary_sync(cur_op);
}
else
{
exec_secondary(cur_op);
}
}

274
osd.h Normal file
View File

@ -0,0 +1,274 @@
#pragma once
#include <sys/types.h>
#include <time.h>
#include <sys/ioctl.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <malloc.h>
#include <arpa/inet.h>
#include <malloc.h>
#include <set>
#include <deque>
#include "blockstore.h"
#include "ringloop.h"
#include "timerfd_interval.h"
#include "osd_ops.h"
#include "osd_peering_pg.h"
#include "sparsepp/sparsepp/spp.h"
#define OSD_OP_IN 0
#define OSD_OP_OUT 1
#define CL_READ_OP 1
#define CL_READ_DATA 2
#define CL_READ_REPLY_DATA 3
#define CL_WRITE_READY 1
#define CL_WRITE_REPLY 2
#define MAX_EPOLL_EVENTS 64
#define OSD_OP_INLINE_BUF_COUNT 16
#define PEER_CONNECTING 1
#define PEER_CONNECTED 2
#define OSD_PEERING_PEERS 1
#define OSD_PEERING_PGS 2
//#define OSD_STUB
struct osd_op_buf_list_t
{
int count = 0, alloc = 0, sent = 0;
iovec *buf = NULL;
iovec inline_buf[OSD_OP_INLINE_BUF_COUNT];
~osd_op_buf_list_t()
{
if (buf && buf != inline_buf)
{
free(buf);
}
}
inline iovec* get_iovec()
{
return (buf ? buf : inline_buf) + sent;
}
inline int get_size()
{
return count - sent;
}
inline void push_back(void *nbuf, size_t len)
{
if (count >= alloc)
{
if (!alloc)
{
alloc = OSD_OP_INLINE_BUF_COUNT;
buf = inline_buf;
}
else if (buf == inline_buf)
{
int old = alloc;
alloc = ((alloc/16)*16 + 1);
buf = (iovec*)malloc(sizeof(iovec) * alloc);
memcpy(buf, inline_buf, sizeof(iovec)*old);
}
else
{
alloc = ((alloc/16)*16 + 1);
buf = (iovec*)realloc(buf, sizeof(iovec) * alloc);
}
}
buf[count++] = { .iov_base = nbuf, .iov_len = len };
}
};
struct osd_primary_op_data_t;
struct osd_op_t
{
timespec tv_begin;
timespec tv_send;
int op_type = OSD_OP_IN;
int peer_fd;
osd_any_op_t req;
osd_any_reply_t reply;
blockstore_op_t *bs_op = NULL;
void *buf = NULL;
void *rmw_buf = NULL;
osd_primary_op_data_t* op_data = NULL;
std::function<void(osd_op_t*)> callback;
osd_op_buf_list_t send_list;
~osd_op_t();
};
struct osd_peer_def_t
{
osd_num_t osd_num = 0;
std::string addr;
int port = 0;
time_t last_connect_attempt = 0;
};
struct osd_client_t
{
sockaddr_in peer_addr;
int peer_port;
int peer_fd;
int peer_state;
std::function<void(osd_num_t, int)> connect_callback;
osd_num_t osd_num = 0;
// Read state
int read_ready = 0;
osd_op_t *read_op = NULL;
int read_reply_id = 0;
iovec read_iov;
msghdr read_msg;
void *read_buf = NULL;
int read_remaining = 0;
int read_state = 0;
// Outbound operations sent to this client (which is probably an OSD peer)
std::map<int, osd_op_t*> sent_ops;
// Outbound messages (replies or requests)
std::deque<osd_op_t*> outbox;
// PGs dirtied by this client's primary-writes
std::set<pg_num_t> dirty_pgs;
// Write state
osd_op_t *write_op = NULL;
msghdr write_msg;
int write_state = 0;
};
struct osd_rmw_stripe_t;
struct osd_object_id_t
{
osd_num_t osd_num;
object_id oid;
};
class osd_t
{
// config
osd_num_t osd_num = 1; // OSD numbers start with 1
bool run_primary = false;
std::vector<osd_peer_def_t> peers;
blockstore_config_t config;
std::string bind_address;
int bind_port, listen_backlog;
int client_queue_depth = 128;
bool allow_test_ops = true;
// peer OSDs
std::map<uint64_t, int> osd_peer_fds;
std::vector<pg_t> pgs;
int peering_state = 0;
unsigned pg_count = 0;
uint64_t next_subop_id = 1;
// Unstable writes
std::map<osd_object_id_t, uint64_t> unstable_writes;
std::deque<osd_op_t*> syncs_in_progress;
// client & peer I/O
bool stopping = false;
int inflight_ops = 0;
blockstore_t *bs;
uint32_t bs_block_size, bs_disk_alignment;
uint64_t parity_block_size = 4*1024*1024; // 4 MB by default
ring_loop_t *ringloop;
timerfd_interval *tick_tfd;
int wait_state = 0;
int epoll_fd = 0;
int listen_fd = 0;
ring_consumer_t consumer;
std::unordered_map<int,osd_client_t> clients;
std::vector<int> read_ready_clients;
std::vector<int> write_ready_clients;
uint64_t op_stat_sum[OSD_OP_MAX+1] = { 0 };
uint64_t op_stat_count[OSD_OP_MAX+1] = { 0 };
uint64_t subop_stat_sum[OSD_OP_MAX+1] = { 0 };
uint64_t subop_stat_count[OSD_OP_MAX+1] = { 0 };
uint64_t send_stat_sum = 0;
uint64_t send_stat_count = 0;
// methods
// event loop, socket read/write
void loop();
void handle_epoll_events();
void read_requests();
void handle_read(ring_data_t *data, int peer_fd);
void handle_op_hdr(osd_client_t *cl);
void handle_reply_hdr(osd_client_t *cl);
bool try_send(osd_client_t & cl);
void send_replies();
void handle_send(ring_data_t *data, int peer_fd);
void outbox_push(osd_client_t & cl, osd_op_t *op);
// peer handling (primary OSD logic)
void connect_peer(osd_num_t osd_num, const char *peer_host, int peer_port, std::function<void(osd_num_t, int)> callback);
void handle_connect_result(int peer_fd);
void cancel_osd_ops(osd_client_t & cl);
void cancel_op(osd_op_t *op);
void stop_client(int peer_fd);
osd_peer_def_t parse_peer(std::string peer);
void init_primary();
void handle_peers();
void repeer_pgs(osd_num_t osd_num, bool is_connected);
void start_pg_peering(int i);
// op execution
void exec_op(osd_op_t *cur_op);
// secondary ops
void exec_sync_stab_all(osd_op_t *cur_op);
void exec_show_config(osd_op_t *cur_op);
void exec_secondary(osd_op_t *cur_op);
void secondary_op_callback(osd_op_t *cur_op);
// primary ops
bool prepare_primary_rw(osd_op_t *cur_op);
void continue_primary_read(osd_op_t *cur_op);
void continue_primary_write(osd_op_t *cur_op);
void continue_primary_sync(osd_op_t *cur_op);
void finish_primary_op(osd_op_t *cur_op, int retval);
void handle_primary_subop(osd_op_t *cur_op, int ok, uint64_t version);
void submit_primary_subops(int submit_type, int read_pg_size, const uint64_t* osd_set, osd_op_t *cur_op);
void submit_primary_sync_subops(osd_op_t *cur_op);
void submit_primary_stab_subops(osd_op_t *cur_op);
public:
osd_t(blockstore_config_t & config, blockstore_t *bs, ring_loop_t *ringloop);
~osd_t();
bool shutdown();
};
inline bool operator == (const osd_object_id_t & a, const osd_object_id_t & b)
{
return a.osd_num == b.osd_num && a.oid.inode == b.oid.inode && a.oid.stripe == b.oid.stripe;
}
inline bool operator < (const osd_object_id_t & a, const osd_object_id_t & b)
{
return a.osd_num < b.osd_num || a.osd_num == b.osd_num && (
a.oid.inode < b.oid.inode || a.oid.inode == b.oid.inode && a.oid.stripe < b.oid.stripe
);
}

40
osd_client.cpp Normal file
View File

@ -0,0 +1,40 @@
void slice()
{
// Slice the request into blockstore requests to individual objects
// Primary OSD still operates individual stripes, except they're twice the size of the blockstore's stripe.
std::vector read_parts;
int block = bs->get_block_size();
uint64_t stripe1 = cur_op->req.rw.offset / block / 2;
uint64_t stripe2 = (cur_op->req.rw.offset + cur_op->req.rw.len + block*2 - 1) / block / 2 - 1;
for (uint64_t s = stripe1; s <= stripe2; s++)
{
uint64_t start = s == stripe1 ? cur_op->req.rw.offset - stripe1*block*2 : 0;
uint64_t end = s == stripe2 ? cur_op->req.rw.offset + cur_op->req.rw.len - stripe2*block*2 : block*2;
if (start < block)
{
read_parts.push_back({
.role = 1,
.oid = {
.inode = cur_op->req.rw.inode,
.stripe = (s << STRIPE_ROLE_BITS) | 1,
},
.version = UINT64_MAX,
.offset = start,
.len = (block < end ? block : end) - start,
});
}
if (end > block)
{
read_parts.push_back({
.role = 2,
.oid = {
.inode = cur_op->req.rw.inode,
.stripe = (s << STRIPE_ROLE_BITS) | 2,
},
.version = UINT64_MAX,
.offset = (start > block ? start-block : 0),
.len = end - (start > block ? start-block : 0),
});
}
}
}

4
osd_id.h Normal file
View File

@ -0,0 +1,4 @@
#pragma once
typedef uint64_t osd_num_t;
typedef uint32_t pg_num_t;

View File

@ -1,53 +1,40 @@
// Copyright (c) Vitaliy Filippov, 2019+
// License: VNPL-1.1 (see README.md for details)
#include "osd.h"
#include <signal.h>
static osd_t *osd = NULL;
static bool force_stopping = false;
static void handle_sigint(int sig)
void handle_sigint(int sig)
{
if (osd && !force_stopping)
{
force_stopping = true;
osd->force_stop(0);
return;
}
exit(0);
}
int main(int narg, char *args[])
{
setvbuf(stdout, NULL, _IONBF, 0);
setvbuf(stderr, NULL, _IONBF, 0);
if (sizeof(osd_any_op_t) > OSD_PACKET_SIZE ||
sizeof(osd_any_reply_t) > OSD_PACKET_SIZE)
{
perror("BUG: too small packet size");
return 1;
}
json11::Json::object config;
blockstore_config_t config;
for (int i = 1; i < narg; i++)
{
if (args[i][0] == '-' && args[i][1] == '-' && i < narg-1)
{
char *opt = args[i]+2;
config[std::string(opt)] = std::string(args[++i]);
config[opt] = args[++i];
}
}
signal(SIGINT, handle_sigint);
signal(SIGTERM, handle_sigint);
ring_loop_t *ringloop = new ring_loop_t(512);
osd = new osd_t(config, ringloop);
blockstore_t *bs = new blockstore_t(config, ringloop);
osd_t *osd = new osd_t(config, bs, ringloop);
while (1)
{
ringloop->loop();
ringloop->wait();
}
delete osd;
delete bs;
delete ringloop;
return 0;
}

198
osd_ops.h Normal file
View File

@ -0,0 +1,198 @@
#pragma once
#include "object_id.h"
#include "osd_id.h"
// Magic numbers
#define SECONDARY_OSD_OP_MAGIC 0x2bd7b10325434553l
#define SECONDARY_OSD_REPLY_MAGIC 0xbaa699b87b434553l
// Operation request / reply headers have fixed size after which comes data
#define OSD_PACKET_SIZE 0x80
// Opcodes
#define OSD_OP_MIN 1
#define OSD_OP_SECONDARY_READ 1
#define OSD_OP_SECONDARY_WRITE 2
#define OSD_OP_SECONDARY_SYNC 3
#define OSD_OP_SECONDARY_STABILIZE 4
#define OSD_OP_SECONDARY_ROLLBACK 5
#define OSD_OP_SECONDARY_DELETE 6
#define OSD_OP_TEST_SYNC_STAB_ALL 7
#define OSD_OP_SECONDARY_LIST 8
#define OSD_OP_SHOW_CONFIG 9
#define OSD_OP_READ 10
#define OSD_OP_WRITE 11
#define OSD_OP_SYNC 12
#define OSD_OP_MAX 12
// Alignment & limit for read/write operations
#define OSD_RW_ALIGN 512
#define OSD_RW_MAX 64*1024*1024
// common request and reply headers
struct __attribute__((__packed__)) osd_op_header_t
{
// magic & protocol version
uint64_t magic;
// operation id
uint64_t id;
// operation type
uint64_t opcode;
};
struct __attribute__((__packed__)) osd_reply_header_t
{
// magic & protocol version
uint64_t magic;
// operation id
uint64_t id;
// operation type
uint64_t opcode;
// return value
int64_t retval;
};
// read or write to the secondary OSD
struct __attribute__((__packed__)) osd_op_secondary_rw_t
{
osd_op_header_t header;
// object
object_id oid;
// read/write version (automatic or specific)
uint64_t version;
// offset
uint32_t offset;
// length
uint32_t len;
};
struct __attribute__((__packed__)) osd_reply_secondary_rw_t
{
osd_reply_header_t header;
// for reads and writes: assigned or read version number
uint64_t version;
};
// delete object on the secondary OSD
struct __attribute__((__packed__)) osd_op_secondary_del_t
{
osd_op_header_t header;
// object
object_id oid;
// delete version (automatic or specific)
uint64_t version;
};
struct __attribute__((__packed__)) osd_reply_secondary_del_t
{
osd_reply_header_t header;
uint64_t version;
};
// sync to the secondary OSD
struct __attribute__((__packed__)) osd_op_secondary_sync_t
{
osd_op_header_t header;
};
struct __attribute__((__packed__)) osd_reply_secondary_sync_t
{
osd_reply_header_t header;
};
// stabilize or rollback objects on the secondary OSD
struct __attribute__((__packed__)) osd_op_secondary_stabilize_t
{
osd_op_header_t header;
// obj_ver_id array length in bytes
uint64_t len;
};
typedef osd_op_secondary_stabilize_t osd_op_secondary_rollback_t;
struct __attribute__((__packed__)) osd_reply_secondary_stabilize_t
{
osd_reply_header_t header;
};
typedef osd_reply_secondary_stabilize_t osd_reply_secondary_rollback_t;
// show configuration
struct __attribute__((__packed__)) osd_op_show_config_t
{
osd_op_header_t header;
};
struct __attribute__((__packed__)) osd_reply_show_config_t
{
osd_reply_header_t header;
};
// list objects on replica
struct __attribute__((__packed__)) osd_op_secondary_list_t
{
osd_op_header_t header;
// placement group total number and total count
pg_num_t list_pg, pg_count;
uint64_t parity_block_size;
};
struct __attribute__((__packed__)) osd_reply_secondary_list_t
{
osd_reply_header_t header;
// stable object version count. header.retval = total object version count
// FIXME: maybe change to the number of bytes in the reply...
uint64_t stable_count;
};
// read or write to the primary OSD (must be within individual stripe)
struct __attribute__((__packed__)) osd_op_rw_t
{
osd_op_header_t header;
// inode
uint64_t inode;
// offset
uint64_t offset;
// length
uint32_t len;
};
struct __attribute__((__packed__)) osd_reply_rw_t
{
osd_reply_header_t header;
};
// sync to the primary OSD
struct __attribute__((__packed__)) osd_op_sync_t
{
osd_op_header_t header;
};
struct __attribute__((__packed__)) osd_reply_sync_t
{
osd_reply_header_t header;
};
union osd_any_op_t
{
osd_op_header_t hdr;
osd_op_secondary_rw_t sec_rw;
osd_op_secondary_del_t sec_del;
osd_op_secondary_sync_t sec_sync;
osd_op_secondary_stabilize_t sec_stab;
osd_op_secondary_list_t sec_list;
osd_op_show_config_t show_conf;
osd_op_rw_t rw;
osd_op_sync_t sync;
uint8_t buf[OSD_PACKET_SIZE];
};
union osd_any_reply_t
{
osd_reply_header_t hdr;
osd_reply_secondary_rw_t sec_rw;
osd_reply_secondary_del_t sec_del;
osd_reply_secondary_sync_t sec_sync;
osd_reply_secondary_stabilize_t sec_stab;
osd_reply_secondary_list_t sec_list;
osd_reply_show_config_t show_conf;
osd_reply_rw_t rw;
osd_reply_sync_t sync;
uint8_t buf[OSD_PACKET_SIZE];
};

406
osd_peering.cpp Normal file
View File

@ -0,0 +1,406 @@
#include <netinet/tcp.h>
#include <sys/epoll.h>
#include <algorithm>
#include "osd.h"
void osd_t::init_primary()
{
// Initial test version of clustering code requires exactly 2 peers
// FIXME Hardcode
std::string peerstr = config["peers"];
while (peerstr.size())
{
int pos = peerstr.find(',');
peers.push_back(parse_peer(pos < 0 ? peerstr : peerstr.substr(0, pos)));
peerstr = pos < 0 ? std::string("") : peerstr.substr(pos+1);
for (int i = 0; i < peers.size()-1; i++)
if (peers[i].osd_num == peers[peers.size()-1].osd_num)
throw std::runtime_error("same osd number "+std::to_string(peers[i].osd_num)+" specified twice in peers");
}
if (peers.size() < 2)
throw std::runtime_error("run_primary requires at least 2 peers");
pgs.push_back((pg_t){
.state = PG_OFFLINE,
.pg_cursize = 0,
.pg_num = 1,
.target_set = { 1, 2, 3 },
.cur_set = { 1, 0, 0 },
});
pg_count = 1;
peering_state = OSD_PEERING_PEERS;
}
osd_peer_def_t osd_t::parse_peer(std::string peer)
{
// OSD_NUM:IP:PORT
int pos1 = peer.find(':');
int pos2 = peer.find(':', pos1+1);
if (pos1 < 0 || pos2 < 0)
throw new std::runtime_error("OSD peer string must be in the form OSD_NUM:IP:PORT");
osd_peer_def_t r;
r.addr = peer.substr(pos1+1, pos2-pos1-1);
std::string osd_num_str = peer.substr(0, pos1);
std::string port_str = peer.substr(pos2+1);
r.osd_num = strtoull(osd_num_str.c_str(), NULL, 10);
if (!r.osd_num)
throw new std::runtime_error("Could not parse OSD peer osd_num");
r.port = strtoull(port_str.c_str(), NULL, 10);
if (!r.port)
throw new std::runtime_error("Could not parse OSD peer port");
return r;
}
void osd_t::connect_peer(osd_num_t osd_num, const char *peer_host, int peer_port, std::function<void(osd_num_t, int)> callback)
{
struct sockaddr_in addr;
int r;
if ((r = inet_pton(AF_INET, peer_host, &addr.sin_addr)) != 1)
{
callback(osd_num, -EINVAL);
return;
}
addr.sin_family = AF_INET;
addr.sin_port = htons(peer_port ? peer_port : 11203);
int peer_fd = socket(AF_INET, SOCK_STREAM, 0);
if (peer_fd < 0)
{
callback(osd_num, -errno);
return;
}
fcntl(peer_fd, F_SETFL, fcntl(peer_fd, F_GETFL, 0) | O_NONBLOCK);
r = connect(peer_fd, (sockaddr*)&addr, sizeof(addr));
if (r < 0 && errno != EINPROGRESS)
{
close(peer_fd);
callback(osd_num, -errno);
return;
}
clients[peer_fd] = (osd_client_t){
.peer_addr = addr,
.peer_port = peer_port,
.peer_fd = peer_fd,
.peer_state = PEER_CONNECTING,
.connect_callback = callback,
.osd_num = osd_num,
};
osd_peer_fds[osd_num] = peer_fd;
// Add FD to epoll (EPOLLOUT for tracking connect() result)
epoll_event ev;
ev.data.fd = peer_fd;
ev.events = EPOLLOUT | EPOLLIN | EPOLLRDHUP | EPOLLET;
if (epoll_ctl(epoll_fd, EPOLL_CTL_ADD, peer_fd, &ev) < 0)
{
throw std::runtime_error(std::string("epoll_ctl: ") + strerror(errno));
}
}
void osd_t::handle_connect_result(int peer_fd)
{
auto & cl = clients[peer_fd];
osd_num_t osd_num = cl.osd_num;
auto callback = cl.connect_callback;
int result = 0;
socklen_t result_len = sizeof(result);
if (getsockopt(peer_fd, SOL_SOCKET, SO_ERROR, &result, &result_len) < 0)
{
result = errno;
}
if (result != 0)
{
stop_client(peer_fd);
callback(osd_num, -result);
return;
}
int one = 1;
setsockopt(peer_fd, SOL_TCP, TCP_NODELAY, &one, sizeof(one));
// Disable EPOLLOUT on this fd
cl.connect_callback = NULL;
cl.peer_state = PEER_CONNECTED;
epoll_event ev;
ev.data.fd = peer_fd;
ev.events = EPOLLIN | EPOLLRDHUP | EPOLLET;
if (epoll_ctl(epoll_fd, EPOLL_CTL_MOD, peer_fd, &ev) < 0)
{
throw std::runtime_error(std::string("epoll_ctl: ") + strerror(errno));
}
callback(osd_num, peer_fd);
}
// Peering loop
void osd_t::handle_peers()
{
if (peering_state & OSD_PEERING_PEERS)
{
for (int i = 0; i < peers.size(); i++)
{
if (osd_peer_fds.find(peers[i].osd_num) == osd_peer_fds.end() &&
time(NULL) - peers[i].last_connect_attempt > 5) // FIXME hardcode 5
{
peers[i].last_connect_attempt = time(NULL);
connect_peer(peers[i].osd_num, peers[i].addr.c_str(), peers[i].port, [this](osd_num_t osd_num, int peer_fd)
{
// FIXME: Check peer config after connecting
if (peer_fd < 0)
{
printf("Failed to connect to peer OSD %lu: %s\n", osd_num, strerror(-peer_fd));
return;
}
printf("Connected with peer OSD %lu (fd %d)\n", clients[peer_fd].osd_num, peer_fd);
int i;
for (i = 0; i < peers.size(); i++)
{
if (osd_peer_fds.find(peers[i].osd_num) == osd_peer_fds.end())
break;
}
if (i >= peers.size())
{
// Connected to all peers
peering_state = peering_state & ~OSD_PEERING_PEERS;
}
repeer_pgs(osd_num, true);
});
}
}
}
if (peering_state & OSD_PEERING_PGS)
{
bool still_doing_pgs = false;
for (int i = 0; i < pgs.size(); i++)
{
if (pgs[i].state == PG_PEERING)
{
if (!pgs[i].peering_state->list_ops.size())
{
pgs[i].calc_object_states();
}
else
{
still_doing_pgs = true;
}
}
}
if (!still_doing_pgs)
{
// Done all PGs
peering_state = peering_state & ~OSD_PEERING_PGS;
}
}
}
void osd_t::repeer_pgs(osd_num_t osd_num, bool is_connected)
{
// Re-peer affected PGs
// FIXME: We shouldn't rely just on target_set. Other OSDs may also contain PG data.
osd_num_t real_osd = (is_connected ? osd_num : 0);
for (int i = 0; i < pgs.size(); i++)
{
bool repeer = false;
for (int r = 0; r < pgs[i].target_set.size(); r++)
{
if (pgs[i].target_set[r] == osd_num &&
pgs[i].cur_set[r] != real_osd)
{
pgs[i].cur_set[r] = real_osd;
repeer = true;
break;
}
}
if (repeer)
{
// Repeer this pg
printf("Repeer PG %d because of OSD %lu\n", i, osd_num);
start_pg_peering(i);
peering_state |= OSD_PEERING_PGS;
}
}
}
// Repeer on each connect/disconnect peer event
void osd_t::start_pg_peering(int pg_idx)
{
auto & pg = pgs[pg_idx];
pg.state = PG_PEERING;
pg.state_dict.clear();
pg.obj_states.clear();
pg.ver_override.clear();
pg.pg_cursize = 0;
for (int role = 0; role < pg.cur_set.size(); role++)
{
if (pg.cur_set[role] != 0)
{
pg.pg_cursize++;
}
}
if (pg.pg_cursize < pg.pg_minsize)
{
pg.state = PG_INCOMPLETE;
}
if (pg.peering_state)
{
// Adjust the peering operation that's still in progress
for (auto it = pg.peering_state->list_ops.begin(); it != pg.peering_state->list_ops.end(); it++)
{
int role;
for (role = 0; role < pg.cur_set.size(); role++)
{
if (pg.cur_set[role] == it->first)
break;
}
if (pg.state == PG_INCOMPLETE || role >= pg.cur_set.size())
{
// Discard the result after completion, which, chances are, will be unsuccessful
auto list_op = it->second;
if (list_op->peer_fd == 0)
{
// Self
list_op->bs_op->callback = [list_op](blockstore_op_t *bs_op)
{
if (list_op->bs_op->buf)
free(list_op->bs_op->buf);
delete list_op;
};
}
else
{
// Peer
list_op->callback = [](osd_op_t *list_op)
{
delete list_op;
};
}
pg.peering_state->list_ops.erase(it);
it = pg.peering_state->list_ops.begin();
}
}
for (auto it = pg.peering_state->list_results.begin(); it != pg.peering_state->list_results.end(); it++)
{
int role;
for (role = 0; role < pg.cur_set.size(); role++)
{
if (pg.cur_set[role] == it->first)
break;
}
if (pg.state == PG_INCOMPLETE || role >= pg.cur_set.size())
{
if (it->second.buf)
{
free(it->second.buf);
}
pg.peering_state->list_results.erase(it);
it = pg.peering_state->list_results.begin();
}
}
}
if (pg.state == PG_INCOMPLETE)
{
if (pg.peering_state)
{
delete pg.peering_state;
pg.peering_state = NULL;
}
printf("PG %d is incomplete\n", pg.pg_num);
return;
}
if (!pg.peering_state)
{
pg.peering_state = new pg_peering_state_t();
}
auto ps = pg.peering_state;
for (int role = 0; role < pg.cur_set.size(); role++)
{
osd_num_t role_osd = pg.cur_set[role];
if (!role_osd)
{
continue;
}
if (ps->list_ops.find(role_osd) != ps->list_ops.end() ||
ps->list_results.find(role_osd) != ps->list_results.end())
{
continue;
}
if (role_osd == this->osd_num)
{
// Self
osd_op_t *op = new osd_op_t();
op->op_type = 0;
op->peer_fd = 0;
op->bs_op = new blockstore_op_t();
op->bs_op->opcode = BS_OP_LIST;
op->bs_op->oid.stripe = parity_block_size;
op->bs_op->len = pg_count,
op->bs_op->offset = pg.pg_num-1,
op->bs_op->callback = [ps, op, role_osd](blockstore_op_t *bs_op)
{
if (op->bs_op->retval < 0)
{
throw std::runtime_error("local OP_LIST failed");
}
printf(
"Got object list from OSD %lu (local): %d object versions (%lu of them stable)\n",
role_osd, bs_op->retval, bs_op->version
);
ps->list_results[role_osd] = {
.buf = (obj_ver_id*)op->bs_op->buf,
.total_count = (uint64_t)op->bs_op->retval,
.stable_count = op->bs_op->version,
};
ps->list_done++;
ps->list_ops.erase(role_osd);
delete op;
};
bs->enqueue_op(op->bs_op);
ps->list_ops[role_osd] = op;
}
else
{
// Peer
auto & cl = clients[osd_peer_fds[role_osd]];
osd_op_t *op = new osd_op_t();
op->op_type = OSD_OP_OUT;
op->send_list.push_back(op->req.buf, OSD_PACKET_SIZE);
op->peer_fd = cl.peer_fd;
op->req = {
.sec_list = {
.header = {
.magic = SECONDARY_OSD_OP_MAGIC,
.id = this->next_subop_id++,
.opcode = OSD_OP_SECONDARY_LIST,
},
.list_pg = pg.pg_num,
.pg_count = pg_count,
.parity_block_size = parity_block_size,
},
};
op->callback = [this, ps, role_osd](osd_op_t *op)
{
if (op->reply.hdr.retval < 0)
{
printf("Failed to get object list from OSD %lu (retval=%ld), disconnecting peer\n", role_osd, op->reply.hdr.retval);
ps->list_ops.erase(role_osd);
stop_client(op->peer_fd);
delete op;
return;
}
printf(
"Got object list from OSD %lu: %ld object versions (%lu of them stable)\n",
role_osd, op->reply.hdr.retval, op->reply.sec_list.stable_count
);
ps->list_results[role_osd] = {
.buf = (obj_ver_id*)op->buf,
.total_count = (uint64_t)op->reply.hdr.retval,
.stable_count = op->reply.sec_list.stable_count,
};
// set op->buf to NULL so it doesn't get freed
op->buf = NULL;
ps->list_done++;
ps->list_ops.erase(role_osd);
delete op;
};
outbox_push(cl, op);
ps->list_ops[role_osd] = op;
}
}
ringloop->wakeup();
}

265
osd_peering_pg.cpp Normal file
View File

@ -0,0 +1,265 @@
#include "osd_peering_pg.h"
void pg_t::remember_object(pg_obj_state_check_t &st, std::vector<obj_ver_role> &all)
{
auto & pg = *this;
// Remember the decision
uint64_t state = 0;
if (st.n_roles == pg.pg_cursize)
{
if (st.n_matched == pg.pg_cursize)
state = OBJ_CLEAN;
else
{
state = OBJ_MISPLACED;
pg.state = pg.state | PG_HAS_MISPLACED;
}
}
else if (st.n_roles < pg.pg_minsize)
{
printf("Object is unfound: inode=%lu stripe=%lu version=%lu/%lu\n", st.oid.inode, st.oid.stripe, st.target_ver, st.max_ver);
state = OBJ_INCOMPLETE;
pg.state = pg.state | PG_HAS_UNFOUND;
}
else
{
printf("Object is degraded: inode=%lu stripe=%lu version=%lu/%lu\n", st.oid.inode, st.oid.stripe, st.target_ver, st.max_ver);
state = OBJ_DEGRADED;
pg.state = pg.state | PG_HAS_DEGRADED;
}
if (st.n_copies > pg.pg_size)
{
state |= OBJ_OVERCOPIED;
pg.state = pg.state | PG_HAS_UNCLEAN;
}
if (st.n_stable < st.n_copies)
{
state |= OBJ_NEEDS_STABLE;
pg.state = pg.state | PG_HAS_UNCLEAN;
}
if (st.target_ver < st.max_ver || st.has_old_unstable)
{
state |= OBJ_NEEDS_ROLLBACK;
pg.state = pg.state | PG_HAS_UNCLEAN;
pg.ver_override[st.oid] = st.target_ver;
}
if (st.is_buggy)
{
state |= OBJ_BUGGY;
// FIXME: bring pg offline
throw std::runtime_error("buggy object state");
}
if (state != OBJ_CLEAN)
{
st.osd_set.clear();
for (int i = st.ver_start; i < st.ver_end; i++)
{
st.osd_set.push_back((pg_obj_loc_t){
.role = (all[i].oid.stripe & STRIPE_MASK),
.osd_num = all[i].osd_num,
.stable = all[i].is_stable,
});
}
std::sort(st.osd_set.begin(), st.osd_set.end());
auto it = pg.state_dict.find(st.osd_set);
if (it == pg.state_dict.end())
{
std::vector<uint64_t> read_target;
read_target.resize(pg.pg_size);
for (int i = 0; i < pg.pg_size; i++)
{
read_target[i] = 0;
}
for (auto & o: st.osd_set)
{
read_target[o.role] = o.osd_num;
}
pg.state_dict[st.osd_set] = {
.read_target = read_target,
.osd_set = st.osd_set,
.state = state,
.object_count = 1,
};
it = pg.state_dict.find(st.osd_set);
}
else
{
it->second.object_count++;
}
pg.obj_states[st.oid] = &it->second;
if (st.target_ver < st.max_ver)
{
pg.ver_override[st.oid] = st.target_ver;
}
if (state & (OBJ_NEEDS_ROLLBACK | OBJ_NEEDS_STABLE))
{
spp::sparse_hash_map<obj_piece_id_t, obj_piece_ver_t> pieces;
for (int i = st.obj_start; i < st.obj_end; i++)
{
auto & pcs = pieces[(obj_piece_id_t){ .oid = all[i].oid, .osd_num = all[i].osd_num }];
if (!pcs.max_ver)
{
pcs.max_ver = all[i].version;
}
if (all[i].is_stable && !pcs.stable_ver)
{
pcs.stable_ver = all[i].version;
}
}
for (auto pp: pieces)
{
auto & pcs = pp.second;
if (pcs.stable_ver < pcs.max_ver)
{
auto & act = obj_stab_actions[pp.first];
if (pcs.max_ver > st.target_ver)
{
act.rollback = true;
act.rollback_to = st.target_ver;
}
else if (pcs.max_ver < st.target_ver && pcs.stable_ver < pcs.max_ver)
{
act.rollback = true;
act.rollback_to = pcs.stable_ver;
}
if (pcs.max_ver >= st.target_ver && pcs.stable_ver < st.target_ver)
{
act.make_stable = true;
act.stable_to = st.target_ver;
}
}
}
}
}
else
pg.clean_count++;
pg.total_count++;
}
// FIXME: Write at least some tests for this function
void pg_t::calc_object_states()
{
auto & pg = *this;
// Copy all object lists into one array
std::vector<obj_ver_role> all;
auto ps = pg.peering_state;
for (auto it: ps->list_results)
{
auto nstab = it.second.stable_count;
auto n = it.second.total_count;
auto osd_num = it.first;
uint64_t start = all.size();
all.resize(start + n);
obj_ver_id *ov = it.second.buf;
for (uint64_t i = 0; i < n; i++, ov++)
{
all[start+i] = {
.oid = ov->oid,
.version = ov->version,
.osd_num = osd_num,
.is_stable = i < nstab,
};
}
free(it.second.buf);
it.second.buf = NULL;
}
ps->list_results.clear();
// Sort
std::sort(all.begin(), all.end());
// Walk over it and check object states
pg.clean_count = 0;
pg.total_count = 0;
pg.state = 0;
int replica = 0;
pg_obj_state_check_t st;
for (int i = 0; i < all.size(); i++)
{
if (st.oid.inode != all[i].oid.inode ||
st.oid.stripe != (all[i].oid.stripe & ~STRIPE_MASK))
{
if (st.oid.inode != 0)
{
// Remember object state
st.obj_end = st.ver_end = i;
remember_object(st, all);
}
st.obj_start = st.ver_start = i;
st.oid = { .inode = all[i].oid.inode, .stripe = all[i].oid.stripe & ~STRIPE_MASK };
st.max_ver = st.target_ver = all[i].version;
st.has_roles = st.n_copies = st.n_roles = st.n_stable = st.n_matched = 0;
st.is_buggy = st.has_old_unstable = false;
}
else if (st.target_ver != all[i].version)
{
if (st.n_stable > 0 || st.n_roles >= pg.pg_minsize)
{
// Last processed version is either recoverable or stable, choose it as target and skip previous versions
st.ver_end = i;
i++;
while (i < all.size() && st.oid.inode == all[i].oid.inode &&
st.oid.stripe == (all[i].oid.stripe & ~STRIPE_MASK))
{
if (!all[i].is_stable)
{
st.has_old_unstable = true;
}
i++;
}
st.obj_end = i;
i--;
continue;
}
else
{
// Last processed version is unstable and unrecoverable
// We'll know that because target_ver < max_ver
st.ver_start = i;
st.target_ver = all[i].version;
st.has_roles = st.n_copies = st.n_roles = st.n_stable = st.n_matched = 0;
}
}
replica = (all[i].oid.stripe & STRIPE_MASK);
st.n_copies++;
if (replica >= pg.pg_size)
{
// FIXME In the future, check it against the PG epoch number to handle replication factor/scheme changes
st.is_buggy = true;
}
else
{
if (all[i].is_stable)
{
st.n_stable++;
}
if (pg.cur_set[replica] == all[i].osd_num)
{
st.n_matched++;
}
if (!(st.has_roles & (1 << replica)))
{
st.has_roles = st.has_roles | (1 << replica);
st.n_roles++;
}
}
}
if (st.oid.inode != 0)
{
// Remember object state
st.obj_end = st.ver_end = all.size();
remember_object(st, all);
}
if (pg.pg_cursize < pg.pg_size)
{
pg.state = pg.state | PG_DEGRADED;
}
printf(
"PG %u is active%s%s%s%s%s (%lu objects)\n", pg.pg_num,
(pg.state & PG_DEGRADED) ? " + degraded" : "",
(pg.state & PG_HAS_UNFOUND) ? " + has_unfound" : "",
(pg.state & PG_HAS_DEGRADED) ? " + has_degraded" : "",
(pg.state & PG_HAS_MISPLACED) ? " + has_misplaced" : "",
(pg.state & PG_HAS_UNCLEAN) ? " + has_unclean" : "",
pg.total_count
);
pg.state = pg.state | PG_ACTIVE;
}

View File

@ -1,23 +1,43 @@
// Copyright (c) Vitaliy Filippov, 2019+
// License: VNPL-1.1 (see README.md for details)
#include <map>
#include <vector>
#include <algorithm>
#include "cpp-btree/btree_map.h"
#include "object_id.h"
#include "osd_ops.h"
#include "pg_states.h"
#define PG_EPOCH_BITS 48
#include "sparsepp/sparsepp/spp.h"
// Placement group states
// Exactly one of these:
#define PG_OFFLINE (1<<0)
#define PG_PEERING (1<<1)
#define PG_INCOMPLETE (1<<2)
#define PG_ACTIVE (1<<3)
// Plus any of these:
#define PG_DEGRADED (1<<4)
#define PG_HAS_UNFOUND (1<<5)
#define PG_HAS_DEGRADED (1<<6)
#define PG_HAS_MISPLACED (1<<7)
#define PG_HAS_UNCLEAN (1<<8)
// FIXME: Safe default that doesn't depend on parity_block_size of pg_parity_size
#define STRIPE_MASK ((uint64_t)4096 - 1)
// OSD object states
#define OBJ_CLEAN 0x01
#define OBJ_MISPLACED 0x02
#define OBJ_DEGRADED 0x03
#define OBJ_INCOMPLETE 0x04
#define OBJ_NEEDS_STABLE 0x10000
#define OBJ_NEEDS_ROLLBACK 0x20000
#define OBJ_OVERCOPIED 0x40000
#define OBJ_BUGGY 0x80000
struct pg_obj_loc_t
{
uint64_t role;
osd_num_t osd_num;
bool outdated;
bool stable;
};
typedef std::vector<pg_obj_loc_t> pg_osd_set_t;
@ -44,10 +64,28 @@ struct osd_op_t;
struct pg_peering_state_t
{
// osd_num -> list result
std::map<osd_num_t, osd_op_t*> list_ops;
std::map<osd_num_t, pg_list_result_t> list_results;
pool_id_t pool_id = 0;
pg_num_t pg_num = 0;
spp::sparse_hash_map<osd_num_t, osd_op_t*> list_ops;
spp::sparse_hash_map<osd_num_t, pg_list_result_t> list_results;
int list_done = 0;
};
struct pg_obj_state_check_t
{
int obj_start = 0, obj_end = 0, ver_start = 0, ver_end = 0;
object_id oid = { 0 };
uint64_t max_ver = 0;
uint64_t target_ver = 0;
uint64_t n_copies = 0, has_roles = 0, n_roles = 0, n_stable = 0, n_matched = 0;
bool is_buggy = false, has_old_unstable = false;
pg_osd_set_t osd_set;
};
struct obj_ver_role
{
object_id oid;
uint64_t version;
uint64_t osd_num;
bool is_stable;
};
struct obj_piece_id_t
@ -56,75 +94,60 @@ struct obj_piece_id_t
uint64_t osd_num;
};
struct obj_ver_osd_t
struct obj_piece_ver_t
{
uint64_t osd_num;
object_id oid;
uint64_t version;
uint64_t max_ver = 0;
uint64_t stable_ver = 0;
};
struct flush_action_t
struct obj_stab_action_t
{
bool rollback = false, make_stable = false;
uint64_t stable_to = 0, rollback_to = 0;
bool submitted = false;
};
struct pg_flush_batch_t
{
std::map<osd_num_t, std::vector<obj_ver_id>> rollback_lists;
std::map<osd_num_t, std::vector<obj_ver_id>> stable_lists;
int flush_ops = 0, flush_done = 0;
int flush_objects = 0;
};
struct pg_t
{
int state = 0;
uint64_t scheme = 0;
uint64_t pg_cursize = 0, pg_size = 0, pg_minsize = 0, pg_data_size = 0;
pool_id_t pool_id = 0;
pg_num_t pg_num = 0;
int state;
uint64_t pg_cursize = 3, pg_size = 3, pg_minsize = 2;
pg_num_t pg_num;
uint64_t clean_count = 0, total_count = 0;
// epoch number - should increase with each non-clean activation of the PG
uint64_t epoch = 0, reported_epoch = 0;
// target history and all potential peers
std::vector<std::vector<osd_num_t>> target_history;
std::vector<osd_num_t> all_peers;
bool history_changed = false;
// peer list from the last peering event
std::vector<osd_num_t> cur_peers;
// target_set is the "correct" peer OSD set for this PG
std::vector<osd_num_t> target_set;
// cur_set is the current set of connected peer OSDs for this PG
// cur_set = (role => osd_num or UINT64_MAX if missing). role numbers begin with zero
std::vector<osd_num_t> cur_set;
// same thing in state_dict-like format
pg_osd_set_t cur_loc_set;
// moved object map. by default, each object is considered to reside on cur_set.
// moved object map. by default, each object is considered to reside on the cur_set.
// this map stores all objects that differ.
// it may consume up to ~ (raw storage / object size) * 24 bytes in the worst case scenario
// which is up to ~192 MB per 1 TB in the worst case scenario
std::map<pg_osd_set_t, pg_osd_set_state_t> state_dict;
btree::btree_map<object_id, pg_osd_set_state_t*> incomplete_objects, misplaced_objects, degraded_objects;
std::map<obj_piece_id_t, flush_action_t> flush_actions;
std::vector<obj_ver_osd_t> copies_to_delete_after_sync;
btree::btree_map<object_id, uint64_t> ver_override;
spp::sparse_hash_map<object_id, pg_osd_set_state_t*> obj_states;
std::map<obj_piece_id_t, obj_stab_action_t> obj_stab_actions;
spp::sparse_hash_map<object_id, uint64_t> ver_override;
pg_peering_state_t *peering_state = NULL;
pg_flush_batch_t *flush_batch = NULL;
int inflight = 0; // including write_queue
std::multimap<object_id, osd_op_t*> write_queue;
void calc_object_states(int log_level);
void print_state();
void calc_object_states();
void remember_object(pg_obj_state_check_t &st, std::vector<obj_ver_role> &all);
};
inline bool operator < (const pg_obj_loc_t &a, const pg_obj_loc_t &b)
{
return a.outdated < b.outdated ||
a.outdated == b.outdated && a.role < b.role ||
a.outdated == b.outdated && a.role == b.role && a.osd_num < b.osd_num;
return a.role < b.role || a.role == b.role && a.osd_num < b.osd_num ||
a.role == b.role && a.osd_num == b.osd_num && a.stable < b.stable;
}
inline bool operator < (const obj_ver_role & a, const obj_ver_role & b)
{
// ORDER BY inode ASC, stripe & ~STRIPE_MASK ASC, version DESC, osd_num ASC
return a.oid.inode < b.oid.inode || a.oid.inode == b.oid.inode && (
(a.oid.stripe & ~STRIPE_MASK) < (b.oid.stripe & ~STRIPE_MASK) ||
(a.oid.stripe & ~STRIPE_MASK) == (b.oid.stripe & ~STRIPE_MASK) && (
a.version > b.version || a.version == b.version && a.osd_num < b.osd_num
)
);
}
inline bool operator == (const obj_piece_id_t & a, const obj_piece_id_t & b)
@ -149,6 +172,7 @@ namespace std
// Copy-pasted from spp::hash_combine()
seed ^= (e.role + 0xc6a4a7935bd1e995 + (seed << 6) + (seed >> 2));
seed ^= (e.osd_num + 0xc6a4a7935bd1e995 + (seed << 6) + (seed >> 2));
seed ^= ((e.stable ? 1 : 0) + 0xc6a4a7935bd1e995 + (seed << 6) + (seed >> 2));
}
return seed;
}

603
osd_primary.cpp Normal file
View File

@ -0,0 +1,603 @@
#include "osd.h"
#include "osd_rmw.h"
#define SUBMIT_READ 0
#define SUBMIT_RMW_READ 1
#define SUBMIT_WRITE 2
// read: read directly or read paired stripe(s), reconstruct, return
// write: read paired stripe(s), modify, write
//
// nuance: take care to read the same version from paired stripes!
// to do so, we remember "last readable" version until a write request completes
// and we postpone other write requests to the same stripe until completion of previous ones
//
// sync: sync peers, get unstable versions from somewhere, stabilize them
struct unstable_osd_num_t
{
osd_num_t osd_num;
int start, len;
};
struct osd_primary_op_data_t
{
int st = 0;
pg_num_t pg_num;
object_id oid;
uint64_t target_ver;
uint64_t fact_ver = 0;
int n_subops = 0, done = 0, errors = 0;
int degraded = 0, pg_size, pg_minsize;
osd_rmw_stripe_t *stripes;
osd_op_t *subops = NULL;
// for sync. oops, requires freeing
std::vector<unstable_osd_num_t> *unstable_write_osds = NULL;
obj_ver_id *unstable_writes = NULL;
};
void osd_t::finish_primary_op(osd_op_t *cur_op, int retval)
{
// FIXME add separate magic number
auto cl_it = clients.find(cur_op->peer_fd);
if (cl_it != clients.end())
{
cur_op->reply.hdr.magic = SECONDARY_OSD_REPLY_MAGIC;
cur_op->reply.hdr.id = cur_op->req.hdr.id;
cur_op->reply.hdr.opcode = cur_op->req.hdr.opcode;
cur_op->reply.hdr.retval = retval;
outbox_push(cl_it->second, cur_op);
}
else
{
delete cur_op;
}
}
bool osd_t::prepare_primary_rw(osd_op_t *cur_op)
{
// PG number is calculated from the offset
// Our EC scheme stores data in fixed chunks equal to (K*block size)
// But we must not use K in the process of calculating the PG number
// So we calculate the PG number using a separate setting which should be per-inode (FIXME)
// FIXME Real pg_num should equal the below expression + 1
pg_num_t pg_num = (cur_op->req.rw.inode + cur_op->req.rw.offset / parity_block_size) % pg_count;
// FIXME: Postpone operations in inactive PGs
if (pg_num > pgs.size() || !(pgs[pg_num].state & PG_ACTIVE))
{
finish_primary_op(cur_op, -EINVAL);
return false;
}
uint64_t pg_parity_size = bs_block_size * pgs[pg_num].pg_minsize;
object_id oid = {
.inode = cur_op->req.rw.inode,
// oid.stripe = starting offset of the parity stripe, so it can be mapped back to the PG
.stripe = (cur_op->req.rw.offset / parity_block_size) * parity_block_size +
((cur_op->req.rw.offset % parity_block_size) / pg_parity_size) * pg_parity_size
};
if ((cur_op->req.rw.offset + cur_op->req.rw.len) > (oid.stripe + pg_parity_size) ||
(cur_op->req.rw.offset % bs_disk_alignment) != 0 ||
(cur_op->req.rw.len % bs_disk_alignment) != 0)
{
finish_primary_op(cur_op, -EINVAL);
return false;
}
osd_primary_op_data_t *op_data = (osd_primary_op_data_t*)calloc(
sizeof(osd_primary_op_data_t) + sizeof(osd_rmw_stripe_t) * pgs[pg_num].pg_size, 1
);
op_data->pg_num = pg_num;
op_data->oid = oid;
op_data->stripes = ((osd_rmw_stripe_t*)(op_data+1));
cur_op->op_data = op_data;
split_stripes(pgs[pg_num].pg_minsize, bs_block_size, (uint32_t)(cur_op->req.rw.offset - oid.stripe), cur_op->req.rw.len, op_data->stripes);
return true;
}
void osd_t::continue_primary_read(osd_op_t *cur_op)
{
if (!cur_op->op_data && !prepare_primary_rw(cur_op))
{
return;
}
osd_primary_op_data_t *op_data = cur_op->op_data;
if (op_data->st == 1) goto resume_1;
else if (op_data->st == 2) goto resume_2;
{
auto & pg = pgs[op_data->pg_num];
for (int role = 0; role < pg.pg_minsize; role++)
{
op_data->stripes[role].read_start = op_data->stripes[role].req_start;
op_data->stripes[role].read_end = op_data->stripes[role].req_end;
}
// Determine version
auto vo_it = pg.ver_override.find(op_data->oid);
op_data->target_ver = vo_it != pg.ver_override.end() ? vo_it->second : UINT64_MAX;
if (pg.state == PG_ACTIVE)
{
// Fast happy-path
cur_op->buf = alloc_read_buffer(op_data->stripes, pg.pg_minsize, 0);
submit_primary_subops(SUBMIT_READ, pg.pg_minsize, pg.cur_set.data(), cur_op);
cur_op->send_list.push_back(cur_op->buf, cur_op->req.rw.len);
op_data->st = 1;
}
else
{
// PG may be degraded or have misplaced objects
auto st_it = pg.obj_states.find(op_data->oid);
uint64_t* cur_set = (st_it != pg.obj_states.end()
? st_it->second->read_target.data()
: pg.cur_set.data());
if (extend_missing_stripes(op_data->stripes, cur_set, pg.pg_minsize, pg.pg_size) < 0)
{
free(op_data);
finish_primary_op(cur_op, -EIO);
return;
}
// Submit reads
op_data->pg_minsize = pg.pg_minsize;
op_data->pg_size = pg.pg_size;
op_data->degraded = 1;
cur_op->buf = alloc_read_buffer(op_data->stripes, pg.pg_size, 0);
submit_primary_subops(SUBMIT_READ, pg.pg_size, cur_set, cur_op);
op_data->st = 1;
}
}
resume_1:
return;
resume_2:
if (op_data->errors > 0)
{
free(op_data);
cur_op->op_data = NULL;
finish_primary_op(cur_op, -EIO);
return;
}
if (op_data->degraded)
{
// Reconstruct missing stripes
// FIXME: Always EC(k+1) by now. Add different coding schemes
osd_rmw_stripe_t *stripes = op_data->stripes;
for (int role = 0; role < op_data->pg_minsize; role++)
{
if (stripes[role].read_end != 0 && stripes[role].missing)
{
reconstruct_stripe(stripes, op_data->pg_size, role);
}
if (stripes[role].req_end != 0)
{
// Send buffer in parts to avoid copying
cur_op->send_list.push_back(
stripes[role].read_buf + (stripes[role].req_start - stripes[role].read_start),
stripes[role].req_end - stripes[role].req_start
);
}
}
}
free(op_data);
cur_op->op_data = NULL;
finish_primary_op(cur_op, cur_op->req.rw.len);
}
void osd_t::submit_primary_subops(int submit_type, int pg_size, const uint64_t* osd_set, osd_op_t *cur_op)
{
bool w = submit_type == SUBMIT_WRITE;
osd_primary_op_data_t *op_data = cur_op->op_data;
osd_rmw_stripe_t *stripes = op_data->stripes;
// Allocate subops
int n_subops = 0, zero_read = -1;
for (int role = 0; role < pg_size; role++)
{
if (osd_set[role] == this->osd_num || osd_set[role] != 0 && zero_read == -1)
{
zero_read = role;
}
if (osd_set[role] != 0 && (w || stripes[role].read_end != 0))
{
n_subops++;
}
}
if (!n_subops && submit_type == SUBMIT_RMW_READ)
{
n_subops = 1;
}
else
{
zero_read = -1;
}
osd_op_t *subops = new osd_op_t[n_subops];
op_data->done = op_data->errors = 0;
op_data->n_subops = n_subops;
op_data->subops = subops;
int subop = 0;
for (int role = 0; role < pg_size; role++)
{
// We always submit zero-length writes to all replicas, even if the stripe is not modified
if (!(w || stripes[role].read_end != 0 || zero_read == role))
{
continue;
}
osd_num_t role_osd_num = osd_set[role];
if (role_osd_num != 0)
{
if (role_osd_num == this->osd_num)
{
subops[subop].bs_op = new blockstore_op_t({
.opcode = (uint64_t)(w ? BS_OP_WRITE : BS_OP_READ),
.callback = [cur_op, this](blockstore_op_t *subop)
{
handle_primary_subop(cur_op, subop->retval == subop->len, subop->version);
},
.oid = {
.inode = op_data->oid.inode,
.stripe = op_data->oid.stripe | role,
},
.version = w ? 0 : (submit_type == SUBMIT_RMW_READ ? UINT64_MAX : op_data->target_ver),
.offset = w ? stripes[role].write_start : stripes[role].read_start,
.len = w ? stripes[role].write_end - stripes[role].write_start : stripes[role].read_end - stripes[role].read_start,
.buf = w ? stripes[role].write_buf : stripes[role].read_buf,
});
bs->enqueue_op(subops[subop].bs_op);
}
else
{
subops[subop].op_type = OSD_OP_OUT;
subops[subop].send_list.push_back(subops[subop].req.buf, OSD_PACKET_SIZE);
subops[subop].peer_fd = this->osd_peer_fds.at(role_osd_num);
subops[subop].req.sec_rw = {
.header = {
.magic = SECONDARY_OSD_OP_MAGIC,
.id = this->next_subop_id++,
.opcode = (uint64_t)(w ? OSD_OP_SECONDARY_WRITE : OSD_OP_SECONDARY_READ),
},
.oid = {
.inode = op_data->oid.inode,
.stripe = op_data->oid.stripe | role,
},
.version = w ? 0 : (submit_type == SUBMIT_RMW_READ ? UINT64_MAX : op_data->target_ver),
.offset = w ? stripes[role].write_start : stripes[role].read_start,
.len = w ? stripes[role].write_end - stripes[role].write_start : stripes[role].read_end - stripes[role].read_start,
};
subops[subop].buf = w ? stripes[role].write_buf : stripes[role].read_buf;
if (w && stripes[role].write_end > 0)
{
subops[subop].send_list.push_back(stripes[role].write_buf, stripes[role].write_end - stripes[role].write_start);
}
subops[subop].callback = [cur_op, this](osd_op_t *subop)
{
// so it doesn't get freed
subop->buf = NULL;
handle_primary_subop(cur_op, subop->reply.hdr.retval == subop->req.sec_rw.len, subop->reply.sec_rw.version);
};
outbox_push(clients[subops[subop].peer_fd], &subops[subop]);
}
subop++;
}
}
}
void osd_t::handle_primary_subop(osd_op_t *cur_op, int ok, uint64_t version)
{
osd_primary_op_data_t *op_data = cur_op->op_data;
op_data->fact_ver = version;
if (!ok)
{
// FIXME: Handle errors
op_data->errors++;
}
else
{
op_data->done++;
}
if ((op_data->errors + op_data->done) >= op_data->n_subops)
{
delete[] op_data->subops;
op_data->subops = NULL;
op_data->st++;
if (cur_op->req.hdr.opcode == OSD_OP_READ)
{
continue_primary_read(cur_op);
}
else if (cur_op->req.hdr.opcode == OSD_OP_WRITE)
{
continue_primary_write(cur_op);
}
else if (cur_op->req.hdr.opcode == OSD_OP_SYNC)
{
continue_primary_sync(cur_op);
}
else
{
throw std::runtime_error("BUG: unknown opcode");
}
}
}
void osd_t::continue_primary_write(osd_op_t *cur_op)
{
if (!cur_op->op_data && !prepare_primary_rw(cur_op))
{
return;
}
osd_primary_op_data_t *op_data = cur_op->op_data;
// FIXME: Handle operation cancel
auto & pg = pgs[op_data->pg_num];
if (op_data->st == 1) goto resume_1;
else if (op_data->st == 2) goto resume_2;
else if (op_data->st == 3) goto resume_3;
else if (op_data->st == 4) goto resume_4;
else if (op_data->st == 5) goto resume_5;
assert(op_data->st == 0);
// Check if actions are pending for this object
{
auto act_it = pg.obj_stab_actions.lower_bound((obj_piece_id_t){
.oid = op_data->oid,
.osd_num = 0,
});
if (act_it != pg.obj_stab_actions.end() &&
act_it->first.oid.inode == op_data->oid.inode &&
(act_it->first.oid.stripe & ~STRIPE_MASK) == op_data->oid.stripe)
{
// FIXME postpone the request until actions are done
free(op_data);
finish_primary_op(cur_op, -EIO);
return;
}
}
// Check if there are other write requests to the same object
{
auto vo_it = pg.write_queue.find(op_data->oid);
if (vo_it != pg.write_queue.end())
{
op_data->st = 1;
pg.write_queue.emplace(op_data->oid, cur_op);
return;
}
pg.write_queue.emplace(op_data->oid, cur_op);
}
resume_1:
// Determine blocks to read
cur_op->rmw_buf = calc_rmw_reads(cur_op->buf, op_data->stripes, pg.cur_set.data(), pg.pg_size, pg.pg_minsize, pg.pg_cursize);
// Read required blocks
submit_primary_subops(SUBMIT_RMW_READ, pg.pg_size, pg.cur_set.data(), cur_op);
resume_2:
op_data->st = 2;
return;
resume_3:
// Save version override for parallel reads
pg.ver_override[op_data->oid] = op_data->fact_ver;
// Calculate parity
calc_rmw_parity(op_data->stripes, pg.pg_size);
// Send writes
submit_primary_subops(SUBMIT_WRITE, pg.pg_size, pg.cur_set.data(), cur_op);
resume_4:
op_data->st = 4;
return;
resume_5:
// Remember version as unstable
osd_num_t *osd_set = pg.cur_set.data();
for (int role = 0; role < pg.pg_size; role++)
{
if (osd_set[role] != 0)
{
this->unstable_writes[(osd_object_id_t){
.osd_num = osd_set[role],
.oid = {
.inode = op_data->oid.inode,
.stripe = op_data->oid.stripe | role,
},
}] = op_data->fact_ver;
}
}
// Remember PG as dirty to drop the connection when PG goes offline
// (this is required because of the "lazy sync")
this->clients[cur_op->peer_fd].dirty_pgs.insert(op_data->pg_num);
// Remove version override
pg.ver_override.erase(op_data->oid);
finish_primary_op(cur_op, cur_op->req.rw.len);
// Continue other write operations to the same object
{
auto next_it = pg.write_queue.find(op_data->oid);
auto this_it = next_it;
next_it++;
pg.write_queue.erase(this_it);
if (next_it != pg.write_queue.end() &&
next_it->first == op_data->oid)
{
osd_op_t *next_op = next_it->second;
continue_primary_write(next_op);
}
}
}
// Save and clear unstable_writes -> SYNC all -> STABLE all
// FIXME: Run regular automatic syncs based on the number of unstable writes and/or system time
void osd_t::continue_primary_sync(osd_op_t *cur_op)
{
if (!cur_op->op_data)
{
cur_op->op_data = (osd_primary_op_data_t*)calloc(sizeof(osd_primary_op_data_t), 1);
}
if (cur_op->op_data->st == 1) goto resume_1;
else if (cur_op->op_data->st == 2) goto resume_2;
else if (cur_op->op_data->st == 3) goto resume_3;
else if (cur_op->op_data->st == 4) goto resume_4;
else if (cur_op->op_data->st == 5) goto resume_5;
else if (cur_op->op_data->st == 6) goto resume_6;
assert(cur_op->op_data->st == 0);
if (syncs_in_progress.size() > 0)
{
// Wait for previous syncs, if any
// FIXME: We may try to execute the current one in parallel, like in Blockstore, but I'm not sure if it matters at all
syncs_in_progress.push_back(cur_op);
cur_op->op_data->st = 1;
resume_1:
return;
}
else
{
syncs_in_progress.push_back(cur_op);
}
resume_2:
// FIXME: Handle operation cancel
if (unstable_writes.size() == 0)
{
// Nothing to sync
goto finish;
}
// Save and clear unstable_writes
// FIXME: This is possible to do it on a per-client basis
// It would be cool not to copy them here at all, but someone has to deduplicate them by object IDs anyway
cur_op->op_data->unstable_write_osds = new std::vector<unstable_osd_num_t>();
cur_op->op_data->unstable_writes = new obj_ver_id[unstable_writes.size()];
{
osd_num_t last_osd = 0;
int last_start = 0, last_end = 0;
for (auto it = unstable_writes.begin(); it != unstable_writes.end(); it++)
{
if (last_osd != it->first.osd_num)
{
if (last_osd != 0)
{
cur_op->op_data->unstable_write_osds->push_back((unstable_osd_num_t){
.osd_num = last_osd,
.start = last_start,
.len = last_end - last_start,
});
}
last_osd = it->first.osd_num;
last_start = last_end;
}
cur_op->op_data->unstable_writes[last_end] = (obj_ver_id){
.oid = it->first.oid,
.version = it->second,
};
last_end++;
}
if (last_osd != 0)
{
cur_op->op_data->unstable_write_osds->push_back((unstable_osd_num_t){
.osd_num = last_osd,
.start = last_start,
.len = last_end - last_start,
});
}
}
unstable_writes.clear();
// SYNC
submit_primary_sync_subops(cur_op);
resume_3:
cur_op->op_data->st = 3;
return;
resume_4:
// Stabilize version sets
submit_primary_stab_subops(cur_op);
resume_5:
cur_op->op_data->st = 5;
return;
resume_6:
// FIXME: Free them correctly (via a destructor or so)
delete cur_op->op_data->unstable_write_osds;
delete[] cur_op->op_data->unstable_writes;
cur_op->op_data->unstable_writes = NULL;
cur_op->op_data->unstable_write_osds = NULL;
finish:
assert(syncs_in_progress.front() == cur_op);
syncs_in_progress.pop_front();
finish_primary_op(cur_op, 0);
if (syncs_in_progress.size() > 0)
{
cur_op = syncs_in_progress.front();
cur_op->op_data->st++;
goto resume_2;
}
}
void osd_t::submit_primary_sync_subops(osd_op_t *cur_op)
{
osd_primary_op_data_t *op_data = cur_op->op_data;
int n_osds = op_data->unstable_write_osds->size();
osd_op_t *subops = new osd_op_t[n_osds];
op_data->done = op_data->errors = 0;
op_data->n_subops = n_osds;
op_data->subops = subops;
for (int i = 0; i < n_osds; i++)
{
osd_num_t sync_osd = (*(op_data->unstable_write_osds))[i].osd_num;
if (sync_osd == this->osd_num)
{
subops[i].bs_op = new blockstore_op_t({
.opcode = BS_OP_SYNC,
.callback = [cur_op, this](blockstore_op_t *subop)
{
handle_primary_subop(cur_op, subop->retval == 0, 0);
},
});
bs->enqueue_op(subops[i].bs_op);
}
else
{
subops[i].op_type = OSD_OP_OUT;
subops[i].send_list.push_back(subops[i].req.buf, OSD_PACKET_SIZE);
subops[i].peer_fd = osd_peer_fds.at(sync_osd);
subops[i].req.sec_sync = {
.header = {
.magic = SECONDARY_OSD_OP_MAGIC,
.id = this->next_subop_id++,
.opcode = OSD_OP_SECONDARY_SYNC,
},
};
subops[i].callback = [cur_op, this](osd_op_t *subop)
{
handle_primary_subop(cur_op, subop->reply.hdr.retval == 0, 0);
};
outbox_push(clients[subops[i].peer_fd], &subops[i]);
}
}
}
void osd_t::submit_primary_stab_subops(osd_op_t *cur_op)
{
osd_primary_op_data_t *op_data = cur_op->op_data;
int n_osds = op_data->unstable_write_osds->size();
osd_op_t *subops = new osd_op_t[n_osds];
op_data->done = op_data->errors = 0;
op_data->n_subops = n_osds;
op_data->subops = subops;
for (int i = 0; i < n_osds; i++)
{
auto & stab_osd = (*(op_data->unstable_write_osds))[i];
if (stab_osd.osd_num == this->osd_num)
{
subops[i].bs_op = new blockstore_op_t({
.opcode = BS_OP_STABLE,
.callback = [cur_op, this](blockstore_op_t *subop)
{
handle_primary_subop(cur_op, subop->retval == 0, 0);
},
.len = (uint32_t)stab_osd.len,
.buf = (void*)(op_data->unstable_writes + stab_osd.start),
});
bs->enqueue_op(subops[i].bs_op);
}
else
{
subops[i].op_type = OSD_OP_OUT;
subops[i].send_list.push_back(subops[i].req.buf, OSD_PACKET_SIZE);
subops[i].peer_fd = osd_peer_fds.at(stab_osd.osd_num);
subops[i].req.sec_stab = {
.header = {
.magic = SECONDARY_OSD_OP_MAGIC,
.id = this->next_subop_id++,
.opcode = OSD_OP_SECONDARY_STABILIZE,
},
.len = (uint64_t)(stab_osd.len * sizeof(obj_ver_id)),
};
subops[i].send_list.push_back(op_data->unstable_writes + stab_osd.start, stab_osd.len * sizeof(obj_ver_id));
subops[i].callback = [cur_op, this](osd_op_t *subop)
{
handle_primary_subop(cur_op, subop->reply.hdr.retval == 0, 0);
};
outbox_push(clients[subops[i].peer_fd], &subops[i]);
}
}
}

204
osd_receive.cpp Normal file
View File

@ -0,0 +1,204 @@
#include "osd.h"
void osd_t::read_requests()
{
for (int i = 0; i < read_ready_clients.size(); i++)
{
int peer_fd = read_ready_clients[i];
auto & cl = clients[peer_fd];
io_uring_sqe* sqe = ringloop->get_sqe();
if (!sqe)
{
read_ready_clients.erase(read_ready_clients.begin(), read_ready_clients.begin() + i);
return;
}
ring_data_t* data = ((ring_data_t*)sqe->user_data);
if (!cl.read_buf)
{
// no reads in progress
// so this is either a new command or a reply to a previously sent command
if (!cl.read_op)
{
cl.read_op = new osd_op_t;
cl.read_op->peer_fd = peer_fd;
}
cl.read_op->op_type = OSD_OP_IN;
cl.read_buf = &cl.read_op->req.buf;
cl.read_remaining = OSD_PACKET_SIZE;
cl.read_state = CL_READ_OP;
}
cl.read_iov.iov_base = cl.read_buf;
cl.read_iov.iov_len = cl.read_remaining;
cl.read_msg.msg_iov = &cl.read_iov;
cl.read_msg.msg_iovlen = 1;
data->callback = [this, peer_fd](ring_data_t *data) { handle_read(data, peer_fd); };
my_uring_prep_recvmsg(sqe, peer_fd, &cl.read_msg, 0);
}
read_ready_clients.clear();
}
void osd_t::handle_read(ring_data_t *data, int peer_fd)
{
auto cl_it = clients.find(peer_fd);
if (cl_it != clients.end())
{
auto & cl = cl_it->second;
if (data->res == -EAGAIN)
{
cl.read_ready--;
if (cl.read_ready > 0)
read_ready_clients.push_back(peer_fd);
return;
}
else if (data->res < 0)
{
// this is a client socket, so don't panic. just disconnect it
printf("Client %d socket read error: %d (%s). Disconnecting client\n", peer_fd, -data->res, strerror(-data->res));
stop_client(peer_fd);
return;
}
read_ready_clients.push_back(peer_fd);
if (data->res > 0)
{
cl.read_remaining -= data->res;
cl.read_buf += data->res;
if (cl.read_remaining <= 0)
{
cl.read_buf = NULL;
if (cl.read_state == CL_READ_OP)
{
if (cl.read_op->req.hdr.magic == SECONDARY_OSD_REPLY_MAGIC)
{
handle_reply_hdr(&cl);
}
else
{
handle_op_hdr(&cl);
}
}
else if (cl.read_state == CL_READ_DATA)
{
// Operation is ready
exec_op(cl.read_op);
cl.read_op = NULL;
cl.read_state = 0;
}
else if (cl.read_state == CL_READ_REPLY_DATA)
{
// Reply is ready
auto req_it = cl.sent_ops.find(cl.read_reply_id);
osd_op_t *request = req_it->second;
cl.sent_ops.erase(req_it);
cl.read_reply_id = 0;
cl.read_state = 0;
// Measure subop latency
timespec tv_end;
clock_gettime(CLOCK_REALTIME, &tv_end);
subop_stat_count[request->req.hdr.opcode]++;
subop_stat_sum[request->req.hdr.opcode] += (
(tv_end.tv_sec - request->tv_begin.tv_sec)*1000000 +
(tv_end.tv_nsec - request->tv_begin.tv_nsec)/1000
);
request->callback(request);
}
}
}
}
}
void osd_t::handle_op_hdr(osd_client_t *cl)
{
osd_op_t *cur_op = cl->read_op;
if (cur_op->req.hdr.opcode == OSD_OP_SECONDARY_READ)
{
if (cur_op->req.sec_rw.len > 0)
cur_op->buf = memalign(512, cur_op->req.sec_rw.len);
cl->read_remaining = 0;
}
else if (cur_op->req.hdr.opcode == OSD_OP_SECONDARY_WRITE)
{
if (cur_op->req.sec_rw.len > 0)
cur_op->buf = memalign(512, cur_op->req.sec_rw.len);
cl->read_remaining = cur_op->req.sec_rw.len;
}
else if (cur_op->req.hdr.opcode == OSD_OP_SECONDARY_STABILIZE ||
cur_op->req.hdr.opcode == OSD_OP_SECONDARY_ROLLBACK)
{
if (cur_op->req.sec_stab.len > 0)
cur_op->buf = memalign(512, cur_op->req.sec_stab.len);
cl->read_remaining = cur_op->req.sec_stab.len;
}
else if (cur_op->req.hdr.opcode == OSD_OP_READ)
{
if (cur_op->req.rw.len > 0)
cur_op->buf = memalign(512, cur_op->req.rw.len);
cl->read_remaining = 0;
}
else if (cur_op->req.hdr.opcode == OSD_OP_WRITE)
{
if (cur_op->req.rw.len > 0)
cur_op->buf = memalign(512, cur_op->req.rw.len);
cl->read_remaining = cur_op->req.rw.len;
}
if (cl->read_remaining > 0)
{
// Read data
cl->read_buf = cur_op->buf;
cl->read_state = CL_READ_DATA;
}
else
{
// Operation is ready
cl->read_op = NULL;
cl->read_state = 0;
exec_op(cur_op);
}
}
void osd_t::handle_reply_hdr(osd_client_t *cl)
{
osd_op_t *cur_op = cl->read_op;
auto req_it = cl->sent_ops.find(cur_op->req.hdr.id);
if (req_it == cl->sent_ops.end())
{
// Command out of sync. Drop connection
printf("Client %d command out of sync: id %lu\n", cl->peer_fd, cur_op->req.hdr.id);
stop_client(cl->peer_fd);
return;
}
osd_op_t *op = req_it->second;
memcpy(op->reply.buf, cur_op->req.buf, OSD_PACKET_SIZE);
if (op->reply.hdr.opcode == OSD_OP_SECONDARY_READ &&
op->reply.hdr.retval > 0)
{
// Read data. In this case we assume that the buffer is preallocated by the caller (!)
assert(op->buf);
cl->read_state = CL_READ_REPLY_DATA;
cl->read_reply_id = op->req.hdr.id;
cl->read_buf = op->buf;
cl->read_remaining = op->reply.hdr.retval;
}
else if (op->reply.hdr.opcode == OSD_OP_SECONDARY_LIST &&
op->reply.hdr.retval > 0)
{
op->buf = memalign(512, sizeof(obj_ver_id) * op->reply.hdr.retval);
cl->read_state = CL_READ_REPLY_DATA;
cl->read_reply_id = op->req.hdr.id;
cl->read_buf = op->buf;
cl->read_remaining = sizeof(obj_ver_id) * op->reply.hdr.retval;
}
else
{
cl->read_state = 0;
cl->sent_ops.erase(req_it);
// Measure subop latency
timespec tv_end;
clock_gettime(CLOCK_REALTIME, &tv_end);
subop_stat_count[op->req.hdr.opcode]++;
subop_stat_sum[op->req.hdr.opcode] += (
(tv_end.tv_sec - op->tv_begin.tv_sec)*1000000 +
(tv_end.tv_nsec - op->tv_begin.tv_nsec)/1000
);
op->callback(op);
}
}

367
osd_rmw.cpp Normal file
View File

@ -0,0 +1,367 @@
#include <malloc.h>
#include <assert.h>
#include "xor.h"
#include "osd_rmw.h"
static inline void extend_read(uint32_t start, uint32_t end, osd_rmw_stripe_t & stripe)
{
if (stripe.read_end == 0)
{
stripe.read_start = start;
stripe.read_end = end;
}
else
{
if (stripe.read_end < end)
stripe.read_end = end;
if (stripe.read_start > start)
stripe.read_start = start;
}
}
static inline void cover_read(uint32_t start, uint32_t end, osd_rmw_stripe_t & stripe)
{
// Subtract <to> write request from <from> request
if (start >= stripe.req_start &&
end <= stripe.req_end)
{
return;
}
if (start <= stripe.req_start &&
end >= stripe.req_start &&
end <= stripe.req_end)
{
end = stripe.req_start;
}
else if (start >= stripe.req_start &&
start <= stripe.req_end &&
end >= stripe.req_end)
{
start = stripe.req_end;
}
if (stripe.read_end == 0)
{
stripe.read_start = start;
stripe.read_end = end;
}
else
{
if (stripe.read_end < end)
stripe.read_end = end;
if (stripe.read_start > start)
stripe.read_start = start;
}
}
void split_stripes(uint64_t pg_minsize, uint32_t bs_block_size, uint32_t start, uint32_t end, osd_rmw_stripe_t *stripes)
{
end = start+end;
for (int role = 0; role < pg_minsize; role++)
{
if (start < (1+role)*bs_block_size && end > role*bs_block_size)
{
stripes[role].req_start = start < role*bs_block_size ? 0 : start-role*bs_block_size;
stripes[role].req_end = end > (role+1)*bs_block_size ? bs_block_size : end-role*bs_block_size;
}
}
}
void reconstruct_stripe(osd_rmw_stripe_t *stripes, int pg_size, int role)
{
int prev = -2;
for (int other = 0; other < pg_size; other++)
{
if (other != role)
{
if (prev == -2)
{
prev = other;
}
else if (prev >= 0)
{
memxor(
stripes[prev].read_buf + (stripes[prev].read_start - stripes[role].read_start),
stripes[other].read_buf + (stripes[other].read_start - stripes[other].read_start),
stripes[role].read_buf, stripes[role].read_end - stripes[role].read_start
);
prev = -1;
}
else
{
memxor(
stripes[role].read_buf,
stripes[other].read_buf + (stripes[other].read_start - stripes[role].read_start),
stripes[role].read_buf, stripes[role].read_end - stripes[role].read_start
);
}
}
}
}
int extend_missing_stripes(osd_rmw_stripe_t *stripes, osd_num_t *osd_set, int minsize, int size)
{
for (int role = 0; role < minsize; role++)
{
if (stripes[role].read_end != 0 && osd_set[role] == 0)
{
stripes[role].missing = true;
// Stripe is missing. Extend read to other stripes.
// We need at least pg_minsize stripes to recover the lost part.
// FIXME: LRC EC and similar don't require to read all other stripes.
int exist = 0;
for (int j = 0; j < size; j++)
{
if (osd_set[j] != 0)
{
extend_read(stripes[role].read_start, stripes[role].read_end, stripes[j]);
exist++;
if (exist >= minsize)
{
break;
}
}
}
if (exist < minsize)
{
// Less than minsize stripes are available for this object
return -1;
}
}
}
return 0;
}
void* alloc_read_buffer(osd_rmw_stripe_t *stripes, int read_pg_size, uint64_t add_size)
{
// Calculate buffer size
uint64_t buf_size = add_size;
for (int role = 0; role < read_pg_size; role++)
{
if (stripes[role].read_end != 0)
{
buf_size += stripes[role].read_end - stripes[role].read_start;
}
}
// Allocate buffer
void *buf = memalign(MEM_ALIGNMENT, buf_size);
uint64_t buf_pos = add_size;
for (int role = 0; role < read_pg_size; role++)
{
if (stripes[role].read_end != 0)
{
stripes[role].read_buf = buf + buf_pos;
buf_pos += stripes[role].read_end - stripes[role].read_start;
}
}
return buf;
}
void* calc_rmw_reads(void *write_buf, osd_rmw_stripe_t *stripes, uint64_t *osd_set, uint64_t pg_size, uint64_t pg_minsize, uint64_t pg_cursize)
{
// Generic parity modification (read-modify-write) algorithm
// Reconstruct -> Read -> Calc parity -> Write
// Now we always read continuous ranges. This means that an update of the beginning
// of one data stripe and the end of another will lead to a read of full paired stripes.
// FIXME: (Maybe) read small individual ranges in that case instead.
uint32_t start = 0, end = 0;
for (int role = 0; role < pg_minsize; role++)
{
if (stripes[role].req_end != 0)
{
start = !end || stripes[role].req_start < start ? stripes[role].req_start : start;
end = std::max(stripes[role].req_end, end);
stripes[role].write_start = stripes[role].req_start;
stripes[role].write_end = stripes[role].req_end;
}
}
for (int role = 0; role < pg_minsize; role++)
{
cover_read(start, end, stripes[role]);
}
int has_parity = 0;
for (int role = pg_minsize; role < pg_size; role++)
{
if (osd_set[role] != 0)
{
has_parity++;
stripes[role].write_start = start;
stripes[role].write_end = end;
}
else
stripes[role].missing = true;
}
if (pg_cursize < pg_size)
{
if (has_parity == 0)
{
// Parity is missing, we don't need to read anything
for (int role = 0; role < pg_minsize; role++)
{
stripes[role].read_end = 0;
}
}
else
{
// Other stripe(s) are missing
for (int role = 0; role < pg_minsize; role++)
{
if (osd_set[role] == 0 && stripes[role].read_end != 0)
{
stripes[role].missing = true;
for (int r2 = 0; r2 < pg_size; r2++)
{
// Read the non-covered range of <role> from all other stripes to reconstruct it
if (r2 != role && osd_set[r2] != 0)
{
extend_read(stripes[role].read_start, stripes[role].read_end, stripes[r2]);
}
}
}
}
}
}
// Allocate read buffers
void *rmw_buf = alloc_read_buffer(stripes, pg_size, has_parity * (end - start));
// Position parity & write buffers
uint64_t buf_pos = 0, in_pos = 0;
for (int role = 0; role < pg_size; role++)
{
if (stripes[role].req_end != 0)
{
stripes[role].write_buf = write_buf + in_pos;
in_pos += stripes[role].req_end - stripes[role].req_start;
}
else if (role >= pg_minsize && osd_set[role] != 0)
{
stripes[role].write_buf = rmw_buf + buf_pos;
buf_pos += end - start;
}
}
return rmw_buf;
}
static void get_old_new_buffers(osd_rmw_stripe_t & stripe, uint32_t wr_start, uint32_t wr_end, buf_len_t *bufs, int & nbufs)
{
uint32_t ns = 0, ne = 0, os = 0, oe = 0;
if (stripe.req_end > wr_start &&
stripe.req_start < wr_end)
{
ns = std::max(stripe.req_start, wr_start);
ne = std::min(stripe.req_end, wr_end);
}
if (stripe.read_end > wr_start &&
stripe.read_start < wr_end)
{
os = std::max(stripe.read_start, wr_start);
oe = std::min(stripe.read_end, wr_end);
}
if (ne && (!oe || ns <= os))
{
// NEW or NEW->OLD
bufs[nbufs++] = { .buf = stripe.write_buf + ns - stripe.req_start, .len = ne-ns };
if (os < ne)
os = ne;
if (oe > os)
{
// NEW->OLD
bufs[nbufs++] = { .buf = stripe.read_buf + os - stripe.read_start, .len = oe-os };
}
}
else if (oe)
{
// OLD or OLD->NEW or OLD->NEW->OLD
if (ne)
{
// OLD->NEW or OLD->NEW->OLD
bufs[nbufs++] = { .buf = stripe.read_buf + os - stripe.read_start, .len = ns-os };
bufs[nbufs++] = { .buf = stripe.write_buf + ns - stripe.req_start, .len = ne-ns };
if (oe > ne)
{
// OLD->NEW->OLD
bufs[nbufs++] = { .buf = stripe.read_buf + ne - stripe.read_start, .len = oe-ne };
}
}
else
{
// OLD
bufs[nbufs++] = { .buf = stripe.read_buf + os - stripe.read_start, .len = oe-os };
}
}
}
static void xor_multiple_buffers(buf_len_t *xor1, int n1, buf_len_t *xor2, int n2, void *dest, uint32_t len)
{
assert(n1 > 0 && n2 > 0);
int i1 = 0, i2 = 0;
uint32_t start1 = 0, start2 = 0, end1 = xor1[0].len, end2 = xor2[0].len;
uint32_t pos = 0;
while (pos < len)
{
// We know for sure that ranges overlap
uint32_t end = std::min(end1, end2);
memxor(xor1[i1].buf + pos-start1, xor2[i2].buf + pos-start2, dest+pos, end-pos);
pos = end;
if (pos >= end1)
{
i1++;
if (i1 >= n1)
{
assert(pos >= end2);
return;
}
start1 = end1;
end1 += xor1[i1].len;
}
if (pos >= end2)
{
i2++;
start2 = end2;
end2 += xor2[i2].len;
}
}
}
void calc_rmw_parity(osd_rmw_stripe_t *stripes, int pg_size)
{
if (stripes[pg_size-1].missing)
{
// Parity OSD is unavailable
return;
}
for (int role = 0; role < pg_size; role++)
{
if (stripes[role].read_end != 0 && stripes[role].missing)
{
// Reconstruct missing stripe (EC k+1)
reconstruct_stripe(stripes, pg_size, role);
break;
}
}
// Calculate new parity (EC k+1)
int parity = pg_size-1, prev = -2;
auto wr_end = stripes[parity].write_end;
auto wr_start = stripes[parity].write_start;
for (int other = 0; other < pg_size-1; other++)
{
if (prev == -2)
{
prev = other;
}
else
{
int n1 = 0, n2 = 0;
buf_len_t xor1[3], xor2[3];
if (prev == -1)
{
xor1[n1++] = { .buf = stripes[parity].write_buf, .len = wr_end-wr_start };
}
else
{
get_old_new_buffers(stripes[prev], wr_start, wr_end, xor1, n1);
prev = -1;
}
get_old_new_buffers(stripes[other], wr_start, wr_end, xor2, n2);
xor_multiple_buffers(xor1, n1, xor2, n2, stripes[parity].write_buf, wr_end-wr_start);
}
}
}

Some files were not shown because too many files have changed in this diff Show More