package Slic3r::TriangleMesh; use Moo; use List::Util qw(reduce min max first); use Slic3r::Geometry qw(X Y Z A B unscale same_point); use Slic3r::Geometry::Clipper qw(union_ex); use Storable; # public has 'vertices' => (is => 'ro', required => 1); # id => [$x,$y,$z] has 'facets' => (is => 'ro', required => 1); # id => [ $v1_id, $v2_id, $v3_id ] # private has 'edges' => (is => 'rw'); # id => [ $v1_id, $v2_id ] has 'facets_edges' => (is => 'rw'); # id => [ $e1_id, $e2_id, $e3_id ] has 'edges_facets' => (is => 'rw'); # id => [ $f1_id, $f2_id, (...) ] use constant MIN => 0; use constant MAX => 1; use constant I_FMT => 'ffffllllc'; use constant I_A => 0; use constant I_B => 1; use constant I_A_ID => 2; use constant I_B_ID => 3; use constant I_EDGE_A_ID => 4; use constant I_EDGE_B_ID => 5; use constant I_FACET_EDGE => 6; use constant FE_TOP => 0; use constant FE_BOTTOM => 1; sub analyze { my $self = shift; return if defined $self->edges; $self->edges([]); $self->facets_edges([]); $self->edges_facets([]); my %table = (); # edge_coordinates => edge_id my $vertices = $self->vertices; # save method calls for (my $facet_id = 0; $facet_id <= $#{$self->facets}; $facet_id++) { my $facet = $self->facets->[$facet_id]; $self->facets_edges->[$facet_id] = []; # reorder vertices so that the first one is the one with lowest Z # this is needed to get all intersection lines in a consistent order # (external on the right of the line) { my $lowest_vertex_idx = reduce { $vertices->[ $facet->[$a] ][Z] < $vertices->[ $facet->[$b] ][Z] ? $a : $b } -3 .. -1; @$facet[-3..-1] = (@$facet[$lowest_vertex_idx..-1], @$facet[-3..($lowest_vertex_idx-1)]); } # ignore the normal if provided my @vertices = @$facet[-3..-1]; foreach my $edge ($self->_facet_edges($facet_id)) { my $edge_coordinates = join ';', sort @$edge; my $edge_id = $table{$edge_coordinates}; if (!defined $edge_id) { # Note that the order of vertices in $self->edges is *casual* because it is only # good for one of the two adjacent facets. For this reason, it must not be used # when dealing with single facets. push @{$self->edges}, $edge; $edge_id = $#{$self->edges}; $table{$edge_coordinates} = $edge_id; $self->edges_facets->[$edge_id] = []; } push @{$self->facets_edges->[$facet_id]}, $edge_id; push @{$self->edges_facets->[$edge_id]}, $facet_id; } } } sub merge { my $class = shift; my @meshes = @_; my $vertices = []; my $facets = []; foreach my $mesh (@meshes) { my $v_offset = @$vertices; push @$vertices, @{$mesh->vertices}; push @$facets, map { my $f = [@$_]; $f->[$_] += $v_offset for -3..-1; $f; } @{$mesh->facets}; } return $class->new(vertices => $vertices, facets => $facets); } sub clone { Storable::dclone($_[0]) } sub _facet_edges { my $self = shift; my ($facet_id) = @_; my $facet = $self->facets->[$facet_id]; return ( [ $facet->[-3], $facet->[-2] ], [ $facet->[-2], $facet->[-1] ], [ $facet->[-1], $facet->[-3] ], ); } # This method is supposed to remove narrow triangles, but it actually doesn't # work much; I'm committing it for future reference but I'm going to remove it later. # Note: a 'clean' method should actually take care of non-manifold facets and remove # them. sub clean { my $self = shift; # retrieve all edges shared by more than two facets; my @weird_edges = grep { @{$self->edge_facets->{$_}} != 2 } keys %{$self->edge_facets}; # usually most of these facets are very narrow triangles whose two edges # are detected as collapsed, and thus added twice to the edge in edge_fasets table # let's identify these triangles my @narrow_facets_indexes = (); foreach my $edge_id (@weird_edges) { my %facet_count = (); $facet_count{$_}++ for @{$self->edge_facets->{$edge_id}}; @{$self->edge_facets->{$edge_id}} = grep $facet_count{$_} == 1, keys %facet_count; push @narrow_facets_indexes, grep $facet_count{$_} > 1, keys %facet_count; } # remove identified narrow facets foreach my $facet_id (@narrow_facets_indexes) {last; splice @{$self->facets}, $facet_id, 1; splice @{$self->facets_edges}, $facet_id, 1; foreach my $facet_ides (values %{$self->edge_facets}) { @$facet_ides = map { $_ > $facet_id ? ($_-1) : $_ } @$facet_ides; } } Slic3r::debugf "%d narrow facets removed\n", scalar(@narrow_facets_indexes) if @narrow_facets_indexes; } sub check_manifoldness { my $self = shift; $self->analyze; # look for any edges belonging to an odd number of facets # we should actually check that each pair of facets belonging to this edge # has compatible winding order my ($first_bad_edge_id) = grep { @{ $self->edges_facets->[$_] } % 2 } 0..$#{$self->edges_facets}; if (defined $first_bad_edge_id) { warn sprintf "Warning: The input file contains a hole near edge %f,%f,%f-%f,%f,%f (not manifold). " . "You might want to repair it and retry, or to check the resulting G-code before printing anyway.\n", map @{$self->vertices->[$_]}, @{$self->edges->[$first_bad_edge_id]}; return 0; } # empty the edges array as we don't really need it anymore @{$self->edges} = (); return 1; } sub unpack_line { my ($packed) = @_; my $data = [ unpack I_FMT, $packed ]; splice @$data, 0, 4, [ @$data[0,1] ], [ @$data[2,3] ]; $data->[$_] = undef for grep $data->[$_] == -1, I_A_ID, I_B_ID, I_EDGE_A_ID, I_EDGE_B_ID, I_FACET_EDGE; return $data; } sub make_loops { my ($lines) = @_; my @lines = map unpack_line($_), @$lines; # remove tangent edges for my $i (0 .. $#lines) { next unless defined $lines[$i] && defined $lines[$i][I_FACET_EDGE]; # if the line is a facet edge, find another facet edge # having the same endpoints but in reverse order for my $j ($i+1 .. $#lines) { next unless defined $lines[$j] && defined $lines[$j][I_FACET_EDGE]; # are these facets adjacent? (sharing a common edge on this layer) if ($lines[$i][I_A_ID] == $lines[$j][I_B_ID] && $lines[$i][I_B_ID] == $lines[$j][I_A_ID]) { # if they are both oriented upwards or downwards (like a 'V') # then we can remove both edges from this layer since it won't # affect the sliced shape if ($lines[$j][I_FACET_EDGE] == $lines[$i][I_FACET_EDGE]) { $lines[$i] = undef; $lines[$j] = undef; last; } # if one of them is oriented upwards and the other is oriented # downwards, let's only keep one of them (it doesn't matter which # one since all 'top' lines were reversed at slicing) if ($lines[$i][I_FACET_EDGE] == FE_TOP && $lines[$j][I_FACET_EDGE] == FE_BOTTOM) { $lines[$j] = undef; last; } } } } @lines = grep $_, @lines; # build a map of lines by EDGE_A_ID and A_ID my %by_edge_a_id = my %by_a_id = (); for (0..$#lines) { if (defined(my $edge_a_id = $lines[$_][I_EDGE_A_ID])) { $by_edge_a_id{$edge_a_id} //= []; push @{ $by_edge_a_id{$edge_a_id} }, $_; } if (defined(my $a_id = $lines[$_][I_A_ID])) { $by_a_id{$a_id} //= []; push @{ $by_a_id{$a_id} }, $_; } } my (@polygons, @failed_loops) = (); my %used_lines = (); CYCLE: while (1) { # take first spare line and start a new loop my $first_idx = first { !exists $used_lines{$_} } 0..$#lines; last if !defined $first_idx; $used_lines{$first_idx} = 1; my @loop = ($lines[$first_idx]); while (1) { # find a line starting where last one finishes my $line_idx; $line_idx = first { !exists $used_lines{$_} } @{ $by_edge_a_id{$loop[-1][I_EDGE_B_ID]} // [] } if defined $loop[-1][I_EDGE_B_ID]; $line_idx //= first { !exists $used_lines{$_} } @{ $by_a_id{$loop[-1][I_B_ID]} // [] } if defined $loop[-1][I_B_ID]; if (!defined $line_idx) { # check whether we closed this loop if ((defined $loop[0][I_EDGE_A_ID] && defined $loop[-1][I_EDGE_B_ID] && $loop[0][I_EDGE_A_ID] == $loop[-1][I_EDGE_B_ID]) || (defined $loop[0][I_A_ID] && defined $loop[-1][I_B_ID] && $loop[0][I_A_ID] == $loop[-1][I_B_ID])) { # loop is complete! push @polygons, Slic3r::Polygon->new(map $_->[I_A], @loop); Slic3r::debugf " Discovered %s polygon of %d points\n", ($polygons[-1]->is_counter_clockwise ? 'ccw' : 'cw'), scalar(@{$polygons[-1]}) if $Slic3r::debug; next CYCLE; } # we can't close this loop! push @failed_loops, [@loop]; next CYCLE; } push @loop, $lines[$line_idx]; $used_lines{$line_idx} = 1; } } # TODO: we should try to combine failed loops for my $loop (grep @$_ >= 3, @failed_loops) { push @polygons, Slic3r::Polygon->new(map $_->[I_A], @$loop); Slic3r::debugf " Discovered failed %s polygon of %d points\n", ($polygons[-1]->is_counter_clockwise ? 'ccw' : 'cw'), scalar(@$loop) if $Slic3r::debug; } return (@failed_loops ? 1 : 0, [@polygons]); } sub rotate { my $self = shift; my ($deg, $center) = @_; return if $deg == 0; my $rad = Slic3r::Geometry::deg2rad($deg); # transform vertex coordinates foreach my $vertex (@{$self->vertices}) { @$vertex = (@{ +(Slic3r::Geometry::rotate_points($rad, $center, [ $vertex->[X], $vertex->[Y] ]))[0] }, $vertex->[Z]); } } sub scale { my $self = shift; my ($factor) = @_; return if $factor == 1; # transform vertex coordinates foreach my $vertex (@{$self->vertices}) { $vertex->[$_] *= $factor for X,Y,Z; } } sub scale_xyz { my $self = shift; my ($versor) = @_; # transform vertex coordinates foreach my $vertex (@{$self->vertices}) { $vertex->[$_] *= $versor->[$_] for X,Y,Z; } } sub move { my $self = shift; my (@shift) = @_; # transform vertex coordinates foreach my $vertex (@{$self->vertices}) { $vertex->[$_] += $shift[$_] || 0 for X,Y,Z; } } sub align_to_origin { my $self = shift; # calculate the displacements needed to # have lowest value for each axis at coordinate 0 my $bb = $self->bounding_box; $self->move(map -$bb->extents->[$_][MIN], X,Y,Z); } sub center_around_origin { my $self = shift; $self->move(map -$_, @{ $self->center }); } sub center { my $self = shift; return $self->bounding_box->center; } sub duplicate { my $self = shift; my (@shifts) = @_; my @new_facets = (); foreach my $facet (@{$self->facets}) { # transform vertex coordinates my ($normal, @vertices) = @$facet; foreach my $shift (@shifts) { push @new_facets, [ $normal ]; foreach my $vertex (@vertices) { push @{$self->vertices}, [ map $self->vertices->[$vertex][$_] + ($shift->[$_] || 0), (X,Y,Z) ]; push @{$new_facets[-1]}, $#{$self->vertices}; } } } push @{$self->facets}, @new_facets; $self->BUILD; } sub used_vertices { my $self = shift; return [ map $self->vertices->[$_], map @$_, @{$self->facets} ]; } sub bounding_box { my $self = shift; return Slic3r::Geometry::BoundingBox->new_from_points_3D($self->used_vertices); } sub size { my $self = shift; return $self->bounding_box->size; } sub slice_facet { my $self = shift; my ($print_object, $facet_id) = @_; my @vertices = @{$self->facets->[$facet_id]}[-3..-1]; Slic3r::debugf "\n==> FACET %d (%f,%f,%f - %f,%f,%f - %f,%f,%f):\n", $facet_id, map @{$self->vertices->[$_]}, @vertices if $Slic3r::debug; # find the vertical extents of the facet my @z = map $_->[Z], @{$self->vertices}[@vertices]; my $min_z = min(@z); my $max_z = max(@z); Slic3r::debugf "z: min = %.0f, max = %.0f\n", $min_z, $max_z if $Slic3r::debug; if ($max_z == $min_z) { Slic3r::debugf "Facet is horizontal; ignoring\n"; return; } # calculate the layer extents my ($min_layer, $max_layer) = $print_object->get_layer_range($min_z, $max_z); Slic3r::debugf "layers: min = %s, max = %s\n", $min_layer, $max_layer if $Slic3r::debug; my $lines = {}; # layer_id => [ lines ] for my $layer_id ($min_layer .. $max_layer) { my $layer = $print_object->layers->[$layer_id]; $lines->{$layer_id} ||= []; push @{ $lines->{$layer_id} }, $self->intersect_facet($facet_id, $layer->slice_z); } return $lines; } sub intersect_facet { my $self = shift; my ($facet_id, $z) = @_; my @vertices_ids = @{$self->facets->[$facet_id]}[-3..-1]; my %vertices = map { $_ => $self->vertices->[$_] } @vertices_ids; # cache vertices my @edge_ids = @{$self->facets_edges->[$facet_id]}; my @edge_vertices_ids = $self->_facet_edges($facet_id); my (@points, @intersection_points, @points_on_layer) = (); for my $e (0..2) { my ($a_id, $b_id) = @{$edge_vertices_ids[$e]}; my ($a, $b) = @vertices{$a_id, $b_id}; #printf "Az = %f, Bz = %f, z = %f\n", $a->[Z], $b->[Z], $z; if ($a->[Z] == $b->[Z] && $a->[Z] == $z) { # edge is horizontal and belongs to the current layer my $edge_type = (grep $vertices{$_}[Z] < $z, @vertices_ids) ? FE_TOP : FE_BOTTOM; if ($edge_type == FE_TOP) { ($a, $b) = ($b, $a); ($a_id, $b_id) = ($b_id, $a_id); } # We assume that this method is never being called for horizontal # facets, so no other edge is going to be on this layer. return pack I_FMT, ( $a->[X], $a->[Y], # I_A $b->[X], $b->[Y], # I_B $a_id, # I_A_ID $b_id, # I_B_ID -1, # I_EDGE_A_ID -1, # I_EDGE_B_ID $edge_type, # I_FACET_EDGE ); #print "Horizontal edge at $z!\n"; } elsif ($a->[Z] == $z) { #print "A point on plane $z!\n"; push @points, [ $a->[X], $a->[Y], $a_id ]; push @points_on_layer, $#points; } elsif ($b->[Z] == $z) { #print "B point on plane $z!\n"; push @points, [ $b->[X], $b->[Y], $b_id ]; push @points_on_layer, $#points; } elsif (($a->[Z] < $z && $b->[Z] > $z) || ($b->[Z] < $z && $a->[Z] > $z)) { # edge intersects the current layer; calculate intersection push @points, [ $b->[X] + ($a->[X] - $b->[X]) * ($z - $b->[Z]) / ($a->[Z] - $b->[Z]), $b->[Y] + ($a->[Y] - $b->[Y]) * ($z - $b->[Z]) / ($a->[Z] - $b->[Z]), undef, $edge_ids[$e], ]; push @intersection_points, $#points; #print "Intersects at $z!\n"; } } if (@points_on_layer == 2) { if (@intersection_points == 1) { splice @points, $points_on_layer[1], 1; } elsif (@intersection_points == 0) { return if same_point(@points[@points_on_layer]); } } if (@points) { # defensive programming: die "Facets must intersect each plane 0 or 2 times" if @points != 2; return pack I_FMT, ( $points[B][X], $points[B][Y], # I_A $points[A][X], $points[A][Y], # I_B $points[B][2] // -1, # I_A_ID / $points[A][2] // -1, # I_B_ID / $points[B][3] // -1, # I_EDGE_A_ID / $points[A][3] // -1, # I_EDGE_B_ID / -1, # I_FACET_EDGE ); #printf " intersection points at z = %f: %f,%f - %f,%f\n", $z, map @$_, @intersection_points; } return (); } sub get_connected_facets { my $self = shift; my ($facet_id) = @_; my %facets = (); foreach my $edge_id (@{$self->facets_edges->[$facet_id]}) { $facets{$_} = 1 for @{$self->edges_facets->[$edge_id]}; } delete $facets{$facet_id}; return keys %facets; } sub split_mesh { my $self = shift; $self->analyze; my @meshes = (); # loop while we have remaining facets while (1) { # get the first facet my @facet_queue = (); my @facets = (); for (my $i = 0; $i <= $#{$self->facets}; $i++) { if (defined $self->facets->[$i]) { push @facet_queue, $i; last; } } last if !@facet_queue; while (defined (my $facet_id = shift @facet_queue)) { next unless defined $self->facets->[$facet_id]; push @facets, map [ @$_ ], $self->facets->[$facet_id]; push @facet_queue, $self->get_connected_facets($facet_id); $self->facets->[$facet_id] = undef; } my %vertices = map { $_ => 1 } map @$_[-3..-1], @facets; my @new_vertices = keys %vertices; my %new_vertices = map { $new_vertices[$_] => $_ } 0..$#new_vertices; foreach my $facet (@facets) { $facet->[$_] = $new_vertices{$facet->[$_]} for -3..-1; } push @meshes, Slic3r::TriangleMesh->new( facets => \@facets, vertices => [ map $self->vertices->[$_], keys %vertices ], ); } return @meshes; } sub horizontal_projection { my $self = shift; my @f = (); foreach my $facet (@{$self->facets}) { push @f, Slic3r::Polygon->new(map [ @{$self->vertices->[$_]}[X,Y] ], @$facet); } my $scale_vector = Math::Clipper::integerize_coordinate_sets({ bits => 32 }, @f); $_->make_counter_clockwise for @f; # do this after scaling, as winding order might change while doing that my $union = union_ex([ Slic3r::Geometry::Clipper::offset(\@f, 10000) ]); Math::Clipper::unscale_coordinate_sets($scale_vector, $_) for @$union; return $union; } 1;