Slic3r/lib/Slic3r/GUI/PreviewCanvas.pm

459 lines
13 KiB
Perl

package Slic3r::GUI::PreviewCanvas;
use strict;
use warnings;
use Wx::Event qw(EVT_PAINT EVT_SIZE EVT_ERASE_BACKGROUND EVT_IDLE EVT_MOUSEWHEEL EVT_MOUSE_EVENTS);
# must load OpenGL *before* Wx::GLCanvas
use OpenGL qw(:glconstants :glfunctions :glufunctions);
use base qw(Wx::GLCanvas Class::Accessor);
use Math::Trig qw(asin);
use List::Util qw(reduce min max first);
use Slic3r::Geometry qw(X Y Z MIN MAX triangle_normal normalize deg2rad tan);
use Wx::GLCanvas qw(:all);
__PACKAGE__->mk_accessors( qw(quat dirty init mview_init
object_center object_size
volumes initpos
sphi stheta) );
use constant TRACKBALLSIZE => 0.8;
use constant TURNTABLE_MODE => 1;
use constant COLORS => [ [1,1,1], [1,0.5,0.5], [0.5,1,0.5], [0.5,0.5,1] ];
sub new {
my ($class, $parent, $object) = @_;
my $self = $class->SUPER::new($parent);
$self->quat((0, 0, 0, 1));
$self->sphi(45);
$self->stheta(-45);
$object->align_to_origin;
$self->object_center($object->center);
$self->object_size($object->size);
# group mesh(es) by material
my @materials = ();
$self->volumes([]);
foreach my $volume (@{$object->volumes}) {
my $mesh = $volume->mesh;
$mesh->repair;
my $material_id = $volume->material_id // '_';
my $color_idx = first { $materials[$_] eq $material_id } 0..$#materials;
if (!defined $color_idx) {
push @materials, $material_id;
$color_idx = $#materials;
}
push @{$self->volumes}, my $v = {
color => COLORS->[ $color_idx % scalar(@{&COLORS}) ],
};
{
my $vertices = $mesh->vertices;
my @verts = map @{ $vertices->[$_] }, map @$_, @{$mesh->facets};
$v->{verts} = OpenGL::Array->new_list(GL_FLOAT, @verts);
}
{
my @norms = map { @$_, @$_, @$_ } @{$mesh->normals};
$v->{norms} = OpenGL::Array->new_list(GL_FLOAT, @norms);
}
}
EVT_PAINT($self, sub {
my $dc = Wx::PaintDC->new($self);
$self->Render($dc);
});
EVT_SIZE($self, sub { $self->dirty(1) });
EVT_IDLE($self, sub {
return unless $self->dirty;
return if !$self->IsShownOnScreen;
$self->Resize( $self->GetSizeWH );
$self->Refresh;
});
EVT_MOUSEWHEEL($self, sub {
my ($self, $e) = @_;
my $zoom = ($e->GetWheelRotation() / $e->GetWheelDelta() / 10);
$zoom = $zoom > 0 ? (1.0 + $zoom) : 1 / (1.0 - $zoom);
my @pos3d = $self->mouse_to_3d($e->GetX(), $e->GetY());
$self->ZoomTo($zoom, $pos3d[0], $pos3d[1]);
$self->Refresh;
});
EVT_MOUSE_EVENTS($self, sub {
my ($self, $e) = @_;
if ($e->Dragging() && $e->LeftIsDown()) {
$self->handle_rotation($e);
} elsif ($e->Dragging() && $e->RightIsDown()) {
$self->handle_translation($e);
} elsif ($e->LeftUp() || $e->RightUp()) {
$self->initpos(undef);
} else {
$e->Skip();
}
});
return $self;
}
# Given an axis and angle, compute quaternion.
sub axis_to_quat {
my ($ax, $phi) = @_;
my $lena = sqrt(reduce { $a + $b } (map { $_ * $_ } @$ax));
my @q = map { $_ * (1 / $lena) } @$ax;
@q = map { $_ * sin($phi / 2.0) } @q;
$q[$#q + 1] = cos($phi / 2.0);
return @q;
}
# Project a point on the virtual trackball.
# If it is inside the sphere, map it to the sphere, if it outside map it
# to a hyperbola.
sub project_to_sphere {
my ($r, $x, $y) = @_;
my $d = sqrt($x * $x + $y * $y);
if ($d < $r * 0.70710678118654752440) { # Inside sphere
return sqrt($r * $r - $d * $d);
} else { # On hyperbola
my $t = $r / 1.41421356237309504880;
return $t * $t / $d;
}
}
sub cross {
my ($v1, $v2) = @_;
return (@$v1[1] * @$v2[2] - @$v1[2] * @$v2[1],
@$v1[2] * @$v2[0] - @$v1[0] * @$v2[2],
@$v1[0] * @$v2[1] - @$v1[1] * @$v2[0]);
}
# Simulate a track-ball. Project the points onto the virtual trackball,
# then figure out the axis of rotation, which is the cross product of
# P1 P2 and O P1 (O is the center of the ball, 0,0,0) Note: This is a
# deformed trackball-- is a trackball in the center, but is deformed
# into a hyperbolic sheet of rotation away from the center.
# It is assumed that the arguments to this routine are in the range
# (-1.0 ... 1.0).
sub trackball {
my ($p1x, $p1y, $p2x, $p2y) = @_;
if ($p1x == $p2x && $p1y == $p2y) {
# zero rotation
return (0.0, 0.0, 0.0, 1.0);
}
# First, figure out z-coordinates for projection of P1 and P2 to
# deformed sphere
my @p1 = ($p1x, $p1y, project_to_sphere(TRACKBALLSIZE, $p1x, $p1y));
my @p2 = ($p2x, $p2y, project_to_sphere(TRACKBALLSIZE, $p2x, $p2y));
# axis of rotation (cross product of P1 and P2)
my @a = cross(\@p2, \@p1);
# Figure out how much to rotate around that axis.
my @d = map { $_ * $_ } (map { $p1[$_] - $p2[$_] } 0 .. $#p1);
my $t = sqrt(reduce { $a + $b } @d) / (2.0 * TRACKBALLSIZE);
# Avoid problems with out-of-control values...
$t = 1.0 if ($t > 1.0);
$t = -1.0 if ($t < -1.0);
my $phi = 2.0 * asin($t);
return axis_to_quat(\@a, $phi);
}
# Build a rotation matrix, given a quaternion rotation.
sub quat_to_rotmatrix {
my ($q) = @_;
my @m = ();
$m[0] = 1.0 - 2.0 * (@$q[1] * @$q[1] + @$q[2] * @$q[2]);
$m[1] = 2.0 * (@$q[0] * @$q[1] - @$q[2] * @$q[3]);
$m[2] = 2.0 * (@$q[2] * @$q[0] + @$q[1] * @$q[3]);
$m[3] = 0.0;
$m[4] = 2.0 * (@$q[0] * @$q[1] + @$q[2] * @$q[3]);
$m[5] = 1.0 - 2.0 * (@$q[2] * @$q[2] + @$q[0] * @$q[0]);
$m[6] = 2.0 * (@$q[1] * @$q[2] - @$q[0] * @$q[3]);
$m[7] = 0.0;
$m[8] = 2.0 * (@$q[2] * @$q[0] - @$q[1] * @$q[3]);
$m[9] = 2.0 * (@$q[1] * @$q[2] + @$q[0] * @$q[3]);
$m[10] = 1.0 - 2.0 * (@$q[1] * @$q[1] + @$q[0] * @$q[0]);
$m[11] = 0.0;
$m[12] = 0.0;
$m[13] = 0.0;
$m[14] = 0.0;
$m[15] = 1.0;
return @m;
}
sub mulquats {
my ($q1, $rq) = @_;
return (@$q1[3] * @$rq[0] + @$q1[0] * @$rq[3] + @$q1[1] * @$rq[2] - @$q1[2] * @$rq[1],
@$q1[3] * @$rq[1] + @$q1[1] * @$rq[3] + @$q1[2] * @$rq[0] - @$q1[0] * @$rq[2],
@$q1[3] * @$rq[2] + @$q1[2] * @$rq[3] + @$q1[0] * @$rq[1] - @$q1[1] * @$rq[0],
@$q1[3] * @$rq[3] - @$q1[0] * @$rq[0] - @$q1[1] * @$rq[1] - @$q1[2] * @$rq[2])
}
sub handle_rotation {
my ($self, $e) = @_;
if (not defined $self->initpos) {
$self->initpos($e->GetPosition());
} else {
my $orig = $self->initpos;
my $new = $e->GetPosition();
my $size = $self->GetClientSize();
if (TURNTABLE_MODE) {
$self->sphi($self->sphi + ($new->x - $orig->x)*TRACKBALLSIZE);
$self->stheta($self->stheta + ($new->y - $orig->y)*TRACKBALLSIZE); #-
} else {
my @quat = trackball($orig->x / ($size->width / 2) - 1,
1 - $orig->y / ($size->height / 2), #/
$new->x / ($size->width / 2) - 1,
1 - $new->y / ($size->height / 2), #/
);
$self->quat(mulquats($self->quat, \@quat));
}
$self->initpos($new);
$self->Refresh;
}
}
sub handle_translation {
my ($self, $e) = @_;
if (not defined $self->initpos) {
$self->initpos($e->GetPosition());
} else {
my $new = $e->GetPosition();
my $orig = $self->initpos;
my @orig3d = $self->mouse_to_3d($orig->x, $orig->y); #)()
my @new3d = $self->mouse_to_3d($new->x, $new->y); #)()
glTranslatef($new3d[0] - $orig3d[0], $new3d[1] - $orig3d[1], 0);
$self->initpos($new);
$self->Refresh;
}
}
sub mouse_to_3d {
my ($self, $x, $y) = @_;
my @viewport = glGetIntegerv_p(GL_VIEWPORT); # 4 items
my @mview = glGetDoublev_p(GL_MODELVIEW_MATRIX); # 16 items
my @proj = glGetDoublev_p(GL_PROJECTION_MATRIX); # 16 items
my @projected = gluUnProject_p($x, $viewport[3] - $y, 1.0, @mview, @proj, @viewport);
return @projected;
}
sub ZoomTo {
my ($self, $factor, $tox, $toy) = @_;
glTranslatef($tox, $toy, 0);
glMatrixMode(GL_MODELVIEW);
$self->Zoom($factor);
glTranslatef(-$tox, -$toy, 0);
}
sub Zoom {
my ($self, $factor) = @_;
glScalef($factor, $factor, 1);
}
sub GetContext {
my ($self) = @_;
if (Wx::wxVERSION >= 2.009) {
return $self->{context} ||= Wx::GLContext->new($self);
} else {
return $self->SUPER::GetContext;
}
}
sub SetCurrent {
my ($self, $context) = @_;
if (Wx::wxVERSION >= 2.009) {
return $self->SUPER::SetCurrent($context);
} else {
return $self->SUPER::SetCurrent;
}
}
sub ResetModelView {
my ($self, $factor) = @_;
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
my $win_size = $self->GetClientSize();
my $ratio = $factor * min($win_size->width, $win_size->height) / max(@{ $self->object_size });
glScalef($ratio, $ratio, 1);
}
sub Resize {
my ($self, $x, $y) = @_;
return unless $self->GetContext;
$self->dirty(0);
$self->SetCurrent($self->GetContext);
glViewport(0, 0, $x, $y);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
my $object_size = $self->object_size;
glOrtho(-$x/2, $x/2, -$y/2, $y/2, 0.5, 2 * max(@$object_size));
glMatrixMode(GL_MODELVIEW);
unless ($self->mview_init) {
$self->mview_init(1);
$self->ResetModelView(0.9);
}
}
sub DESTROY {
my $self = shift;
}
sub InitGL {
my $self = shift;
return if $self->init;
return unless $self->GetContext;
$self->init(1);
glEnable(GL_NORMALIZE);
glEnable(GL_LIGHTING);
glDepthFunc(GL_LESS);
glEnable(GL_DEPTH_TEST);
# Settings for our light.
my @LightPos = (0, 0, 2, 1.0);
my @LightAmbient = (0.1, 0.1, 0.1, 1.0);
my @LightDiffuse = (0.7, 0.5, 0.5, 1.0);
my @LightSpecular = (0.1, 0.1, 0.1, 0.1);
# Enables Smooth Color Shading; try GL_FLAT for (lack of) fun.
glShadeModel(GL_SMOOTH);
# Set up a light, turn it on.
glLightfv_p(GL_LIGHT1, GL_POSITION, @LightPos);
glLightfv_p(GL_LIGHT1, GL_AMBIENT, @LightAmbient);
glLightfv_p(GL_LIGHT1, GL_DIFFUSE, @LightDiffuse);
glLightfv_p(GL_LIGHT1, GL_SPECULAR, @LightSpecular);
glEnable(GL_LIGHT1);
# A handy trick -- have surface material mirror the color.
glColorMaterial(GL_FRONT_AND_BACK, GL_AMBIENT_AND_DIFFUSE);
glEnable(GL_COLOR_MATERIAL);
}
sub Render {
my ($self, $dc) = @_;
return unless $self->GetContext;
$self->SetCurrent($self->GetContext);
$self->InitGL;
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glPushMatrix();
my $object_size = $self->object_size;
glTranslatef(0, 0, -max(@$object_size[0..1]));
my @rotmat = quat_to_rotmatrix($self->quat);
glMultMatrixd_p(@rotmat[0..15]);
glRotatef($self->stheta, 1, 0, 0);
glRotatef($self->sphi, 0, 0, 1);
glTranslatef(map -$_, @{ $self->object_center });
$self->draw_mesh;
# draw axes
{
my $axis_len = 2 * max(@{ $self->object_size });
glLineWidth(2);
glBegin(GL_LINES);
# draw line for x axis
glColor3f(1, 0, 0);
glVertex3f(0, 0, 0);
glVertex3f($axis_len, 0, 0);
# draw line for y axis
glColor3f(0, 1, 0);
glVertex3f(0, 0, 0);
glVertex3f(0, $axis_len, 0);
# draw line for Z axis
glColor3f(0, 0, 1);
glVertex3f(0, 0, 0);
glVertex3f(0, 0, $axis_len);
glEnd();
# draw ground
my $ground_z = -0.02;
glDisable(GL_CULL_FACE);
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
glBegin(GL_QUADS);
glColor4f(1, 1, 1, 0.5);
glVertex3f(-$axis_len, -$axis_len, $ground_z);
glVertex3f($axis_len, -$axis_len, $ground_z);
glVertex3f($axis_len, $axis_len, $ground_z);
glVertex3f(-$axis_len, $axis_len, $ground_z);
glEnd();
glEnable(GL_CULL_FACE);
glDisable(GL_BLEND);
# draw grid
glBegin(GL_LINES);
glColor3f(1, 1, 1);
for (my $x = -$axis_len; $x <= $axis_len; $x += 10) {
glVertex3f($x, -$axis_len, $ground_z);
glVertex3f($x, $axis_len, $ground_z);
}
for (my $y = -$axis_len; $y <= $axis_len; $y += 10) {
glVertex3f(-$axis_len, $y, $ground_z);
glVertex3f($axis_len, $y, $ground_z);
}
glEnd();
}
glPopMatrix();
glFlush();
$self->SwapBuffers();
}
sub draw_mesh {
my $self = shift;
glEnable(GL_CULL_FACE);
glEnableClientState(GL_VERTEX_ARRAY);
glEnableClientState(GL_NORMAL_ARRAY);
foreach my $volume (@{$self->volumes}) {
glVertexPointer_p(3, $volume->{verts});
glCullFace(GL_BACK);
glNormalPointer_p($volume->{norms});
glColor3f(@{ $volume->{color} });
glDrawArrays(GL_TRIANGLES, 0, $volume->{verts}->elements / 3);
}
glDisableClientState(GL_NORMAL_ARRAY);
glDisableClientState(GL_VERTEX_ARRAY);
}
1;