Slic3r/xs/src/Flow.cpp

121 lines
4.2 KiB
C++

#include "Flow.hpp"
#include <cmath>
namespace Slic3r {
Flow
Flow::new_from_config_width(FlowRole role, const ConfigOptionFloatOrPercent &width, float nozzle_diameter, float height, float bridge_flow_ratio) {
// we need layer height unless it's a bridge
if (height <= 0 && bridge_flow_ratio == 0) CONFESS("Invalid flow height supplied to new_from_config_width()");
float w;
// use automatic extrusion width if user left 0 or we need a bridge flow
if ((!width.percent && width.value == 0) || bridge_flow_ratio > 0) {
w = Flow::_width(role, nozzle_diameter, height, bridge_flow_ratio);
} else {
w = width.get_abs_value(height);
}
Flow flow(w, Flow::_spacing(w, nozzle_diameter, height, bridge_flow_ratio), nozzle_diameter);
if (bridge_flow_ratio > 0) flow.bridge = true;
return flow;
}
Flow
Flow::new_from_spacing(float spacing, float nozzle_diameter, float height, bool bridge) {
// we need layer height unless it's a bridge
if (height <= 0 && !bridge) CONFESS("Invalid flow height supplied to new_from_spacing()");
float w = Flow::_width_from_spacing(spacing, nozzle_diameter, height, bridge);
Flow flow(w, spacing, nozzle_diameter);
flow.bridge = bridge;
return flow;
}
double
Flow::mm3_per_mm(float h) {
if (this->bridge) {
return (this->width * this->width) * PI/4.0;
} else if (this->width >= (this->nozzle_diameter + h)) {
// rectangle with semicircles at the ends
return this->width * h + (h*h) / 4.0 * (PI-4.0);
} else {
// rectangle with shrunk semicircles at the ends
return this->nozzle_diameter * h * (1 - PI/4.0) + h * this->width * PI/4.0;
}
}
float
Flow::_width(FlowRole role, float nozzle_diameter, float height, float bridge_flow_ratio) {
if (bridge_flow_ratio > 0) {
return sqrt(bridge_flow_ratio * (nozzle_diameter*nozzle_diameter));
}
// here we calculate a sane default by matching the flow speed (at the nozzle) and the feed rate
float volume = (nozzle_diameter*nozzle_diameter) * PI/4.0;
float shape_threshold = nozzle_diameter * height + (height*height) * PI/4.0;
float width;
if (volume >= shape_threshold) {
// rectangle with semicircles at the ends
width = ((nozzle_diameter*nozzle_diameter) * PI + (height*height) * (4.0 - PI)) / (4.0 * height);
} else {
// rectangle with squished semicircles at the ends
width = nozzle_diameter * (nozzle_diameter/height - 4.0/PI + 1);
}
float min = nozzle_diameter * 1.05;
float max = -1;
if (role == frExternalPerimeter || role == frSupportMaterial) {
min = max = nozzle_diameter;
} else if (role != frInfill) {
// do not limit width for sparse infill so that we use full native flow for it
max = nozzle_diameter * 1.7;
}
if (max != -1 && width > max) width = max;
if (width < min) width = min;
return width;
}
float
Flow::_width_from_spacing(float spacing, float nozzle_diameter, float height, bool bridge) {
if (bridge) {
return spacing - BRIDGE_EXTRA_SPACING;
}
float w_threshold = height + nozzle_diameter;
float s_threshold = w_threshold - OVERLAP_FACTOR * (w_threshold - (w_threshold - height * (1 - PI/4.0)));
if (spacing >= s_threshold) {
// rectangle with semicircles at the ends
return spacing + OVERLAP_FACTOR * height * (1 - PI/4.0);
} else {
// rectangle with shrunk semicircles at the ends
return (spacing + nozzle_diameter * OVERLAP_FACTOR * (PI/4.0 - 1)) / (1 + OVERLAP_FACTOR * (PI/4.0 - 1));
}
}
float
Flow::_spacing(float width, float nozzle_diameter, float height, float bridge_flow_ratio) {
if (bridge_flow_ratio > 0) {
return width + BRIDGE_EXTRA_SPACING;
}
float min_flow_spacing;
if (width >= (nozzle_diameter + height)) {
// rectangle with semicircles at the ends
min_flow_spacing = width - height * (1 - PI/4.0);
} else {
// rectangle with shrunk semicircles at the ends
min_flow_spacing = nozzle_diameter * (1 - PI/4.0) + width * PI/4.0;
}
return width - OVERLAP_FACTOR * (width - min_flow_spacing);
}
#ifdef SLIC3RXS
REGISTER_CLASS(Flow, "Flow");
#endif
}