New slicing algorithm based on a topological approach rather than numeric. It should be much more robust

degen-loop-screen
Alessandro Ranellucci 2012-02-18 20:36:14 +01:00
parent de88144649
commit a9e7204fc6
6 changed files with 339 additions and 271 deletions

View File

@ -56,17 +56,8 @@ sub new_from_mesh {
y_length => $size[Y],
);
$mesh->make_edge_table;
# process facets
for (my $i = 0; $i <= $#{$mesh->facets}; $i++) {
my $facet = $mesh->facets->[$i];
# transform vertex coordinates
my ($normal, @vertices) = @$facet;
$mesh->slice_facet($print, $i, $normal, @vertices);
}
$mesh->slice_facet($print, $_) for 0..$#{$mesh->facets};
die "Invalid input file\n" if !@{$print->layers};
# remove last layer if empty

View File

@ -42,15 +42,76 @@ sub read_file {
my $vertices = [];
{
my %vertices_map = ();
my %vertices_map = (); # given a vertex's coordinates, what's its index?
my @vertices_facets = (); # given a vertex index, what are the indexes of its tangent facets?
for (my $f = 0; $f <= $#$facets; $f++) {
for (1..3) {
my $point_id = join ',', @{$facets->[$f][$_]};
if (exists $vertices_map{$point_id}) {
$facets->[$f][$_] = $vertices_map{$point_id};
push @{$vertices_facets[$facets->[$f][$_]]}, $f;
} else {
push @$vertices, $facets->[$f][$_];
$facets->[$f][$_] = $vertices_map{$point_id} = $#$vertices;
$vertices_facets[$#$vertices] = [$f];
}
}
}
# The following loop checks that @vertices_facets only groups facets that
# are really connected together (i.e. neighbors or sharing neighbors);
# in other words it takes care of multiple vertices occupying the same
# point in space. It enforces topological correctness which is needed by
# the slicing algorithm.
# I'm keeping it disabled until I find a good test case.
if (0) {
my $vertices_count = $#$vertices; # store it to avoid processing newly created vertices
for (my $v = 0; $v <= $vertices_count; $v++) {
my $more_than_one_vertex_in_this_point = 0;
while (@{$vertices_facets[$v]}) {
my @facets_indexes = @{$vertices_facets[$v]};
@{$vertices_facets[$v]} = ();
my @this_f = shift @facets_indexes;
CYCLE: while (@facets_indexes && @this_f) {
# look for a facet that is connected to $this_f[-1] and whose common line contains $v
my @other_vertices_indexes = grep $_ != $v, @{$facets->[$this_f[-1]]}[1..3];
OTHER: for my $other_f (@facets_indexes) {
# facet is connected if it shares one more point
for (grep $_ != $v, @{$facets->[$other_f]}[1..3]) {
if ($_ ~~ @other_vertices_indexes) {
#printf "facet %d is connected to $other_f (sharing vertices $v and $_)\n", $this_f[-1];
# TODO: we should ensure that the common edge has a different orientation
# for each of the two adjacent facets
push @this_f, $other_f;
@facets_indexes = grep $_ != $other_f, @facets_indexes;
next CYCLE;
}
}
}
# if we're here, then we couldn't find any facet connected to $this_f[-1]
# so we should move this one to a different cluster (that is, a new vertex)
# (or ignore it if it turns to be a non-manifold facet)
if (@this_f > 1) {
push @{$vertices_facets[$v]}, $this_f[-1];
pop @this_f;
$more_than_one_vertex_in_this_point++;
} else {
last CYCLE;
}
}
if ($more_than_one_vertex_in_this_point) {
Slic3r::debugf " more than one vertex in the same point\n";
push @$vertices, $vertices->[$v];
for my $f (@this_f) {
$facets->[$f][$_] = $#$vertices for grep $facets->[$f][$_] == $v, 1..3;
}
}
}
}
}
@ -67,7 +128,7 @@ sub _read_ascii {
my $facet;
seek $fh, 0, 0;
while (<$fh>) {
chomp;
s/\R+$//;
if (!$facet) {
/^\s*facet\s+normal\s+$point_re/ or next;
$facet = [ [$1, $2, $3] ];
@ -77,7 +138,7 @@ sub _read_ascii {
undef $facet;
} else {
/^\s*vertex\s+$point_re/ or next;
push @$facet, [$1, $2, $3];
push @$facet, [map $_ * 1, $1, $2, $3];
}
}
}
@ -106,31 +167,33 @@ sub write_file {
open my $fh, '>', $file;
$binary
? _write_binary($fh, $mesh->facets)
: _write_ascii($fh, $mesh->facets);
? _write_binary($fh, $mesh)
: _write_ascii($fh, $mesh);
close $fh;
}
sub _write_binary {
my ($fh, $facets) = @_;
my ($fh, $mesh) = @_;
die "bigfloat" unless length(pack "f", 1) == 4;
binmode $fh;
print $fh pack 'x80';
print $fh pack 'L', ($#$facets + 1);
print $fh pack '(f<3)4S', (map @$_, @$_), 0 for @$facets;
print $fh pack 'L', scalar(@{$mesh->facets});
foreach my $facet (@{$mesh->facets}) {
print $fh pack '(f<3)4S', @{$facet->[0]}, (map @{$mesh->vertices->[$_]}, @$facet[1,2,3]), 0;
}
}
sub _write_ascii {
my ($fh, $facets) = @_;
my ($fh, $mesh) = @_;
printf $fh "solid\n";
foreach my $facet (@$facets) {
foreach my $facet (@{$mesh->facets}) {
printf $fh " facet normal %f %f %f\n", @{$facet->[0]};
printf $fh " outer loop\n";
printf $fh " vertex %f %f %f\n", @$_ for @$facet[1,2,3];
printf $fh " vertex %f %f %f\n", @{$mesh->vertices->[$_]} for @$facet[1,2,3];
printf $fh " endloop\n";
printf $fh " endfacet\n";
}

View File

@ -1,46 +1,113 @@
package Slic3r::TriangleMesh;
use Moo;
use Slic3r::Geometry qw(X Y Z A B PI epsilon same_point points_coincide angle3points
merge_collinear_lines nearest_point polyline_lines);
use Slic3r::Geometry qw(X Y Z A B epsilon same_point);
use XXX;
has 'vertices' => (is => 'ro', default => sub { [] });
has 'facets' => (is => 'ro', default => sub { [] });
has 'edges' => (is => 'ro', default => sub { [] });
has 'edge_table' => (is => 'ro', default => sub { {} });
has 'edge_facets' => (is => 'ro', default => sub { {} });
# public
has 'vertices' => (is => 'ro', required => 1); # id => [ [$x1,$y1],[$x2,$y2],[$x3,$y3] ]
has 'facets' => (is => 'ro', required => 1); # id => [ $normal, $v1_id, $v2_id, $v3_id ]
# private
has 'edges' => (is => 'ro', default => sub { [] }); # id => [ $v1_id, $v2_id ]
has 'facets_edges' => (is => 'ro', default => sub { [] }); # id => [ $e1_id, $e2_id, $e3_id ]
has 'edges_facets' => (is => 'ro', default => sub { [] }); # id => [ $f1_id, $f2_id, (...) ]
use constant MIN => 0;
use constant MAX => 1;
sub make_edge_table {
sub BUILD {
my $self = shift;
@{$self->edges} = ();
%{$self->edge_table} = ();
%{$self->edge_facets} = ();
for (my $facet_index = 0; $facet_index <= $#{$self->facets}; $facet_index++) {
my $facet = $self->facets->[$facet_index];
foreach my $edge ($self->facet_edges($facet)) {
my $edge_id = $self->edge_id($edge);
if (!exists $self->edge_table->{$edge_id}) {
@{$self->facets_edges} = ();
@{$self->edges_facets} = ();
my %table = (); # edge_coordinates => edge_id
for (my $facet_id = 0; $facet_id <= $#{$self->facets}; $facet_id++) {
my $facet = $self->facets->[$facet_id];
$self->facets_edges->[$facet_id] = [];
# reorder vertices so that the first one is the one with lowest Z
# this is needed to get all intersection lines in a consistent order
# (external on the right of the line)
{
my @z_order = sort { $self->vertices->[$facet->[$a]][Z] <=> $self->vertices->[$facet->[$b]][Z] } 1..3;
@$facet[1..3] = (@$facet[$z_order[0]..3], @$facet[1..($z_order[0]-1)]);
}
# ignore the normal if provided
my @vertices = @$facet[-3..-1];
foreach my $edge ($self->_facet_edges($facet_id)) {
my $edge_coordinates = join ';', sort @$edge;
my $edge_id = $table{$edge_coordinates};
if (!defined $edge_id) {
# Note that the order of vertices in $self->edges is *casual* because it is only
# good for one of the two adjacent facets. For this reason, it must not be used
# when dealing with single facets.
push @{$self->edges}, $edge;
$self->edge_table->{$edge_id} = $#{$self->edges};
$self->edge_facets->{$edge_id} = [];
$edge_id = $#{$self->edges};
$table{$edge_coordinates} = $edge_id;
$self->edges_facets->[$edge_id] = [];
}
my $edge_index = $self->edge_table->{$edge_id};
push @{$self->edge_facets->{$edge_id}}, $facet_index;
push @{$self->facets_edges->[$facet_id]}, $edge_id;
push @{$self->edges_facets->[$edge_id]}, $facet_id;
}
}
}
sub _facet_edges {
my $self = shift;
my ($facet_id) = @_;
my $facet = $self->facets->[$facet_id];
return (
[ $facet->[1], $facet->[2] ],
[ $facet->[2], $facet->[3] ],
[ $facet->[3], $facet->[1] ],
);
}
# This method is supposed to remove narrow triangles, but it actually doesn't
# work much; I'm committing it for future reference but I'm going to remove it later.
# Note: a 'clean' method should actually take care of non-manifold facets and remove
# them.
sub clean {
my $self = shift;
# retrieve all edges shared by more than two facets;
my @weird_edges = grep { @{$self->edge_facets->{$_}} != 2 } keys %{$self->edge_facets};
# usually most of these facets are very narrow triangles whose two edges
# are detected as collapsed, and thus added twice to the edge in edge_fasets table
# let's identify these triangles
my @narrow_facets_indexes = ();
foreach my $edge_id (@weird_edges) {
my %facet_count = ();
$facet_count{$_}++ for @{$self->edge_facets->{$edge_id}};
@{$self->edge_facets->{$edge_id}} = grep $facet_count{$_} == 1, keys %facet_count;
push @narrow_facets_indexes, grep $facet_count{$_} > 1, keys %facet_count;
}
# remove identified narrow facets
foreach my $facet_id (@narrow_facets_indexes) {last;
splice @{$self->facets}, $facet_id, 1;
splice @{$self->facets_edges}, $facet_id, 1;
foreach my $facet_ides (values %{$self->edge_facets}) {
@$facet_ides = map { $_ > $facet_id ? ($_-1) : $_ } @$facet_ides;
}
}
Slic3r::debugf "%d narrow facets removed\n", scalar(@narrow_facets_indexes)
if @narrow_facets_indexes;
}
sub check_manifoldness {
my $self = shift;
$self->make_edge_table;
if (grep { @$_ != 2 } values %{$self->edge_facets}) {
if (grep { @$_ != 2 } @{$self->edges_facets}) {
warn "Warning: The input file is not manifold. You might want to check the "
. "resulting gcode before printing.\n";
}
@ -59,173 +126,129 @@ sub make_loops {
# if the line is a facet edge, find another facet edge
# having the same endpoints but in reverse order
for (my $j = $i+1; $j <= $#lines; $j++) {
next unless defined $lines[$j] && defined $lines[$j]->facet_edge;
next unless $lines[$j]->facet_edge eq $lines[$i]->facet_edge;
if (same_point($lines[$i]->a, $lines[$j]->b) && same_point($lines[$i]->b, $lines[$j]->a)) {
$lines[$j] = undef;
last;
next unless defined $lines[$j] && $lines[$j]->facet_edge;
# are these facets adjacent? (sharing a common edge on this layer)
if ($lines[$i]->a_id == $lines[$j]->b_id && $lines[$i]->b_id == $lines[$j]->a_id) {
# if they are both oriented upwards or downwards (like a 'V')
# then we can remove both edges from this layer since it won't
# affect the sliced shape
if ($lines[$j]->facet_edge eq $lines[$i]->facet_edge) {
$lines[$i] = undef;
$lines[$j] = undef;
last;
}
# if one of them is oriented upwards and the other is oriented
# downwards, let's only keep one of them (it doesn't matter which
# one since all 'top' lines were reversed at slicing)
if ($lines[$i]->facet_edge eq 'top' && $lines[$j]->facet_edge eq 'bottom') {
$lines[$j] = undef;
last;
}
}
}
}
}
my $sparse_lines = [ map $_->line, grep $_, @lines ];
@lines = grep $_, @lines;
# detect closed loops
my (@polygons, %visited_lines, @discarded_lines, @discarded_polylines) = ();
my $detect = sub {
my @lines = @$sparse_lines;
(@polygons, %visited_lines, @discarded_lines, @discarded_polylines) = ();
my $get_point_id = sub { sprintf "%.0f,%.0f", @{$_[0]} };
my (%pointmap, @pointmap_keys) = ();
foreach my $line (@lines) {
my $point_id = $get_point_id->($line->[A]);
if (!exists $pointmap{$point_id}) {
$pointmap{$point_id} = [];
push @pointmap_keys, $line->[A];
}
push @{ $pointmap{$point_id} }, $line;
# count relationships
my %prev_count = (); # how many lines have the same prev_facet_index
my %a_count = (); # how many lines have the same a_id
foreach my $line (@lines) {
if (defined $line->prev_facet_index) {
$prev_count{$line->prev_facet_index}++;
}
my $n = 0;
while (my $first_line = shift @lines) {
next if $visited_lines{ $first_line->id };
my @points = @$first_line;
my @seen_lines = ($first_line);
my %seen_points = map { $get_point_id->($points[$_]) => $_ } 0..1;
CYCLE: while (1) {
my $next_lines = $pointmap{ $get_point_id->($points[-1]) };
# shouldn't we find the point, let's try with a slower algorithm
# as approximation may make the coordinates differ
if (!$next_lines) {
my $nearest_point = nearest_point($points[-1], \@pointmap_keys);
#printf " we have a nearest point: %f,%f (%s)\n", @$nearest_point, $get_point_id->($nearest_point);
if ($nearest_point) {
local $Slic3r::Geometry::epsilon = 1000000;
$next_lines = $pointmap{$get_point_id->($nearest_point)}
if points_coincide($points[-1], $nearest_point);
}
}
if (0 && !$next_lines) {
require "Slic3r/SVG.pm";
Slic3r::SVG::output(undef, "no_lines.svg",
lines => [ grep !$_->isa('Slic3r::Line::FacetEdge'), @lines ],
red_lines => [ grep $_->isa('Slic3r::Line::FacetEdge'), @lines ],
points => [ $points[-1] ],
no_arrows => 1,
);
}
$next_lines
or printf("No lines start at point %s. This shouldn't happen. Please check the model for manifoldness.\n", $get_point_id->($points[-1]));
last CYCLE if !$next_lines or !@$next_lines;
my @ordered_next_lines = sort
{ angle3points($points[-1], $points[-2], $next_lines->[$a][B]) <=> angle3points($points[-1], $points[-2], $next_lines->[$b][B]) }
0..$#$next_lines;
#if (@$next_lines > 1) {
# Slic3r::SVG::output(undef, "next_line.svg",
# lines => $next_lines,
# red_lines => [ polyline_lines([@points]) ],
# green_lines => [ $next_lines->[ $ordered_next_lines[0] ] ],
# );
#}
my ($next_line) = splice @$next_lines, $ordered_next_lines[0], 1;
push @seen_lines, $next_line;
push @points, $next_line->[B];
my $point_id = $get_point_id->($points[-1]);
if ($seen_points{$point_id}) {
splice @points, 0, $seen_points{$point_id};
last CYCLE;
}
$seen_points{$point_id} = $#points;
}
if (@points < 4 || !points_coincide($points[0], $points[-1])) {
# discarding polyline
push @discarded_lines, @seen_lines;
if (@points > 2) {
push @discarded_polylines, [@points];
}
next;
}
$visited_lines{ $_->id } = 1 for @seen_lines;
pop @points;
Slic3r::debugf " Discovered polygon of %d points\n", scalar(@points);
push @polygons, Slic3r::Polygon->new(@points);
pop @polygons if !$polygons[-1]->cleanup;
if (defined $line->a_id) {
$a_count{$line->a_id}++;
}
};
}
$detect->();
# Now, if we got a clean and manifold model then @polygons would contain everything
# we need to draw our layer. In real life, sadly, things are different and it is likely
# that the above algorithm wasn't able to detect every polygon. This may happen because
# of non-manifoldness or because of many close lines, often overlapping; both situations
# make a head-to-tail search difficult.
# On the other hand, we can safely assume that every polygon we detected is correct, as
# the above algorithm is quite strict. We can take a brute force approach to connect any
# other line.
# So, let's first check what lines were not detected as part of polygons.
if (@discarded_lines) {
Slic3r::debugf " %d lines out of %d were discarded and %d polylines were not closed\n",
scalar(@discarded_lines), scalar(@lines), scalar(@discarded_polylines);
print " Warning: errors while parsing this layer (dirty or non-manifold model).\n";
foreach my $point_id (grep $a_count{$_} > 1, keys %a_count) {
my @lines_starting_here = grep defined $_->a_id && $_->a_id == $point_id, @lines;
Slic3r::debugf "%d lines start at point %d\n", scalar(@lines_starting_here), $point_id;
my $total_detected_length = 0;
$total_detected_length += $_->length for map $_->lines, @polygons;
my $total_discarded_length = 0;
$total_discarded_length += $_->length for map polyline_lines($_), @discarded_polylines;
$total_discarded_length += $_->length for @discarded_lines;
my $discarded_ratio = $total_detected_length
? ($total_discarded_length / $total_detected_length)
: 0;
Slic3r::debugf " length ratio of discarded lines is %f\n", $discarded_ratio;
if ($discarded_ratio > 0.00001) {
print " Retrying with slower algorithm.\n";
# if two lines start at this point, one being a 'top' facet edge and the other being a 'bottom' one,
# then remove the top one and those following it (removing the top or the bottom one is an arbitrary
# choice)
if (@lines_starting_here == 2 && join(',', sort map $_->facet_edge, @lines_starting_here) eq 'bottom,top') {
my @to_remove = grep $_->facet_edge eq 'top', @lines_starting_here;
while (!grep defined $_->b_id && $_->b_id == $to_remove[-1]->b_id && $_ ne $to_remove[-1], @lines) {
push @to_remove, grep defined $_->a_id && $_->a_id == $to_remove[-1]->b_id, @lines;
}
my %to_remove = map {$_ => 1} @to_remove;
@lines = grep !$to_remove{$_}, @lines;
} else {
Slic3r::debugf " this shouldn't happen and should be further investigated\n";
if (0) {
require "Slic3r/SVG.pm";
Slic3r::SVG::output(undef, "layer" . $layer->id . "_detected.svg",
white_polygons => \@polygons,
Slic3r::SVG::output(undef, "same_point.svg",
lines => [ map $_->line, grep !$_->facet_edge, @lines ],
red_lines => [ map $_->line, grep $_->facet_edge, @lines ],
points => [ $self->vertices->[$point_id] ],
no_arrows => 0,
);
Slic3r::SVG::output(undef, "layer" . $layer->id . "_discarded_lines.svg",
red_lines => \@discarded_lines,
);
Slic3r::SVG::output(undef, "layer" . $layer->id . "_discarded_polylines.svg",
polylines => \@discarded_polylines,
);
}
$sparse_lines = merge_collinear_lines($sparse_lines);
eval { $detect->(); };
warn $@ if $@;
if (@discarded_lines) {
print " Warning: even slow detection algorithm threw errors. Review the output before printing.\n";
$layer->slicing_errors(1);
}
}
}
my (@polygons, %visited_lines) = ();
CYCLE: for (my $i = 0; $i <= $#lines; $i++) {
my $line = $lines[$i];
next if $visited_lines{$line};
my @points = ();
my $first_facet_index = $line->facet_index;
do {
my $next_line;
if (defined $line->next_facet_index) {
for (@lines) {
if ($_->facet_index == $line->next_facet_index) {
$next_line = $_;
last;
}
}
} elsif (defined $line->b_id) {
for (@lines) {
next if !defined $_->a_id;
if ($_->a_id == $line->b_id) {
$next_line = $_;
last;
}
}
} else {
Slic3r::debugf " line has no next_facet_index or b_id\n";
$layer->slicing_errors(1);
next CYCLE;
}
if (!$next_line) {
Slic3r::debugf " failed to close this loop\n";
$layer->slicing_errors(1);
next CYCLE;
} elsif (defined $next_line->prev_facet_index && $next_line->prev_facet_index != $line->facet_index) {
Slic3r::debugf " wrong prev_facet_index\n";
$layer->slicing_errors(1);
next CYCLE;
} elsif (defined $next_line->a_id && $next_line->a_id != $line->b_id) {
Slic3r::debugf " wrong a_id\n";
$layer->slicing_errors(1);
next CYCLE;
}
push @points, $next_line->b;
$visited_lines{$next_line} = 1;
$line = $next_line;
} while ($first_facet_index != $line->facet_index);
Slic3r::debugf " Discovered polygon of %d points\n", scalar(@points);
push @polygons, Slic3r::Polygon->new(@points);
pop @polygons if !$polygons[-1]->cleanup;
}
return [@polygons];
}
@ -303,18 +326,18 @@ sub size {
sub slice_facet {
my $self = shift;
my ($print, $facet_index, $normal, @vertices) = @_;
my ($print, $facet_id) = @_;
my ($normal, @vertices) = @{$self->facets->[$facet_id]};
Slic3r::debugf "\n==> FACET %d (%f,%f,%f - %f,%f,%f - %f,%f,%f):\n",
$facet_index, map @{$self->vertices->[$_]}, @vertices
$facet_id, map @{$self->vertices->[$_]}, @vertices
if $Slic3r::debug;
my @vertices_coordinates = map $self->vertices->[$_], @vertices;
# find the vertical extents of the facet
my ($min_z, $max_z) = (99999999999, -99999999999);
foreach my $vertex (@vertices_coordinates) {
$min_z = $vertex->[Z] if $vertex->[Z] < $min_z;
$max_z = $vertex->[Z] if $vertex->[Z] > $max_z;
foreach my $vertex (@vertices) {
my $vertex_z = $self->vertices->[$vertex][Z];
$min_z = $vertex_z if $vertex_z < $min_z;
$max_z = $vertex_z if $vertex_z > $max_z;
}
Slic3r::debugf "z: min = %.0f, max = %.0f\n", $min_z, $max_z;
@ -331,65 +354,62 @@ sub slice_facet {
my $max_layer = int($max_z * $Slic3r::resolution / $Slic3r::layer_height) + 1;
Slic3r::debugf "layers: min = %s, max = %s\n", $min_layer, $max_layer;
# reorder vertices so that the first one is the one with lowest Z
# this is needed to get all intersection lines in a consistent order
# (external on the right of the line)
{
my @z_order = sort { $vertices_coordinates[$a][Z] <=> $vertices_coordinates[$b][Z] } 0..2;
@vertices = (splice(@vertices, $z_order[0]), splice(@vertices, 0, $z_order[0]));
}
for (my $layer_id = $min_layer; $layer_id <= $max_layer; $layer_id++) {
my $layer = $print->layer($layer_id);
$layer->add_line($_) for $self->intersect_facet($facet_index, \@vertices, $layer->slice_z);
$layer->add_line($_) for $self->intersect_facet($facet_id, $layer->slice_z);
}
}
sub intersect_facet {
my $self = shift;
my ($facet_index, $vertices, $z) = @_;
my ($facet_id, $z) = @_;
# build the three segments of the triangle facet
my @edges = $self->facet_edges($vertices);
my @vertices_ids = @{$self->facets->[$facet_id]}[1..3];
my @edge_ids = @{$self->facets_edges->[$facet_id]};
my @edge_vertices_ids = $self->_facet_edges($facet_id);
my (@lines, @points, @intersection_points, @points_on_layer) = ();
foreach my $edge (@edges) {
my ($a, $b) = @$edge;
my $edge_id = $self->edge_id($edge);
for my $e (0..2) {
my $edge_id = $edge_ids[$e];
my ($a_id, $b_id) = @{$edge_vertices_ids[$e]};
my ($a, $b) = map $self->vertices->[$_], ($a_id, $b_id);
#printf "Az = %f, Bz = %f, z = %f\n", $a->[Z], $b->[Z], $z;
if (abs($a->[Z] - $b->[Z]) < epsilon && abs($a->[Z] - $z) < epsilon) {
#if (abs($a->[Z] - $b->[Z]) < epsilon && abs($a->[Z] - $z) < epsilon) {
if ($a->[Z] == $b->[Z] && $a->[Z] == $z) {
# edge is horizontal and belongs to the current layer
my $edge_type = (grep $self->vertices->[$_][Z] < $z - epsilon, @$vertices) ? 'top' : 'bottom';
($a, $b) = ($b, $a) if $edge_type eq 'top';
my $edge_type = (grep $self->vertices->[$_][Z] < $z, @vertices_ids) ? 'top' : 'bottom';
if ($edge_type eq 'top') {
($a, $b) = ($b, $a);
($a_id, $b_id) = ($b_id, $a_id);
}
push @lines, Slic3r::TriangleMesh::IntersectionLine->new(
a => [$a->[X], $a->[Y]],
b => [$b->[X], $b->[Y]],
a_id => sprintf("%f,%f", @$a[X,Y]),
b_id => sprintf("%f,%f", @$b[X,Y]),
a_id => $a_id,
b_id => $b_id,
facet_edge => $edge_type,
facet_index => $facet_index,
facet_index => $facet_id,
);
#print "Horizontal edge at $z!\n";
} elsif (abs($a->[Z] - $z) < epsilon) {
} elsif ($a->[Z] == $z) {
#print "A point on plane $z!\n";
push @points, [ $a->[X], $a->[Y], sprintf("%f,%f", @$a[X,Y]) ];
push @points, [ $a->[X], $a->[Y], $a_id ];
push @points_on_layer, $#points;
} elsif (abs($b->[Z] - $z) < epsilon) {
} elsif ($b->[Z] == $z) {
#print "B point on plane $z!\n";
push @points, [ $b->[X], $b->[Y], sprintf("%f,%f", @$b[X,Y]) ];
push @points, [ $b->[X], $b->[Y], $b_id ];
push @points_on_layer, $#points;
} elsif (($a->[Z] < ($z - epsilon) && $b->[Z] > ($z + epsilon))
|| ($b->[Z] < ($z - epsilon) && $a->[Z] > ($z + epsilon))) {
} elsif (($a->[Z] < $z && $b->[Z] > $z) || ($b->[Z] < $z && $a->[Z] > $z)) {
# edge intersects the current layer; calculate intersection
push @points, [
$b->[X] + ($a->[X] - $b->[X]) * ($z - $b->[Z]) / ($a->[Z] - $b->[Z]),
$b->[Y] + ($a->[Y] - $b->[Y]) * ($z - $b->[Z]) / ($a->[Z] - $b->[Z]),
$edge_id,
undef,
$edge_id,
];
push @intersection_points, $#points;
@ -414,14 +434,22 @@ sub intersect_facet {
die "Facets must intersect each plane 0 or 2 times" if @points != 2;
# connect points:
my ($prev_facet_index, $next_facet_index) = (undef, undef);
$prev_facet_index = +(grep $_ != $facet_id, @{$self->edges_facets->[$points[B][3]]})[0]
if defined $points[B][3];
$next_facet_index = +(grep $_ != $facet_id, @{$self->edges_facets->[$points[A][3]]})[0]
if defined $points[A][3];
return Slic3r::TriangleMesh::IntersectionLine->new(
a => [$points[B][X], $points[B][Y]],
b => [$points[A][X], $points[A][Y]],
a_id => $points[B][2],
b_id => $points[A][2],
facet_index => $facet_index,
prev_facet_index => ($points[B][3] ? +(grep $_ != $facet_index, @{$self->edge_facets->{$points[B][3]}})[0] || undef : undef),
next_facet_index => ($points[A][3] ? +(grep $_ != $facet_index, @{$self->edge_facets->{$points[A][3]}})[0] || undef : undef),
facet_index => $facet_id,
prev_edge_id => $points[B][3],
next_edge_id => $points[A][3],
prev_facet_index => $prev_facet_index,
next_facet_index => $next_facet_index,
);
#printf " intersection points at z = %f: %f,%f - %f,%f\n", $z, map @$_, @intersection_points;
}
@ -429,42 +457,16 @@ sub intersect_facet {
return ();
}
sub facet_edges {
my $self = shift;
my ($facet) = @_;
# ignore the normal if provided
my @vertices = map $self->vertices->[$_], @$facet[-3..-1];
return (
[ $vertices[0], $vertices[1] ],
[ $vertices[1], $vertices[2] ],
[ $vertices[2], $vertices[0] ],
)
}
sub edge_id {
my $self = shift;
my ($edge) = @_;
my @point_ids = map sprintf("%d,%d,%d", map $_ / epsilon, @$_), @$edge;
return join "-", sort @point_ids;
}
sub get_connected_facets {
my $self = shift;
my ($facet_id) = @_;
my @facets = ();
foreach my $edge_facets (values %{$self->edge_facets}) {
if (grep $_ == $facet_id, @$edge_facets) {
# this edge belongs to the current facet, so let's get
# the other facet(s)
push @facets, grep $_ != $facet_id, @$edge_facets;
}
my %facets = ();
foreach my $edge_id (@{$self->facets_edges->[$facet_id]}) {
$facets{$_} = 1 for @{$self->edges_facets->[$edge_id]};
}
return @facets;
delete $facets{$facet_id};
return keys %facets;
}
1;

View File

@ -8,6 +8,8 @@ has 'b_id' => (is => 'ro', required => 1);
has 'facet_index' => (is => 'ro', required => 1);
has 'prev_facet_index' => (is => 'ro', required => 0);
has 'next_facet_index' => (is => 'ro', required => 0);
has 'prev_edge_id' => (is => 'ro', required => 0);
has 'next_edge_id' => (is => 'ro', required => 0);
has 'facet_edge' => (is => 'ro', default => sub {0});
sub points {

24
t/stl.t
View File

@ -13,12 +13,12 @@ use Slic3r;
use Slic3r::Geometry qw(X Y Z A B);
use XXX;
my $mesh = Slic3r::TriangleMesh->new;
my @lines;
my $z = 20;
my @points = ([3, 4], [8, 5], [1, 9]); # XY coordinates of the facet vertices
my $mesh = Slic3r::TriangleMesh->new(facets => [], vertices => []);
is_deeply lines(20, 20, 20), [
[ $points[0], $points[1] ],
[ $points[1], $points[2] ],
@ -40,8 +40,8 @@ is_deeply lines(28, 20, 30), [ ], 'lower vertex on la
my @z = (24, 10, 16);
is_deeply lines(@z), [
[
line_plane_intersection([ vertices(@z)->[2], vertices(@z)->[0] ]),
line_plane_intersection([ vertices(@z)->[0], vertices(@z)->[1] ]),
line_plane_intersection([ vertices(@z)->[2], vertices(@z)->[0] ]),
]
], 'two edges intersect';
}
@ -70,8 +70,8 @@ is_deeply lines(28, 20, 30), [ ], 'lower vertex on la
my @z = (24, 10, 20);
is_deeply lines(@z), [
[
$points[2],
line_plane_intersection([ vertices(@z)->[0], vertices(@z)->[1] ]),
$points[2],
]
], 'one vertex on plane and one edge intersects';
}
@ -96,8 +96,8 @@ is_deeply lines(28, 20, 30), [ ], 'lower vertex on la
], 'one vertex on plane and one edge intersects';
}
my @lower = $mesh->intersect_facet(0, vertices(22, 20, 20), $z);
my @upper = $mesh->intersect_facet(0, vertices(20, 20, 10), $z);
my @lower = intersect(22, 20, 20);
my @upper = intersect(20, 20, 10);
is $lower[0]->facet_edge, 'bottom', 'bottom edge on layer';
is $upper[0]->facet_edge, 'top', 'upper edge on layer';
@ -106,8 +106,18 @@ sub vertices {
[ ($#{$mesh->vertices}-2) .. $#{$mesh->vertices} ]
}
sub add_facet {
push @{$mesh->facets}, [ [0,0,0], @{vertices(@_)} ];
$mesh->BUILD;
}
sub intersect {
add_facet(@_);
return $mesh->intersect_facet($#{$mesh->facets}, $z);
}
sub lines {
my @lines = $mesh->intersect_facet(0, vertices(@_), $z);
my @lines = intersect(@_);
$_->a->[X] = sprintf('%.0f', $_->a->[X]) for @lines;
$_->a->[Y] = sprintf('%.0f', $_->a->[Y]) for @lines;
$_->b->[X] = sprintf('%.0f', $_->b->[X]) for @lines;

View File

@ -31,7 +31,6 @@ my %opt = ();
# loop while we have remaining facets
my $part_count = 0;
$mesh->make_edge_table;
while (1) {
# get the first facet
my @facet_queue = ();
@ -53,7 +52,8 @@ my %opt = ();
my $output_file = sprintf '%s_%02d.stl', $basename, ++$part_count;
printf "Writing to %s\n", basename($output_file);
Slic3r::STL->write_file($output_file, Slic3r::TriangleMesh->new(facets => \@facets), !$opt{ascii});
my $new_mesh = Slic3r::TriangleMesh->new(facets => \@facets, vertices => $mesh->vertices);
Slic3r::STL->write_file($output_file, $new_mesh, !$opt{ascii});
}
}