package Slic3r::Print::Object; use Moo; use List::Util qw(min max sum first); use Slic3r::ExtrusionPath ':roles'; use Slic3r::Geometry qw(X Y Z PI scale unscale deg2rad rad2deg scaled_epsilon chained_path_points); use Slic3r::Geometry::Clipper qw(diff diff_ex intersection intersection_ex union union_ex offset offset_ex offset2); use Slic3r::Surface ':types'; has 'print' => (is => 'ro', weak_ref => 1, required => 1); has 'input_file' => (is => 'rw', required => 0); has 'meshes' => (is => 'rw', default => sub { [] }); # by region_id has 'size' => (is => 'rw', required => 1); # XYZ in scaled coordinates has 'copies' => (is => 'rw', trigger => 1); # in scaled coordinates has 'layers' => (is => 'rw', default => sub { [] }); has 'support_layers' => (is => 'rw', default => sub { [] }); has 'config_overrides' => (is => 'rw', default => sub { Slic3r::Config->new }); has 'config' => (is => 'rw'); has 'layer_height_ranges' => (is => 'rw', default => sub { [] }); # [ z_min, z_max, layer_height ] has 'fill_maker' => (is => 'lazy'); has '_slice_z_table' => (is => 'lazy'); sub BUILD { my $self = shift; $self->init_config; # make layers taking custom heights into account my $print_z = my $slice_z = my $height = 0; # add raft layers for my $id (0 .. $self->config->raft_layers-1) { $height = ($id == 0) ? $Slic3r::Config->get_value('first_layer_height') : $Slic3r::Config->layer_height; $print_z += $height; push @{$self->layers}, Slic3r::Layer->new( object => $self, id => $id, height => $height, print_z => $print_z, slice_z => -1, ); } # loop until we have at least one layer and the max slice_z reaches the object height my $max_z = unscale $self->size->[Z]; while (!@{$self->layers} || ($slice_z - $height) <= $max_z) { my $id = $#{$self->layers} + 1; # assign the default height to the layer according to the general settings $height = ($id == 0) ? $Slic3r::Config->get_value('first_layer_height') : $Slic3r::Config->layer_height; # look for an applicable custom range if (my $range = first { $_->[0] <= $slice_z && $_->[1] > $slice_z } @{$self->layer_height_ranges}) { $height = $range->[2]; # if user set custom height to zero we should just skip the range and resume slicing over it if ($height == 0) { $slice_z += $range->[1] - $range->[0]; next; } } $print_z += $height; $slice_z += $height/2; ### Slic3r::debugf "Layer %d: height = %s; slice_z = %s; print_z = %s\n", $id, $height, $slice_z, $print_z; push @{$self->layers}, Slic3r::Layer->new( object => $self, id => $id, height => $height, print_z => $print_z, slice_z => scale $slice_z, ); $slice_z += $height/2; # add the other half layer } } sub _build_fill_maker { my $self = shift; return Slic3r::Fill->new(object => $self); } sub _build__slice_z_table { my $self = shift; return Slic3r::Object::XS::ZTable->new([ map $_->slice_z, @{$self->layers} ]); } # This should be probably moved in Print.pm at the point where we sort Layer objects sub _trigger_copies { my $self = shift; return unless @{$self->copies} > 1; # order copies with a nearest neighbor search @{$self->copies} = @{chained_path_points($self->copies)} } sub init_config { my $self = shift; $self->config(Slic3r::Config->merge($self->print->config, $self->config_overrides)); } sub layer_count { my $self = shift; return scalar @{ $self->layers }; } sub get_layer_range { my $self = shift; my ($min_z, $max_z) = @_; my $min_layer = $self->_slice_z_table->lower_bound($min_z); # first layer whose slice_z is >= $min_z return ( $min_layer, $self->_slice_z_table->upper_bound($max_z, $min_layer)-1, # last layer whose slice_z is <= $max_z ); } sub bounding_box { my $self = shift; # since the object is aligned to origin, bounding box coincides with size return Slic3r::Geometry::BoundingBox->new_from_points([ map Slic3r::Point->new(@$_[X,Y]), [0,0], $self->size ]); } sub slice { my $self = shift; my %params = @_; # make sure all layers contain layer region objects for all regions my $regions_count = $self->print->regions_count; foreach my $layer (@{ $self->layers }) { $layer->region($_) for 0 .. ($regions_count-1); } # process facets for my $region_id (0 .. $#{$self->meshes}) { my $mesh = $self->meshes->[$region_id] // next; # ignore undef meshes my %lines = (); # layer_id => [ lines ] my $apply_lines = sub { my $lines = shift; foreach my $layer_id (keys %$lines) { $lines{$layer_id} ||= []; push @{$lines{$layer_id}}, @{$lines->{$layer_id}}; } }; Slic3r::parallelize( disable => ($#{$mesh->facets} < 500), # don't parallelize when too few facets items => [ 0..$#{$mesh->facets} ], thread_cb => sub { my $q = shift; my $result_lines = {}; while (defined (my $facet_id = $q->dequeue)) { my $lines = $mesh->slice_facet($self, $facet_id); foreach my $layer_id (keys %$lines) { $result_lines->{$layer_id} ||= []; push @{ $result_lines->{$layer_id} }, @{ $lines->{$layer_id} }; } } return $result_lines; }, collect_cb => sub { $apply_lines->($_[0]); }, no_threads_cb => sub { for (0..$#{$mesh->facets}) { my $lines = $mesh->slice_facet($self, $_); $apply_lines->($lines); } }, ); # free memory undef $mesh; undef $self->meshes->[$region_id]; foreach my $layer (@{ $self->layers }) { Slic3r::debugf "Making surfaces for layer %d (slice z = %f):\n", $layer->id, unscale $layer->slice_z if $Slic3r::debug; my $layerm = $layer->regions->[$region_id]; my ($slicing_errors, $loops) = Slic3r::TriangleMesh::make_loops($lines{$layer->id}); $layer->slicing_errors(1) if $slicing_errors; $layerm->make_surfaces($loops); # free memory delete $lines{$layer->id}; } } # free memory $self->meshes(undef); # remove last layer(s) if empty pop @{$self->layers} while @{$self->layers} && (!map @{$_->slices}, @{$self->layers->[-1]->regions}); foreach my $layer (@{ $self->layers }) { # merge all regions' slices to get islands $layer->make_slices; } # detect slicing errors my $warning_thrown = 0; for my $i (0 .. $#{$self->layers}) { my $layer = $self->layers->[$i]; next unless $layer->slicing_errors; if (!$warning_thrown) { warn "The model has overlapping or self-intersecting facets. I tried to repair it, " . "however you might want to check the results or repair the input file and retry.\n"; $warning_thrown = 1; } # try to repair the layer surfaces by merging all contours and all holes from # neighbor layers Slic3r::debugf "Attempting to repair layer %d\n", $i; foreach my $region_id (0 .. $#{$layer->regions}) { my $layerm = $layer->region($region_id); my (@upper_surfaces, @lower_surfaces); for (my $j = $i+1; $j <= $#{$self->layers}; $j++) { if (!$self->layers->[$j]->slicing_errors) { @upper_surfaces = @{$self->layers->[$j]->region($region_id)->slices}; last; } } for (my $j = $i-1; $j >= 0; $j--) { if (!$self->layers->[$j]->slicing_errors) { @lower_surfaces = @{$self->layers->[$j]->region($region_id)->slices}; last; } } my $union = union_ex([ map $_->expolygon->contour, @upper_surfaces, @lower_surfaces, ]); my $diff = diff_ex( [ map @$_, @$union ], [ map @{$_->expolygon->holes}, @upper_surfaces, @lower_surfaces, ], ); $layerm->slices->clear; $layerm->slices->append( map Slic3r::Surface->new (expolygon => $_, surface_type => S_TYPE_INTERNAL), @$diff ); } # update layer slices after repairing the single regions $layer->make_slices; } # remove empty layers from bottom my $first_object_layer_id = $self->config->raft_layers; while (@{$self->layers} && !@{$self->layers->[$first_object_layer_id]->slices} && !map @{$_->thin_walls}, @{$self->layers->[$first_object_layer_id]->regions}) { splice @{$self->layers}, $first_object_layer_id, 1; for (my $i = $first_object_layer_id; $i <= $#{$self->layers}; $i++) { $self->layers->[$i]->id($i); } } } sub make_perimeters { my $self = shift; # compare each layer to the one below, and mark those slices needing # one additional inner perimeter, like the top of domed objects- # this algorithm makes sure that at least one perimeter is overlapping # but we don't generate any extra perimeter if fill density is zero, as they would be floating # inside the object - infill_only_where_needed should be the method of choice for printing # hollow objects if ($self->config->extra_perimeters && $self->config->perimeters > 0 && $self->config->fill_density > 0) { for my $region_id (0 .. ($self->print->regions_count-1)) { for my $layer_id (0 .. $self->layer_count-2) { my $layerm = $self->layers->[$layer_id]->regions->[$region_id]; my $upper_layerm = $self->layers->[$layer_id+1]->regions->[$region_id]; my $perimeter_spacing = $layerm->perimeter_flow->scaled_spacing; my $overlap = $perimeter_spacing; # one perimeter my $diff = diff( offset([ map @{$_->expolygon}, @{$layerm->slices} ], -($self->config->perimeters * $perimeter_spacing)), offset([ map @{$_->expolygon}, @{$upper_layerm->slices} ], -$overlap), ); next if !@$diff; # if we need more perimeters, $diff should contain a narrow region that we can collapse $diff = diff( $diff, offset2($diff, -$perimeter_spacing, +$perimeter_spacing), 1, ); next if !@$diff; # diff contains the collapsed area foreach my $slice (@{$layerm->slices}) { my $extra_perimeters = 0; CYCLE: while (1) { # compute polygons representing the thickness of the hypotetical new internal perimeter # of our slice $extra_perimeters++; my $hypothetical_perimeter = diff( offset($slice->expolygon->arrayref, -($perimeter_spacing * ($self->config->perimeters + $extra_perimeters-1))), offset($slice->expolygon->arrayref, -($perimeter_spacing * ($self->config->perimeters + $extra_perimeters))), ); last CYCLE if !@$hypothetical_perimeter; # no extra perimeter is possible # only add the perimeter if there's an intersection with the collapsed area last CYCLE if !@{ intersection($diff, $hypothetical_perimeter) }; Slic3r::debugf " adding one more perimeter at layer %d\n", $layer_id; $slice->extra_perimeters($extra_perimeters); } } } } } Slic3r::parallelize( items => sub { 0 .. ($self->layer_count-1) }, thread_cb => sub { my $q = shift; while (defined (my $layer_id = $q->dequeue)) { $self->layers->[$layer_id]->make_perimeters; } }, collect_cb => sub {}, no_threads_cb => sub { $_->make_perimeters for @{$self->layers}; }, ); } sub detect_surfaces_type { my $self = shift; Slic3r::debugf "Detecting solid surfaces...\n"; # prepare a reusable subroutine to make surface differences my $surface_difference = sub { my ($subject_surfaces, $clip_surfaces, $result_type, $layerm) = @_; my $expolygons = diff_ex( [ map @$_, @$subject_surfaces ], [ map @$_, @$clip_surfaces ], 1, ); return map Slic3r::Surface->new(expolygon => $_, surface_type => $result_type), @$expolygons; }; for my $region_id (0 .. ($self->print->regions_count-1)) { for my $i (0 .. ($self->layer_count-1)) { my $layerm = $self->layers->[$i]->regions->[$region_id]; # comparison happens against the *full* slices (considering all regions) my $upper_layer = $self->layers->[$i+1]; my $lower_layer = $i > 0 ? $self->layers->[$i-1] : undef; my (@bottom, @top, @internal) = (); # find top surfaces (difference between current surfaces # of current layer and upper one) if ($upper_layer) { @top = $surface_difference->( [ map $_->expolygon, @{$layerm->slices} ], $upper_layer->slices, S_TYPE_TOP, $layerm, ); } else { # if no upper layer, all surfaces of this one are solid # we clone surfaces because we're going to clear the slices collection @top = map $_->clone, @{$layerm->slices}; $_->surface_type(S_TYPE_TOP) for @top; } # find bottom surfaces (difference between current surfaces # of current layer and lower one) if ($lower_layer) { # lower layer's slices are already Surface objects @bottom = $surface_difference->( [ map $_->expolygon, @{$layerm->slices} ], $lower_layer->slices, S_TYPE_BOTTOM, $layerm, ); } else { # if no lower layer, all surfaces of this one are solid # we clone surfaces because we're going to clear the slices collection @bottom = map $_->clone, @{$layerm->slices}; $_->surface_type(S_TYPE_BOTTOM) for @bottom; } # now, if the object contained a thin membrane, we could have overlapping bottom # and top surfaces; let's do an intersection to discover them and consider them # as bottom surfaces (to allow for bridge detection) if (@top && @bottom) { my $overlapping = intersection_ex([ map $_->p, @top ], [ map $_->p, @bottom ]); Slic3r::debugf " layer %d contains %d membrane(s)\n", $layerm->id, scalar(@$overlapping); @top = $surface_difference->([map $_->expolygon, @top], $overlapping, S_TYPE_TOP, $layerm); } # find internal surfaces (difference between top/bottom surfaces and others) @internal = $surface_difference->( [ map $_->expolygon, @{$layerm->slices} ], [ map $_->expolygon, @top, @bottom ], S_TYPE_INTERNAL, $layerm, ); # save surfaces to layer $layerm->slices->clear; $layerm->slices->append(@bottom, @top, @internal); Slic3r::debugf " layer %d has %d bottom, %d top and %d internal surfaces\n", $layerm->id, scalar(@bottom), scalar(@top), scalar(@internal); } # clip surfaces to the fill boundaries foreach my $layer (@{$self->layers}) { my $layerm = $layer->regions->[$region_id]; my $fill_boundaries = [ map $_->clone->p, @{$layerm->fill_surfaces} ]; $layerm->fill_surfaces->clear; foreach my $surface (@{$layerm->slices}) { my $intersection = intersection_ex( [ $surface->p ], $fill_boundaries, ); $layerm->fill_surfaces->append(map Slic3r::Surface->new (expolygon => $_, surface_type => $surface->surface_type), @$intersection); } } } } sub clip_fill_surfaces { my $self = shift; return unless $self->config->infill_only_where_needed; # We only want infill under ceilings; this is almost like an # internal support material. my $additional_margin = scale 3; my @overhangs = (); for my $layer_id (reverse 0..$#{$self->layers}) { my $layer = $self->layers->[$layer_id]; # clip this layer's internal surfaces to @overhangs foreach my $layerm (@{$layer->regions}) { my @new_internal = map Slic3r::Surface->new( expolygon => $_, surface_type => S_TYPE_INTERNAL, ), @{intersection_ex( [ map @$_, @overhangs ], [ map @{$_->expolygon}, grep $_->surface_type == S_TYPE_INTERNAL, @{$layerm->fill_surfaces} ], )}; my @new_surfaces = ( @new_internal, (map $_->clone, grep $_->surface_type != S_TYPE_INTERNAL, @{$layerm->fill_surfaces}), ); $layerm->fill_surfaces->clear; $layerm->fill_surfaces->append(@new_surfaces); } # get this layer's overhangs if ($layer_id > 0) { my $lower_layer = $self->layers->[$layer_id-1]; # loop through layer regions so that we can use each region's # specific overhang width foreach my $layerm (@{$layer->regions}) { my $overhang_width = $layerm->overhang_width; # we want to support any solid surface, not just tops # (internal solids might have been generated) push @overhangs, map @{$_->offset_ex($additional_margin)}, @{intersection_ex( [ map @{$_->expolygon}, grep $_->surface_type != S_TYPE_INTERNAL, @{$layerm->fill_surfaces} ], [ map @$_, map @{$_->offset_ex(-$overhang_width)}, @{$lower_layer->slices} ], )}; } } } } sub bridge_over_infill { my $self = shift; return if $self->config->fill_density == 1; for my $layer_id (1..$#{$self->layers}) { my $layer = $self->layers->[$layer_id]; my $lower_layer = $self->layers->[$layer_id-1]; foreach my $layerm (@{$layer->regions}) { # compute the areas needing bridge math my @internal_solid = grep $_->surface_type == S_TYPE_INTERNALSOLID, @{$layerm->fill_surfaces}; my @lower_internal = grep $_->surface_type == S_TYPE_INTERNAL, map @{$_->fill_surfaces}, @{$lower_layer->regions}; my $to_bridge = intersection_ex( [ map $_->p, @internal_solid ], [ map $_->p, @lower_internal ], ); next unless @$to_bridge; Slic3r::debugf "Bridging %d internal areas at layer %d\n", scalar(@$to_bridge), $layer_id; # build the new collection of fill_surfaces { my @new_surfaces = map $_->clone, grep $_->surface_type != S_TYPE_INTERNALSOLID, @{$layerm->fill_surfaces}; push @new_surfaces, map Slic3r::Surface->new( expolygon => $_, surface_type => S_TYPE_INTERNALBRIDGE, ), @$to_bridge; push @new_surfaces, map Slic3r::Surface->new( expolygon => $_, surface_type => S_TYPE_INTERNALSOLID, ), @{diff_ex( [ map $_->p, @internal_solid ], [ map @$_, @$to_bridge ], 1, )}; $layerm->fill_surfaces->clear; $layerm->fill_surfaces->append(@new_surfaces); } # exclude infill from the layers below if needed # see discussion at https://github.com/alexrj/Slic3r/issues/240 # Update: do not exclude any infill. Sparse infill is able to absorb the excess material. if (0) { my $excess = $layerm->extruders->{infill}->bridge_flow->width - $layerm->height; for (my $i = $layer_id-1; $excess >= $self->layers->[$i]->height; $i--) { Slic3r::debugf " skipping infill below those areas at layer %d\n", $i; foreach my $lower_layerm (@{$self->layers->[$i]->regions}) { my @new_surfaces = (); # subtract the area from all types of surfaces foreach my $group (Slic3r::Surface->group(@{$lower_layerm->fill_surfaces})) { push @new_surfaces, map $group->[0]->clone(expolygon => $_), @{diff_ex( [ map $_->p, @$group ], [ map @$_, @$to_bridge ], )}; push @new_surfaces, map Slic3r::Surface->new( expolygon => $_, surface_type => S_TYPE_INTERNALVOID, ), @{intersection_ex( [ map $_->p, @$group ], [ map @$_, @$to_bridge ], )}; } $lower_layerm->fill_surfaces->clear; $lower_layerm->fill_surfaces->append(@new_surfaces); } $excess -= $self->layers->[$i]->height; } } } } } sub discover_horizontal_shells { my $self = shift; Slic3r::debugf "==> DISCOVERING HORIZONTAL SHELLS\n"; my $margin = scale &Slic3r::EXTERNAL_INFILL_MARGIN; for my $region_id (0 .. ($self->print->regions_count-1)) { for (my $i = 0; $i < $self->layer_count; $i++) { my $layerm = $self->layers->[$i]->regions->[$region_id]; if ($self->config->solid_infill_every_layers && $self->config->fill_density > 0 && ($i % $self->config->solid_infill_every_layers) == 0) { my @surfaces = @{$layerm->fill_surfaces}; for my $i (0..$#surfaces) { next unless $surfaces[$i]->surface_type == S_TYPE_INTERNAL; $layerm->fill_surfaces->set_surface_type($i, S_TYPE_INTERNALSOLID); } } EXTERNAL: foreach my $type (S_TYPE_TOP, S_TYPE_BOTTOM) { # find slices of current type for current layer # use slices instead of fill_surfaces because they also include the perimeter area # which needs to be propagated in shells; we need to grow slices like we did for # fill_surfaces though. Using both ungrown slices and grown fill_surfaces will # not work in some situations, as there won't be any grown region in the perimeter # area (this was seen in a model where the top layer had one extra perimeter, thus # its fill_surfaces was thinner than the lower layer's infill) my $solid = offset_ex([ map $_->p, grep $_->surface_type == $type, @{$layerm->slices} ], $margin); next if !@$solid; Slic3r::debugf "Layer %d has %s surfaces\n", $i, ($type == S_TYPE_TOP) ? 'top' : 'bottom'; my $solid_layers = ($type == S_TYPE_TOP) ? $self->config->top_solid_layers : $self->config->bottom_solid_layers; NEIGHBOR: for (my $n = ($type == S_TYPE_TOP) ? $i-1 : $i+1; abs($n - $i) <= $solid_layers-1; ($type == S_TYPE_TOP) ? $n-- : $n++) { next if $n < 0 || $n >= $self->layer_count; Slic3r::debugf " looking for neighbors on layer %d...\n", $n; my @neighbor_fill_surfaces = @{$self->layers->[$n]->regions->[$region_id]->fill_surfaces}; # find intersection between neighbor and current layer's surfaces # intersections have contours and holes # we update $solid so that we limit the next neighbor layer to the areas that were # found on this one - in other words, solid shells on one layer (for a given external surface) # are always a subset of the shells found on the previous shell layer # this approach allows for DWIM in hollow sloping vases, where we want bottom # shells to be generated in the base but not in the walls (where there are many # narrow bottom surfaces): reassigning $solid will consider the 'shadow' of the # upper perimeter as an obstacle and shell will not be propagated to more upper layers my $new_internal_solid = $solid = intersection_ex( [ map @$_, @$solid ], [ map $_->p, grep { ($_->surface_type == S_TYPE_INTERNAL) || ($_->surface_type == S_TYPE_INTERNALSOLID) } @neighbor_fill_surfaces ], 1, ); next EXTERNAL if !@$new_internal_solid; # make sure the new internal solid is wide enough, as it might get collapsed when # spacing is added in Fill.pm { my $margin = 3 * $layerm->solid_infill_flow->scaled_width; # require at least this size my $too_narrow = diff_ex( [ map @$_, @$new_internal_solid ], offset2([ map @$_, @$new_internal_solid ], -$margin, +$margin), 1, ); # if some parts are going to collapse, use a different strategy according to fill density if (@$too_narrow) { if ($self->config->fill_density > 0) { # if we have internal infill, grow the collapsing parts and add the extra area to # the neighbor layer as well as to our original surfaces so that we support this # additional area in the next shell too # make sure our grown surfaces don't exceed the fill area my @grown = map @$_, @{intersection_ex( offset([ map @$_, @$too_narrow ], +$margin), [ map $_->p, @neighbor_fill_surfaces ], )}; $new_internal_solid = $solid = union_ex([ @grown, (map @$_, @$new_internal_solid) ]); } else { # if we're printing a hollow object, we discard such small parts $new_internal_solid = $solid = diff_ex( [ map @$_, @$new_internal_solid ], [ map @$_, @$too_narrow ], ); } } } # internal-solid are the union of the existing internal-solid surfaces # and new ones my $internal_solid = union_ex([ ( map $_->p, grep $_->surface_type == S_TYPE_INTERNALSOLID, @neighbor_fill_surfaces ), ( map @$_, @$new_internal_solid ), ]); # subtract intersections from layer surfaces to get resulting internal surfaces my $internal = diff_ex( [ map $_->p, grep $_->surface_type == S_TYPE_INTERNAL, @neighbor_fill_surfaces ], [ map @$_, @$internal_solid ], 1, ); Slic3r::debugf " %d internal-solid and %d internal surfaces found\n", scalar(@$internal_solid), scalar(@$internal); # assign resulting internal surfaces to layer my $neighbor_fill_surfaces = $self->layers->[$n]->regions->[$region_id]->fill_surfaces; $neighbor_fill_surfaces->clear; $neighbor_fill_surfaces->append(map Slic3r::Surface->new (expolygon => $_, surface_type => S_TYPE_INTERNAL), @$internal); # assign new internal-solid surfaces to layer $neighbor_fill_surfaces->append(map Slic3r::Surface->new (expolygon => $_, surface_type => S_TYPE_INTERNALSOLID), @$internal_solid); # assign top and bottom surfaces to layer foreach my $s (Slic3r::Surface->group(grep { ($_->surface_type == S_TYPE_TOP) || ($_->surface_type == S_TYPE_BOTTOM) } @neighbor_fill_surfaces)) { my $solid_surfaces = diff_ex( [ map $_->p, @$s ], [ map @$_, @$internal_solid, @$internal ], 1, ); $neighbor_fill_surfaces->append(map $s->[0]->clone(expolygon => $_), @$solid_surfaces); } } } } } } # combine fill surfaces across layers sub combine_infill { my $self = shift; return unless $self->config->infill_every_layers > 1 && $self->config->fill_density > 0; my $every = $self->config->infill_every_layers; my $layer_count = $self->layer_count; my @layer_heights = map $self->layers->[$_]->height, 0 .. $layer_count-1; for my $region_id (0 .. ($self->print->regions_count-1)) { # limit the number of combined layers to the maximum height allowed by this regions' nozzle my $nozzle_diameter = $self->print->regions->[$region_id]->extruders->{infill}->nozzle_diameter; # define the combinations my @combine = (); # layer_id => thickness in layers { my $current_height = my $layers = 0; for my $layer_id (1 .. $#layer_heights) { my $height = $self->layers->[$layer_id]->height; if ($current_height + $height >= $nozzle_diameter || $layers >= $every) { $combine[$layer_id-1] = $layers; $current_height = $layers = 0; } $current_height += $height; $layers++; } } # skip bottom layer for my $layer_id (1 .. $#combine) { next unless ($combine[$layer_id] // 1) > 1; my @layerms = map $self->layers->[$_]->regions->[$region_id], ($layer_id - ($combine[$layer_id]-1) .. $layer_id); # only combine internal infill for my $type (S_TYPE_INTERNAL) { # we need to perform a multi-layer intersection, so let's split it in pairs # initialize the intersection with the candidates of the lowest layer my $intersection = [ map $_->expolygon, grep $_->surface_type == $type, @{$layerms[0]->fill_surfaces} ]; # start looping from the second layer and intersect the current intersection with it for my $layerm (@layerms[1 .. $#layerms]) { $intersection = intersection_ex( [ map @$_, @$intersection ], [ map @{$_->expolygon}, grep $_->surface_type == $type, @{$layerm->fill_surfaces} ], ); } my $area_threshold = $layerms[0]->infill_area_threshold; @$intersection = grep $_->area > $area_threshold, @$intersection; next if !@$intersection; Slic3r::debugf " combining %d %s regions from layers %d-%d\n", scalar(@$intersection), ($type == S_TYPE_INTERNAL ? 'internal' : 'internal-solid'), $layer_id-($every-1), $layer_id; # $intersection now contains the regions that can be combined across the full amount of layers # so let's remove those areas from all layers my @intersection_with_clearance = map @{$_->offset( $layerms[-1]->solid_infill_flow->scaled_width / 2 + $layerms[-1]->perimeter_flow->scaled_width / 2 # Because fill areas for rectilinear and honeycomb are grown # later to overlap perimeters, we need to counteract that too. + (($type == S_TYPE_INTERNALSOLID || $self->config->fill_pattern =~ /(rectilinear|honeycomb)/) ? $layerms[-1]->solid_infill_flow->scaled_width * &Slic3r::INFILL_OVERLAP_OVER_SPACING : 0) )}, @$intersection; foreach my $layerm (@layerms) { my @this_type = grep $_->surface_type == $type, @{$layerm->fill_surfaces}; my @other_types = map $_->clone, grep $_->surface_type != $type, @{$layerm->fill_surfaces}; my @new_this_type = map Slic3r::Surface->new(expolygon => $_, surface_type => $type), @{diff_ex( [ map @{$_->expolygon}, @this_type ], [ @intersection_with_clearance ], )}; # apply surfaces back with adjusted depth to the uppermost layer if ($layerm->id == $layer_id) { push @new_this_type, map Slic3r::Surface->new( expolygon => $_, surface_type => $type, thickness => sum(map $_->height, @layerms), thickness_layers => scalar(@layerms), ), @$intersection; } else { # save void surfaces push @this_type, map Slic3r::Surface->new(expolygon => $_, surface_type => S_TYPE_INTERNALVOID), @{intersection_ex( [ map @{$_->expolygon}, @this_type ], [ @intersection_with_clearance ], )}; } $layerm->fill_surfaces->clear; $layerm->fill_surfaces->append(@new_this_type, @other_types); } } } } } sub generate_support_material { my $self = shift; return unless $self->config->support_material && $self->layer_count >= 2; my $flow = $self->print->support_material_flow; # how much we extend support around the actual contact area #my $margin = $flow->scaled_width / 2; my $margin = scale 3; # increment used to reach $margin in steps to avoid trespassing thin objects my $margin_step = $margin/3; # if user specified a custom angle threshold, convert it to radians my $threshold_rad; if ($self->config->support_material_threshold) { $threshold_rad = deg2rad($self->config->support_material_threshold + 1); # +1 makes the threshold inclusive Slic3r::debugf "Threshold angle = %d°\n", rad2deg($threshold_rad); } # shape of contact area my $contact_loops = 1; my $circle_radius = 1.5 * $flow->scaled_width; my $circle_distance = 3 * $circle_radius; my $circle = Slic3r::Polygon->new(map [ $circle_radius * cos $_, $circle_radius * sin $_ ], (5*PI/3, 4*PI/3, PI, 2*PI/3, PI/3, 0)); # determine contact areas my %contact = (); # contact_z => [ polygons ] my %overhang = (); # contact_z => [ expolygons ] - this stores the actual overhang supported by each contact layer for my $layer_id (1 .. $#{$self->layers}) { my $layer = $self->layers->[$layer_id]; my $lower_layer = $self->layers->[$layer_id-1]; # detect overhangs and contact areas needed to support them my (@overhang, @contact) = (); foreach my $layerm (@{$layer->regions}) { my $fw = $layerm->perimeter_flow->scaled_width; my $diff; # If a threshold angle was specified, use a different logic for detecting overhangs. if (defined $threshold_rad || $layer_id <= $self->config->support_material_enforce_layers) { my $d = defined $threshold_rad ? scale $lower_layer->height * ((cos $threshold_rad) / (sin $threshold_rad)) : 0; $diff = diff( offset([ map $_->p, @{$layerm->slices} ], -$d), [ map @$_, @{$lower_layer->slices} ], ); # only enforce spacing from the object ($fw/2) if the threshold angle # is not too high: in that case, $d will be very small (as we need to catch # very short overhangs), and such contact area would be eaten by the # enforced spacing, resulting in high threshold angles to be almost ignored $diff = diff( offset($diff, $d - $fw/2), [ map @$_, @{$lower_layer->slices} ], ) if $d > $fw/2; } else { $diff = diff( offset([ map $_->p, @{$layerm->slices} ], -$fw/2), [ map @$_, @{$lower_layer->slices} ], ); # $diff now contains the ring or stripe comprised between the boundary of # lower slices and the centerline of the last perimeter in this overhanging layer. # Void $diff means that there's no upper perimeter whose centerline is # outside the lower slice boundary, thus no overhang } next if !@$diff; push @overhang, @{union_ex($diff)}; # NOTE: this is not the full overhang as it misses the outermost half of the perimeter width! # Let's define the required contact area by using a max gap of half the upper # extrusion width and extending the area according to the configured margin. # We increment the area in steps because we don't want our support to overflow # on the other side of the object (if it's very thin). { my @slices_margin = @{offset([ map @$_, @{$lower_layer->slices} ], $fw/2)}; for ($fw/2, map {$margin_step} 1..($margin / $margin_step)) { $diff = diff( offset($diff, $_), \@slices_margin, ); } } push @contact, @$diff; } next if !@contact; # now apply the contact areas to the layer were they need to be made { # get the average nozzle diameter used on this layer my @nozzle_diameters = map $_->nozzle_diameter, map { $_->perimeter_flow, $_->solid_infill_flow } @{$layer->regions}; my $nozzle_diameter = sum(@nozzle_diameters)/@nozzle_diameters; my $contact_z = $layer->print_z - $nozzle_diameter * 1.5; ###$contact_z = $layer->print_z - $layer->height; # ignore this contact area if it's too low next if $contact_z < $Slic3r::Config->get_value('first_layer_height'); $contact{$contact_z} = [ @contact ]; $overhang{$contact_z} = [ @overhang ]; if (0) { require "Slic3r/SVG.pm"; Slic3r::SVG::output("contact_" . $contact_z . ".svg", expolygons => union_ex(\@contact), red_expolygons => \@overhang, ); } } } my @contact_z = sort keys %contact; # find object top surfaces # we'll use them to clip our support and detect where does it stick my %top = (); # print_z => [ expolygons ] { my $projection = []; foreach my $layer (reverse @{$self->layers}) { if (my @top = grep $_->surface_type == S_TYPE_TOP, map @{$_->slices}, @{$layer->regions}) { # compute projection of the contact areas above this top layer # first add all the 'new' contact areas to the current projection # ('new' means all the areas that are lower than the last top layer # we considered) my $min_top = min(keys %top) // max(keys %contact); # use <= instead of just < because otherwise we'd ignore any contact regions # having the same Z of top layers push @$projection, map @{$contact{$_}}, grep { $_ > $layer->print_z && $_ <= $min_top } keys %contact; # now find whether any projection falls onto this top surface my $touching = intersection($projection, [ map $_->p, @top ]); if (@$touching) { # grow top surfaces so that interface and support generation are generated # with some spacing from object - it looks we don't need the actual # top shapes so this can be done here $top{ $layer->print_z } = [ offset($touching, $flow->scaled_spacing) ]; } # remove the areas that touched from the projection that will continue on # next, lower, top surfaces $projection = diff($projection, $touching); } } } my @top_z = sort keys %top; # we now know the upper and lower boundaries for our support material object # (@contact_z and @top_z), so we can generate intermediate layers my @support_layers = _compute_support_layers(\@contact_z, \@top_z, $self->config, $flow); # if we wanted to apply some special logic to the first support layers lying on # object's top surfaces this is the place to detect them # let's now generate interface layers below contact areas my %interface = (); # layer_id => [ polygons ] my $interface_layers = $self->config->support_material_interface_layers; for my $layer_id (0 .. $#support_layers) { my $z = $support_layers[$layer_id]; my $this = $contact{$z} // next; # count contact layer as interface layer for (my $i = $layer_id-1; $i >= 0 && $i > $layer_id-$interface_layers; $i--) { $z = $support_layers[$i]; # Compute interface area on this layer as diff of upper contact area # (or upper interface area) and layer slices. # This diff is responsible of the contact between support material and # the top surfaces of the object. We should probably offset the top # surfaces before performing the diff, but this needs investigation. $this = $interface{$i} = diff( [ @$this, # clipped projection of the current contact regions @{ $interface{$i} || [] }, # interface regions already applied to this layer ], [ @{ $top{$z} || [] }, # top slices on this layer @{ $contact{$z} || [] }, # contact regions on this layer ], 1, ); } } # let's now generate support layers under interface layers my %support = (); # layer_id => [ polygons ] { for my $i (reverse 0 .. $#support_layers-1) { my $z = $support_layers[$i]; $support{$i} = diff( [ @{ $support{$i+1} || [] }, # support regions on upper layer @{ $interface{$i+1} || [] }, # interface regions on upper layer ], [ @{ $top{$z} || [] }, # top slices on this layer @{ $interface{$i} || [] }, # interface regions on this layer @{ $contact{$z} || [] }, # contact regions on this layer ], 1, ); } } push @{$self->support_layers}, map Slic3r::Layer::Support->new( object => $self, id => $_, height => ($_ == 0) ? $support_layers[$_] : ($support_layers[$_] - $support_layers[$_-1]), print_z => $support_layers[$_], slice_z => -1, slices => [], ), 0 .. $#support_layers; Slic3r::debugf "Generating patterns\n"; # prepare fillers my $pattern = $self->config->support_material_pattern; my @angles = ($self->config->support_material_angle); if ($pattern eq 'rectilinear-grid') { $pattern = 'rectilinear'; push @angles, $angles[0] + 90; } my %fillers = ( interface => $self->fill_maker->filler('rectilinear'), support => $self->fill_maker->filler($pattern), ); my $interface_angle = $self->config->support_material_angle + 90; my $interface_spacing = $self->config->support_material_interface_spacing + $flow->spacing; my $interface_density = $interface_spacing == 0 ? 1 : $flow->spacing / $interface_spacing; my $support_spacing = $self->config->support_material_spacing + $flow->spacing; my $support_density = $support_spacing == 0 ? 1 : $flow->spacing / $support_spacing; my $process_layer = sub { my ($layer_id) = @_; $contact{$support_layers[$layer_id]} ||= []; $interface{$layer_id} ||= []; $support{$layer_id} ||= []; if (0) { require "Slic3r/SVG.pm"; Slic3r::SVG::output("layer_" . $support_layers[$layer_id] . ".svg", red_expolygons => union_ex($contact{$support_layers[$layer_id]}), green_expolygons => union_ex($interface{$layer_id}), ); } # islands my $result = { contact => [], interface => [], support => [] }; $result->{islands} = union_ex([ map @$_, $interface{$layer_id}, $support{$layer_id}, $contact{$support_layers[$layer_id]}, ]); # contact my $contact_infill = []; if ((my $contact = $contact{$support_layers[$layer_id]}) && $contact_loops > 0) { my $overhang = $overhang{$support_layers[$layer_id]}; $contact = [ grep $_->is_counter_clockwise, @$contact ]; # generate the outermost loop my @loops0; { # find centerline of the external loop of the contours my @external_loops = @{offset($contact, -$flow->scaled_width/2)}; # apply a pattern to the loop my @positions = map Slic3r::Polygon->new(@$_)->split_at_first_point->regular_points($circle_distance), @external_loops; @loops0 = @{diff( [ @external_loops ], [ map $circle->clone->translate(@$_), @positions ], )}; } # make more loops my @loops = @loops0; for my $i (2..$contact_loops) { my $d = ($i-1) * $flow->scaled_spacing; push @loops, offset2(\@loops0, -$d -0.5*$flow->scaled_spacing, +0.5*$flow->scaled_spacing); } # clip such loops to the side oriented towards the object @loops = map Slic3r::Polyline->new(@$_), @{ Boost::Geometry::Utils::multi_polygon_multi_linestring_intersection( [ offset_ex([ map @$_, @$overhang ], +scale 3) ], [ map Slic3r::Polygon->new(@$_)->split_at_first_point, @loops ], ) }; # add the contact infill area to the interface area $contact_infill = [ offset2(\@loops0, -($contact_loops + 0.5) * $flow->scaled_spacing, +0.5*$flow->scaled_spacing) ]; # transform loops into ExtrusionPath objects @loops = map Slic3r::ExtrusionPath->pack( polyline => $_, role => EXTR_ROLE_SUPPORTMATERIAL, flow_spacing => $flow->spacing, ), @loops; $result->{contact} = [ @loops ]; } # interface and contact infill if (@{$interface{$layer_id}} || @$contact_infill) { $fillers{interface}->angle($interface_angle); # steal some space from support $interface{$layer_id} = intersection( [ offset([ map @$_, $interface{$layer_id}, $contact_infill ], scale 3) ], [ map @$_, $interface{$layer_id}, $support{$layer_id}, $contact_infill ], undef, 1, ); $support{$layer_id} = diff( $support{$layer_id}, $interface{$layer_id}, ); my @paths = (); foreach my $expolygon (@{union_ex($interface{$layer_id})}) { my @p = $fillers{interface}->fill_surface( Slic3r::Surface->new(expolygon => $expolygon), density => $interface_density, flow_spacing => $flow->spacing, complete => 1, ); my $params = shift @p; push @paths, map Slic3r::ExtrusionPath->pack( polyline => Slic3r::Polyline->new(@$_), role => EXTR_ROLE_SUPPORTMATERIAL, height => undef, flow_spacing => $params->{flow_spacing}, ), @p; } $result->{interface} = [ @paths ]; } # support or flange if (@{$support{$layer_id}}) { my $filler = $fillers{support}; $filler->angle($angles[ ($layer_id) % @angles ]); my $density = $support_density; my $flow_spacing = $flow->spacing; # TODO: use offset2_ex() my $to_infill = union_ex($support{$layer_id}, undef, 1); my @paths = (); # base flange if ($layer_id == 0) { $filler = $fillers{interface}; $filler->angle($self->config->support_material_angle + 90); $density = 0.5; $flow_spacing = $self->print->first_layer_support_material_flow->spacing; } else { # draw a perimeter all around support infill # TODO: use brim ordering algorithm push @paths, map Slic3r::ExtrusionPath->pack( polyline => $_->split_at_first_point, role => EXTR_ROLE_SUPPORTMATERIAL, height => undef, flow_spacing => $flow->spacing, ), map @$_, @$to_infill; # TODO: use offset2_ex() $to_infill = [ offset_ex([ map @$_, @$to_infill ], -$flow->scaled_spacing) ]; } foreach my $expolygon (@$to_infill) { my @p = $filler->fill_surface( Slic3r::Surface->new(expolygon => $expolygon), density => $density, flow_spacing => $flow_spacing, complete => 1, ); my $params = shift @p; push @paths, map Slic3r::ExtrusionPath->pack( polyline => Slic3r::Polyline->new(@$_), role => EXTR_ROLE_SUPPORTMATERIAL, height => undef, flow_spacing => $params->{flow_spacing}, ), @p; } push @{$result->{support}}, @paths; } if (0) { require "Slic3r/SVG.pm"; Slic3r::SVG::output("islands_" . $support_layers[$layer_id] . ".svg", red_expolygons => union_ex($contact{$support_layers[$layer_id]} || []), green_expolygons => union_ex($interface{$layer_id} || []), red_polylines => [ map $_->unpack->polyline, @{$result->{contact}} ], green_polylines => [ map $_->unpack->polyline, @{$result->{interface}} ], polylines => [ map $_->unpack->polyline, @{$result->{support}} ], ); } return $result; }; my $apply = sub { my ($layer_id, $result) = @_; my $layer = $self->support_layers->[$layer_id]; my $interface_collection = Slic3r::ExtrusionPath::Collection->new(paths => [ @{$result->{contact}}, @{$result->{interface}} ]); $layer->support_interface_fills($interface_collection) if @{$interface_collection->paths} > 0; my $support_collection = Slic3r::ExtrusionPath::Collection->new(paths => $result->{support}); $layer->support_fills($support_collection) if @{$support_collection->paths} > 0; # TODO: use a Slic3r::ExPolygon::Collection $layer->support_islands($result->{islands}); }; Slic3r::parallelize( items => [ 0 .. $#{$self->support_layers} ], thread_cb => sub { my $q = shift; my $result = {}; while (defined (my $layer_id = $q->dequeue)) { $result->{$layer_id} = $process_layer->($layer_id); } return $result; }, collect_cb => sub { my $result = shift; $apply->($_, $result->{$_}) for keys %$result; }, no_threads_cb => sub { $apply->($_, $process_layer->($_)) for 0 .. $#{$self->support_layers}; }, ); } sub _compute_support_layers { my ($contact_z, $top_z, $config, $flow) = @_; # quick table to check whether a given Z is a top surface my %top = map { $_ => 1 } @$top_z; # determine layer height for any non-contact layer # we use max() to prevent many ultra-thin layers to be inserted in case # layer_height > nozzle_diameter * 0.75 my $support_material_height = max($config->layer_height, $flow->nozzle_diameter * 0.75); my @support_layers = sort { $a <=> $b } @$contact_z, @$top_z, (map { $_ + $flow->nozzle_diameter } @$top_z); # enforce first layer height my $first_layer_height = $config->get_value('first_layer_height'); shift @support_layers while @support_layers && $support_layers[0] <= $first_layer_height; unshift @support_layers, $first_layer_height; for (my $i = $#support_layers; $i >= 0; $i--) { my $target_height = $support_material_height; if ($i > 0 && $top{ $support_layers[$i-1] }) { $target_height = $flow->nozzle_diameter; } # enforce first layer height if (($i == 0 && $support_layers[$i] > $target_height + $first_layer_height) || ($support_layers[$i] - $support_layers[$i-1] > $target_height + Slic3r::Geometry::epsilon)) { splice @support_layers, $i, 0, ($support_layers[$i] - $target_height); $i++; } } # remove duplicates and make sure all 0.x values have the leading 0 { my %sl = map { 1 * $_ => 1 } @support_layers; @support_layers = sort { $a <=> $b } keys %sl; } return @support_layers; } 1;