Slic3r/lib/Slic3r/Layer/Region.pm

681 lines
31 KiB
Raku

package Slic3r::Layer::Region;
use Moo;
use List::Util qw(sum first);
use Slic3r::ExtrusionPath ':roles';
use Slic3r::Geometry qw(PI X1 X2 Y1 Y2 A B scale chained_path_items points_coincide);
use Slic3r::Geometry::Clipper qw(safety_offset union_ex diff_ex intersection_ex);
use Slic3r::Surface ':types';
has 'layer' => (
is => 'ro',
weak_ref => 1,
required => 1,
trigger => 1,
handles => [qw(id slice_z print_z height flow)],
);
has 'region' => (is => 'ro', required => 1, handles => [qw(extruders)]);
has 'perimeter_flow' => (is => 'rw');
has 'infill_flow' => (is => 'rw');
has 'solid_infill_flow' => (is => 'rw');
has 'top_infill_flow' => (is => 'rw');
has 'infill_area_threshold' => (is => 'lazy');
has 'overhang_width' => (is => 'lazy');
# collection of spare segments generated by slicing the original geometry;
# these need to be merged in continuos (closed) polylines
has 'lines' => (is => 'rw', default => sub { [] });
# collection of surfaces generated by slicing the original geometry
has 'slices' => (is => 'rw', default => sub { [] });
# collection of polygons or polylines representing thin walls contained
# in the original geometry
has 'thin_walls' => (is => 'rw', default => sub { [] });
# collection of polygons or polylines representing thin infill regions that
# need to be filled with a medial axis
has 'thin_fills' => (is => 'rw', default => sub { [] });
# collection of surfaces for infill generation
has 'fill_surfaces' => (is => 'rw', default => sub { [] });
# ordered collection of extrusion paths/loops to build all perimeters
has 'perimeters' => (is => 'rw', default => sub { [] });
# ordered collection of extrusion paths to fill surfaces
has 'fills' => (is => 'rw', default => sub { [] });
sub BUILD {
my $self = shift;
$self->_update_flows;
}
sub _trigger_layer {
my $self = shift;
$self->_update_flows;
}
sub _update_flows {
my $self = shift;
return if !$self->region;
if ($self->id == 0) {
for (qw(perimeter infill solid_infill top_infill)) {
my $method = "${_}_flow";
$self->$method
($self->region->first_layer_flows->{$_} || $self->region->flows->{$_});
}
} else {
$self->perimeter_flow($self->region->flows->{perimeter});
$self->infill_flow($self->region->flows->{infill});
$self->solid_infill_flow($self->region->flows->{solid_infill});
$self->top_infill_flow($self->region->flows->{top_infill});
}
}
sub _build_overhang_width {
my $self = shift;
my $threshold_rad = PI/2 - atan2($self->perimeter_flow->width / $self->height / 2, 1);
return scale($self->height * ((cos $threshold_rad) / (sin $threshold_rad)));
}
sub _build_infill_area_threshold {
my $self = shift;
return $self->solid_infill_flow->scaled_spacing ** 2;
}
# build polylines from lines
sub make_surfaces {
my $self = shift;
my ($loops) = @_;
return if !@$loops;
$self->slices([ _merge_loops($loops) ]);
if (0) {
require "Slic3r/SVG.pm";
Slic3r::SVG::output("surfaces.svg",
polygons => [ map $_->contour, @{$self->slices} ],
red_polygons => [ map $_->p, map @{$_->holes}, @{$self->slices} ],
);
}
}
sub _merge_loops {
my ($loops, $safety_offset) = @_;
# Input loops are not suitable for evenodd nor nonzero fill types, as we might get
# two consecutive concentric loops having the same winding order - and we have to
# respect such order. In that case, evenodd would create wrong inversions, and nonzero
# would ignore holes inside two concentric contours.
# So we're ordering loops and collapse consecutive concentric loops having the same
# winding order.
# TODO: find a faster algorithm for this.
my @loops = sort { $a->encloses_point($b->[0]) ? 0 : 1 } @$loops; # outer first
$safety_offset //= scale 0.0499;
@loops = @{ safety_offset(\@loops, $safety_offset) };
my $expolygons = [];
while (my $loop = shift @loops) {
bless $loop, 'Slic3r::Polygon';
if ($loop->is_counter_clockwise) {
$expolygons = union_ex([ $loop, map @$_, @$expolygons ]);
} else {
$expolygons = diff_ex([ map @$_, @$expolygons ], [$loop]);
}
}
$expolygons = [ map $_->offset_ex(-$safety_offset), @$expolygons ];
Slic3r::debugf " %d surface(s) having %d holes detected from %d polylines\n",
scalar(@$expolygons), scalar(map $_->holes, @$expolygons), scalar(@$loops);
return map Slic3r::Surface->new(expolygon => $_, surface_type => S_TYPE_INTERNAL), @$expolygons;
}
sub make_perimeters {
my $self = shift;
my $perimeter_spacing = $self->perimeter_flow->scaled_spacing;
my $infill_spacing = $self->solid_infill_flow->scaled_spacing;
my $gap_area_threshold = $self->perimeter_flow->scaled_width ** 2;
# this array will hold one arrayref per original surface (island);
# each item of this arrayref is an arrayref representing a depth (from outer
# perimeters to inner); each item of this arrayref is an ExPolygon:
# @perimeters = (
# [ # first island
# [ Slic3r::ExPolygon, Slic3r::ExPolygon... ], #depth 0: outer loop
# [ Slic3r::ExPolygon, Slic3r::ExPolygon... ], #depth 1: inner loop
# ],
# [ # second island
# ...
# ]
# )
my @perimeters = (); # one item per depth; each item
# organize islands using a nearest-neighbor search
my @surfaces = @{chained_path_items([
map [ $_->contour->[0], $_ ], @{$self->slices},
])};
$self->perimeters([]);
$self->fill_surfaces([]);
$self->thin_fills([]);
# for each island:
foreach my $surface (@surfaces) {
my @last_offsets = ($surface->expolygon);
# experimental hole compensation (see ArcCompensation in the RepRap wiki)
if (0) {
foreach my $hole ($last_offsets[0]->holes) {
my $circumference = abs($hole->length);
next unless $circumference <= &Slic3r::SMALL_PERIMETER_LENGTH;
# this compensation only works for circular holes, while it would
# overcompensate for hexagons and other shapes having straight edges.
# so we require a minimum number of vertices.
next unless $circumference / @$hole >= 3 * $self->perimeter_flow->scaled_width;
# revert the compensation done in make_surfaces() and get the actual radius
# of the hole
my $radius = ($circumference / PI / 2) - $self->perimeter_flow->scaled_spacing/2;
my $new_radius = ($self->perimeter_flow->scaled_width + sqrt(($self->perimeter_flow->scaled_width ** 2) + (4*($radius**2)))) / 2;
# holes are always turned to contours, so reverse point order before and after
$hole->reverse;
my @offsetted = $hole->offset(+ ($new_radius - $radius));
# skip arc compensation when hole is not round (thus leads to multiple offsets)
@$hole = map Slic3r::Point->new($_), @{ $offsetted[0] } if @offsetted == 1;
$hole->reverse;
}
}
my @gaps = ();
# generate perimeters inwards (loop 0 is the external one)
my $loop_number = $Slic3r::Config->perimeters + ($surface->extra_perimeters || 0);
push @perimeters, [] if $loop_number > 0;
# generate medial axis fragments for thin walls and gaps
my $ma = Slic3r::MedialAxis->new($surface->expolygon);
#my @intervals = $ma->offset_interval_filter($self->perimeter_flow->scaled_spacing, $loop_number + 1, $self->perimeter_flow->scaled_spacing/2, $self->perimeter_flow->scaled_spacing/1.9, $self->perimeter_flow->scaled_spacing, $self->perimeter_flow->scaled_spacing/30);
# There are different strategies to explore with these offset edge
# settings, hence the messy notes.
my @intervals = $ma->offset_interval_filter(
2 * $self->perimeter_flow->scaled_spacing, # tool diam, or normal offset (used after initial offset)
1, # $loop_number + 1, # how many offsets to do - just the first for now
2 * $self->perimeter_flow->scaled_spacing , #/2, # initial offset
0, # bracket - added to offset for each level to determine upper MIC radius bound (edges up to that bound are collected)
# when using double wide tool diam, bracket should be zero (was using 1.9 with 1x tool diam)
$self->perimeter_flow->scaled_spacing, # initial offset bracket - not using this yet, maybe don't want to
0, #$self->perimeter_flow->scaled_spacing/30
# use nudge to slightly increase offsets so results end up intersecting Clipper offset loops later
# (the nudges don't accumulate for deeper offsets - each offset gets it's own nudge)
# can use zero nudge when doing double wide fully centered thinwalls
);
my $medial_fragments = Slic3r::MedialAxis::get_offset_fragments([@intervals], $self->layer->id % 2, $self->perimeter_flow->scaled_spacing);
Slic3r::debugf " %d thin walls detected with medial axis\n", scalar(@{$medial_fragments->[0]}) if @{$medial_fragments} && @{$medial_fragments->[0]};
Slic3r::debugf " %d thin gaps detected with medial axis\n", sum(map scalar(@$_) > 0, @{$medial_fragments}[1..$#$medial_fragments]) if @{$medial_fragments} > 1;
# do one more loop (<= instead of <) so that we can detect gaps even after the desired
# number of perimeters has been generated
for (my $loop = 0; $loop <= $loop_number; $loop++) {
my $spacing = $perimeter_spacing;
#$spacing /= 2 if $loop == 0;
# offsetting a polygon can result in one or many offset polygons
my @new_offsets = ();
my @new_offsets_with_thins = ();
foreach my $expolygon (@last_offsets) {
my @offsets = Slic3r::Geometry::Clipper::ex_int_offset2($expolygon, -(1 + ($loop == 0 ? 0:0.5))*$spacing, +0.5*$spacing);
# Merge medial axis fragments for thin walls into offset loops.
# Limit this to outer perimeter until working as expected,
# then extend this to thin gaps, with variable flow width.
if ($loop == 0 && @{$medial_fragments->[$loop]}) {
push @new_offsets_with_thins,
@{Slic3r::MedialAxis::merge_expolygon_and_medial_axis_fragments(
$expolygon,
\@offsets,
$medial_fragments->[$loop],
$perimeter_spacing,
$self->layer->id % 2
)};
}
push @new_offsets, @offsets;
# where the above check collapses the expolygon, then there's no room for an inner loop
# and we can extract the gap for later processing
if ($loop > 0) {
my $diff = diff_ex(
[ map @$_, $expolygon->offset_ex(-0.5*$spacing) ],
# +2 on the offset here makes sure that Clipper float truncation
# won't shrink the clip polygon to be smaller than intended.
[ Slic3r::Geometry::Clipper::offset([map @$_, @offsets], +0.5*$spacing + 2) ],
);
push @gaps, grep $_->area >= $gap_area_threshold, @$diff;
}
}
# This will capture stand-alone thin walls that don't connect
# to any non-thin surfaces.
# Might let this capture stand-alone gaps too ($loop > 0), later.
# But for now, limit this to thin wall cases on the outer perimeter.
if ($loop == 0 && !@new_offsets && @new_offsets_with_thins) {
push @{ $perimeters[-1] }, [@new_offsets_with_thins];
Slic3r::debugf " %d stand-alone thin walls detected\n", scalar(@new_offsets_with_thins);
}
last if !@new_offsets || $loop == $loop_number;
@last_offsets = @new_offsets;
# sort loops before storing them
@last_offsets = @{chained_path_items([
map [ $_->contour->[0], $_ ], @last_offsets,
])};
# sort any thinwall-including loops and paths in the same way
@new_offsets_with_thins = @{chained_path_items([
map [ $_->contour->[0], $_ ], @new_offsets_with_thins,
])} if @new_offsets_with_thins;
push @{ $perimeters[-1] }, [(@new_offsets_with_thins
? @new_offsets_with_thins
: @last_offsets)];
}
# create one more offset to be used as boundary for fill
{
# we offset by half the perimeter spacing (to get to the actual infill boundary)
# and then we offset back and forth by the infill spacing to only consider the
# non-collapsing regions
push @{ $self->fill_surfaces },
map $_->simplify(&Slic3r::SCALED_RESOLUTION),
@{union_ex([
Slic3r::Geometry::Clipper::offset(
[Slic3r::Geometry::Clipper::offset([ map @$_, @last_offsets ], -($perimeter_spacing/2 + $infill_spacing))],
+$infill_spacing,
),
])};
}
# fill gaps
if ($Slic3r::Config->gap_fill_speed > 0 && $Slic3r::Config->fill_density > 0 && @gaps) {
my $filler = $self->layer->object->print->fill_maker->filler('rectilinear');
$filler->layer_id($self->layer->id);
# we should probably use this code to handle thin walls and remove that logic from
# make_surfaces(), but we need to enable dynamic extrusion width before as we can't
# use zigzag for thin walls.
# in the mean time we subtract thin walls from the detected gaps so that we don't
# reprocess them, causing overlapping thin walls and zigzag.
@gaps = @{diff_ex(
[ map @$_, @gaps ],
[ map $_->grow($self->perimeter_flow->scaled_width), @{$self->{thin_walls}} ],
1,
)};
my $w = $self->perimeter_flow->width;
my @widths = (1.5 * $w, $w, 0.4 * $w); # worth trying 0.2 too?
foreach my $width (@widths) {
my $flow = $self->perimeter_flow->clone(width => $width);
# extract the gaps having this width
my @this_width = map $_->offset_ex(+0.5*$flow->scaled_width),
map $_->noncollapsing_offset_ex(-0.5*$flow->scaled_width),
@gaps;
if (0) { # remember to re-enable t/dynamic.t
# fill gaps using dynamic extrusion width, by treating them like thin polygons,
# thus generating the skeleton and using it to fill them
my %path_args = (
role => EXTR_ROLE_SOLIDFILL,
flow_spacing => $flow->spacing,
);
push @{ $self->thin_fills }, map {
$_->isa('Slic3r::Polygon')
? (map $_->pack, Slic3r::ExtrusionLoop->new(polygon => $_, %path_args)->split_at_first_point) # we should keep these as loops
: Slic3r::ExtrusionPath->pack(polyline => $_, %path_args),
} map $_->medial_axis($flow->scaled_width), @this_width;
Slic3r::debugf " %d gaps filled with extrusion width = %s\n", scalar @this_width, $width
if @{ $self->thin_fills };
} else {
# fill gaps using zigzag infill
# since this is infill, we have to offset by half-extrusion width inwards
my @infill = map $_->offset_ex(-0.5*$flow->scaled_width), @this_width;
foreach my $expolygon (@infill) {
my @paths = $filler->fill_surface(
Slic3r::Surface->new(expolygon => $expolygon),
density => 1,
flow_spacing => $flow->spacing,
);
my $params = shift @paths;
push @{ $self->thin_fills },
map {
$_->polyline->simplify($flow->scaled_width / 3);
$_->pack;
}
map Slic3r::ExtrusionPath->new(
polyline => Slic3r::Polyline->new(@$_),
role => EXTR_ROLE_GAPFILL,
height => $self->height,
flow_spacing => $params->{flow_spacing},
), @paths;
}
}
# check what's left
@gaps = @{diff_ex(
[ map @$_, @gaps ],
[ map @$_, @this_width ],
)};
}
}
}
# process one island (original surface) at time
# islands are already sorted with a nearest-neighbor search
foreach my $island (@perimeters) {
# do holes starting from innermost one
my @holes = ();
my %is_external = ();
# each item of @$island contains the expolygons having the same depth;
# for each depth we build an arrayref containing all the holes
my @hole_depths = map [ map $_->holes, @$_ ], @$island;
# organize the outermost hole loops using a nearest-neighbor search
@{$hole_depths[0]} = @{chained_path_items([
map [ $_->[0], $_ ], @{$hole_depths[0]},
])};
# loop while we have spare holes
CYCLE: while (map @$_, @hole_depths) {
# remove first depth container if it contains no holes anymore
shift @hole_depths while !@{$hole_depths[0]};
# take first available hole
push @holes, shift @{$hole_depths[0]};
$is_external{$#holes} = 1;
my $current_depth = 0;
while (1) {
$current_depth++;
# look for the hole containing this one if any
next CYCLE if !$hole_depths[$current_depth];
my $parent_hole;
for (@{$hole_depths[$current_depth]}) {
if ($_->encloses_point($holes[-1]->[0])) {
$parent_hole = $_;
last;
}
}
next CYCLE if !$parent_hole;
# look for other holes contained in such parent
for (@{$hole_depths[$current_depth-1]}) {
if ($parent_hole->encloses_point($_->[0])) {
# we have a sibling, so let's move onto next iteration
next CYCLE;
}
}
push @holes, $parent_hole;
@{$hole_depths[$current_depth]} = grep $_ ne $parent_hole, @{$hole_depths[$current_depth]};
}
}
# first do holes
$self->_add_perimeter($holes[$_], $is_external{$_} ? EXTR_ROLE_EXTERNAL_PERIMETER : undef)
for reverse 0 .. $#holes;
# then do contours according to the user settings
my @contour_order = 0 .. $#$island;
@contour_order = reverse @contour_order if !$Slic3r::Config->external_perimeters_first;
for my $depth (@contour_order) {
my $role = $depth == $#$island ? EXTR_ROLE_CONTOUR_INTERNAL_PERIMETER
: $depth == 0 ? EXTR_ROLE_EXTERNAL_PERIMETER
: EXTR_ROLE_PERIMETER;
$self->_add_perimeter($_, $role) for map $_->contour, @{$island->[$depth]};
}
}
# if brim will be printed, reverse the order of perimeters so that
# we continue inwards after having finished the brim
if ($self->layer->id == 0 && $Slic3r::Config->brim_width > 0) {
@{$self->perimeters} = reverse @{$self->perimeters};
}
# add thin walls as perimeters
push @{ $self->perimeters }, Slic3r::ExtrusionPath::Collection->new(paths => [
map {
Slic3r::ExtrusionPath->pack(
polyline => ($_->isa('Slic3r::Polygon') ? $_->split_at_first_point : $_),
role => EXTR_ROLE_EXTERNAL_PERIMETER,
flow_spacing => $self->perimeter_flow->spacing,
);
} @{ $self->thin_walls }
])->chained_path;
}
sub _add_perimeter {
my $self = shift;
my ($polygon, $role) = @_;
if ($polygon->isa('Slic3r::Polygon')) {
return unless $polygon->is_printable($self->perimeter_flow->scaled_width);
push @{ $self->perimeters }, Slic3r::ExtrusionLoop->pack(
polygon => $polygon,
role => ($role // EXTR_ROLE_PERIMETER),
flow_spacing => $self->perimeter_flow->spacing,
);
} else {
return if @$polygon < 2;
push @{ $self->perimeters }, Slic3r::ExtrusionPath->pack(
polyline => $polygon,
role => ($role // EXTR_ROLE_PERIMETER),
flow_spacing => $self->perimeter_flow->spacing,
);
}
}
sub prepare_fill_surfaces {
my $self = shift;
# if no solid layers are requested, turn top/bottom surfaces to internal
if ($Slic3r::Config->top_solid_layers == 0) {
$_->surface_type(S_TYPE_INTERNAL) for grep $_->surface_type == S_TYPE_TOP, @{$self->fill_surfaces};
}
if ($Slic3r::Config->bottom_solid_layers == 0) {
$_->surface_type(S_TYPE_INTERNAL) for grep $_->surface_type == S_TYPE_BOTTOM, @{$self->fill_surfaces};
}
# turn too small internal regions into solid regions according to the user setting
if ($Slic3r::Config->fill_density > 0) {
my $min_area = scale scale $Slic3r::Config->solid_infill_below_area; # scaling an area requires two calls!
my @small = grep $_->surface_type == S_TYPE_INTERNAL && $_->expolygon->contour->area <= $min_area, @{$self->fill_surfaces};
$_->surface_type(S_TYPE_INTERNALSOLID) for @small;
Slic3r::debugf "identified %d small solid surfaces at layer %d\n", scalar(@small), $self->id if @small > 0;
}
}
sub process_external_surfaces {
my $self = shift;
# enlarge top and bottom surfaces
{
# get all external surfaces
my @top = grep $_->surface_type == S_TYPE_TOP, @{$self->fill_surfaces};
my @bottom = grep $_->surface_type == S_TYPE_BOTTOM, @{$self->fill_surfaces};
# offset them and intersect the results with the actual fill boundaries
my $margin = scale 3; # TODO: ensure this is greater than the total thickness of the perimeters
@top = @{intersection_ex(
[ Slic3r::Geometry::Clipper::offset([ map $_->p, @top ], +$margin) ],
[ map $_->p, @{$self->fill_surfaces} ],
undef,
1, # to ensure adjacent expolygons are unified
)};
@bottom = @{intersection_ex(
[ Slic3r::Geometry::Clipper::offset([ map $_->p, @bottom ], +$margin) ],
[ map $_->p, @{$self->fill_surfaces} ],
undef,
1, # to ensure adjacent expolygons are unified
)};
# give priority to bottom surfaces
@top = @{diff_ex(
[ map @$_, @top ],
[ map @$_, @bottom ],
)};
# generate new surfaces
my @new_surfaces = ();
push @new_surfaces, map Slic3r::Surface->new(
expolygon => $_,
surface_type => S_TYPE_TOP,
), @top;
push @new_surfaces, map Slic3r::Surface->new(
expolygon => $_,
surface_type => S_TYPE_BOTTOM,
), @bottom;
# subtract the new top surfaces from the other non-top surfaces and re-add them
my @other = grep $_->surface_type != S_TYPE_TOP && $_->surface_type != S_TYPE_BOTTOM, @{$self->fill_surfaces};
foreach my $group (Slic3r::Surface->group(@other)) {
push @new_surfaces, map $group->[0]->clone(expolygon => $_), @{diff_ex(
[ map $_->p, @$group ],
[ map $_->p, @new_surfaces ],
)};
}
@{$self->fill_surfaces} = @new_surfaces;
}
# detect bridge direction (skip bottom layer)
$self->_detect_bridges if $self->id > 0;
}
sub _detect_bridges {
my $self = shift;
my @bottom = grep $_->surface_type == S_TYPE_BOTTOM, @{$self->fill_surfaces}; # surfaces
my @lower = @{$self->layer->object->layers->[ $self->id - 1 ]->slices}; # expolygons
foreach my $surface (@bottom) {
# detect what edges lie on lower slices
my @edges = (); # polylines
foreach my $lower (@lower) {
# turn bridge contour and holes into polylines and then clip them
# with each lower slice's contour
my @clipped = map $_->split_at_first_point->clip_with_polygon($lower->contour), @{$surface->expolygon};
if (@clipped == 2) {
# If the split_at_first_point() call above happens to split the polygon inside the clipping area
# we would get two consecutive polylines instead of a single one, so we use this ugly hack to
# recombine them back into a single one in order to trigger the @edges == 2 logic below.
# This needs to be replaced with something way better.
if (points_coincide($clipped[0][0], $clipped[-1][-1])) {
@clipped = (Slic3r::Polyline->new(@{$clipped[-1]}, @{$clipped[0]}));
}
if (points_coincide($clipped[-1][0], $clipped[0][-1])) {
@clipped = (Slic3r::Polyline->new(@{$clipped[0]}, @{$clipped[1]}));
}
}
push @edges, @clipped;
}
Slic3r::debugf "Found bridge on layer %d with %d support(s)\n", $self->id, scalar(@edges);
next if !@edges;
my $bridge_angle = undef;
if (0) {
require "Slic3r/SVG.pm";
Slic3r::SVG::output("bridge_$surface.svg",
expolygons => [ $surface->expolygon ],
red_expolygons => [ @lower ],
polylines => [ @edges ],
);
}
if (@edges == 2) {
my @chords = map Slic3r::Line->new($_->[0], $_->[-1]), @edges;
my @midpoints = map $_->midpoint, @chords;
my $line_between_midpoints = Slic3r::Line->new(@midpoints);
$bridge_angle = Slic3r::Geometry::rad2deg_dir($line_between_midpoints->direction);
} elsif (@edges == 1) {
# TODO: this case includes both U-shaped bridges and plain overhangs;
# we need a trapezoidation algorithm to detect the actual bridged area
# and separate it from the overhang area.
# in the mean time, we're treating as overhangs all cases where
# our supporting edge is a straight line
if (@{$edges[0]} > 2) {
my $line = Slic3r::Line->new($edges[0]->[0], $edges[0]->[-1]);
$bridge_angle = Slic3r::Geometry::rad2deg_dir($line->direction);
}
} elsif (@edges) {
# inset the bridge expolygon; we'll use this one to clip our test lines
my $inset = [ $surface->expolygon->offset_ex($self->infill_flow->scaled_width) ];
# detect anchors as intersection between our bridge expolygon and the lower slices
my $anchors = intersection_ex(
[ $surface->p ],
[ map @$_, @lower ],
);
# we'll now try several directions using a rudimentary visibility check:
# bridge in several directions and then sum the length of lines having both
# endpoints within anchors
my %directions = (); # angle => score
my $angle_increment = PI/36; # 5°
my $line_increment = $self->infill_flow->scaled_width;
for (my $angle = 0; $angle <= PI; $angle += $angle_increment) {
# rotate everything - the center point doesn't matter
$_->rotate($angle, [0,0]) for @$inset, @$anchors;
# generate lines in this direction
my $bounding_box = [ Slic3r::Geometry::bounding_box([ map @$_, map @$_, @$anchors ]) ];
my @lines = ();
for (my $x = $bounding_box->[X1]; $x <= $bounding_box->[X2]; $x += $line_increment) {
push @lines, [ [$x, $bounding_box->[Y1]], [$x, $bounding_box->[Y2]] ];
}
# TODO: use a multi_polygon_multi_linestring_intersection() call
my @clipped_lines = map @{ Boost::Geometry::Utils::polygon_multi_linestring_intersection($_, \@lines) }, @$inset;
# remove any line not having both endpoints within anchors
@clipped_lines = grep {
my $line = $_;
!(first { $_->encloses_point_quick($line->[A]) } @$anchors)
&& !(first { $_->encloses_point_quick($line->[B]) } @$anchors);
} @clipped_lines;
# sum length of bridged lines
$directions{-$angle} = sum(map Slic3r::Geometry::line_length($_), @clipped_lines) // 0;
}
# this could be slightly optimized with a max search instead of the sort
my @sorted_directions = sort { $directions{$a} <=> $directions{$b} } keys %directions;
# the best direction is the one causing most lines to be bridged
$bridge_angle = Slic3r::Geometry::rad2deg_dir($sorted_directions[-1]);
}
Slic3r::debugf " Optimal infill angle of bridge on layer %d is %d degrees\n",
$self->id, $bridge_angle if defined $bridge_angle;
$surface->bridge_angle($bridge_angle);
}
}
1;