Slic3r/xs/src/admesh/normals.c

401 lines
12 KiB
C

/* ADMesh -- process triangulated solid meshes
* Copyright (C) 1995 Anthony D. Martin
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* Questions, comments, suggestions, etc to <amartin@engr.csulb.edu>
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include "stl.h"
static void stl_reverse_facet(stl_file *stl, int facet_num);
/* static float stl_calculate_area(stl_facet *facet); */
static void stl_reverse_vector(float v[]);
int stl_check_normal_vector(stl_file *stl, int facet_num, int normal_fix_flag);
static void
stl_reverse_facet(stl_file *stl, int facet_num)
{
stl_vertex tmp_vertex;
/* int tmp_neighbor;*/
int neighbor[3];
int vnot[3];
stl->stats.facets_reversed += 1;
neighbor[0] = stl->neighbors_start[facet_num].neighbor[0];
neighbor[1] = stl->neighbors_start[facet_num].neighbor[1];
neighbor[2] = stl->neighbors_start[facet_num].neighbor[2];
vnot[0] = stl->neighbors_start[facet_num].which_vertex_not[0];
vnot[1] = stl->neighbors_start[facet_num].which_vertex_not[1];
vnot[2] = stl->neighbors_start[facet_num].which_vertex_not[2];
/* reverse the facet */
tmp_vertex = stl->facet_start[facet_num].vertex[0];
stl->facet_start[facet_num].vertex[0] =
stl->facet_start[facet_num].vertex[1];
stl->facet_start[facet_num].vertex[1] = tmp_vertex;
/* fix the vnots of the neighboring facets */
if(neighbor[0] != -1)
stl->neighbors_start[neighbor[0]].which_vertex_not[(vnot[0] + 1) % 3] =
(stl->neighbors_start[neighbor[0]].
which_vertex_not[(vnot[0] + 1) % 3] + 3) % 6;
if(neighbor[1] != -1)
stl->neighbors_start[neighbor[1]].which_vertex_not[(vnot[1] + 1) % 3] =
(stl->neighbors_start[neighbor[1]].
which_vertex_not[(vnot[1] + 1) % 3] + 4) % 6;
if(neighbor[2] != -1)
stl->neighbors_start[neighbor[2]].which_vertex_not[(vnot[2] + 1) % 3] =
(stl->neighbors_start[neighbor[2]].
which_vertex_not[(vnot[2] + 1) % 3] + 2) % 6;
/* swap the neighbors of the facet that is being reversed */
stl->neighbors_start[facet_num].neighbor[1] = neighbor[2];
stl->neighbors_start[facet_num].neighbor[2] = neighbor[1];
/* swap the vnots of the facet that is being reversed */
stl->neighbors_start[facet_num].which_vertex_not[1] = vnot[2];
stl->neighbors_start[facet_num].which_vertex_not[2] = vnot[1];
/* reverse the values of the vnots of the facet that is being reversed */
stl->neighbors_start[facet_num].which_vertex_not[0] =
(stl->neighbors_start[facet_num].which_vertex_not[0] + 3) % 6;
stl->neighbors_start[facet_num].which_vertex_not[1] =
(stl->neighbors_start[facet_num].which_vertex_not[1] + 3) % 6;
stl->neighbors_start[facet_num].which_vertex_not[2] =
(stl->neighbors_start[facet_num].which_vertex_not[2] + 3) % 6;
}
void
stl_fix_normal_directions(stl_file *stl)
{
char *norm_sw;
/* int edge_num;*/
/* int vnot;*/
int checked = 0;
int facet_num;
/* int next_facet;*/
int i;
int j;
int checked_before = 0;
struct stl_normal
{
int facet_num;
struct stl_normal *next;
};
struct stl_normal *head;
struct stl_normal *tail;
struct stl_normal *newn;
struct stl_normal *temp;
/* Initialize linked list. */
head = (stl_normal*)malloc(sizeof(struct stl_normal));
if(head == NULL) perror("stl_fix_normal_directions");
tail = (stl_normal*)malloc(sizeof(struct stl_normal));
if(tail == NULL) perror("stl_fix_normal_directions");
head->next = tail;
tail->next = tail;
/* Initialize list that keeps track of already fixed facets. */
norm_sw = (char*)calloc(stl->stats.number_of_facets, sizeof(char));
if(norm_sw == NULL) perror("stl_fix_normal_directions");
facet_num = 0;
//If normal vector is not within tolerance and backwards:
//Arbitrarily starts at face 0. If this one is wrong, we're screwed. Thankfully, the chances
// of it being wrong randomly are low if most of the triangles are right:
if(stl_check_normal_vector(stl, 0, 0) == 2)
stl_reverse_facet(stl, 0);
//Say that we've fixed this facet:
norm_sw[facet_num] = 1;
/* edge_num = 0;
vnot = stl->neighbors_start[0].which_vertex_not[0];
*/
checked++;
for(;;)
{
/* Add neighbors_to_list. */
//Add unconnected neighbors to the list:a
for(j = 0; j < 3; j++)
{
/* Reverse the neighboring facets if necessary. */
if(stl->neighbors_start[facet_num].which_vertex_not[j] > 2)
{
// If the facet has a neighbor that is -1, it means that edge isn't shared by another
// facet.
if(stl->neighbors_start[facet_num].neighbor[j] != -1)
{
stl_reverse_facet
(stl, stl->neighbors_start[facet_num].neighbor[j]);
}
}
//If this edge of the facet is connected:
if(stl->neighbors_start[facet_num].neighbor[j] != -1)
{
//If we haven't fixed this facet yet, add it to the list:
if(norm_sw[stl->neighbors_start[facet_num].neighbor[j]] != 1)
{
/* Add node to beginning of list. */
newn = (stl_normal*)malloc(sizeof(struct stl_normal));
if(newn == NULL) perror("stl_fix_normal_directions");
newn->facet_num = stl->neighbors_start[facet_num].neighbor[j];
newn->next = head->next;
head->next = newn;
}
}
}
/* Get next facet to fix from top of list. */
if(head->next != tail)
{
facet_num = head->next->facet_num;
if(norm_sw[facet_num] != 1) /* If facet is in list mutiple times */
{
norm_sw[facet_num] = 1; /* Record this one as being fixed. */
checked++;
}
temp = head->next; /* Delete this facet from the list. */
head->next = head->next->next;
free(temp);
}
else //if we ran out of facets to fix:
{
/* All of the facets in this part have been fixed. */
stl->stats.number_of_parts += 1;
/* There are (checked-checked_before) facets */
/* in part stl->stats.number_of_parts */
checked_before = checked;
if(checked >= stl->stats.number_of_facets)
{
/* All of the facets have been checked. Bail out. */
break;
}
else
{
/* There is another part here. Find it and continue. */
for(i = 0; i < stl->stats.number_of_facets; i++)
{
if(norm_sw[i] == 0)
{ /* This is the first facet of the next part. */
facet_num = i;
if(stl_check_normal_vector(stl, i, 0) == 2)
{
stl_reverse_facet(stl, i);
}
norm_sw[facet_num] = 1;
checked++;
break;
}
}
}
}
}
free(head);
free(tail);
free(norm_sw);
}
int
stl_check_normal_vector(stl_file *stl, int facet_num, int normal_fix_flag)
{
/* Returns 0 if the normal is within tolerance */
/* Returns 1 if the normal is not within tolerance, but direction is OK */
/* Returns 2 if the normal is not within tolerance and backwards */
/* Returns 4 if the status is unknown. */
float normal[3];
float test_norm[3];
stl_facet *facet;
facet = &stl->facet_start[facet_num];
stl_calculate_normal(normal, facet);
stl_normalize_vector(normal);
if( (ABS(normal[0] - facet->normal.x) < 0.001)
&& (ABS(normal[1] - facet->normal.y) < 0.001)
&& (ABS(normal[2] - facet->normal.z) < 0.001))
{
/* It is not really necessary to change the values here */
/* but just for consistency, I will. */
facet->normal.x = normal[0];
facet->normal.y = normal[1];
facet->normal.z = normal[2];
return 0;
}
test_norm[0] = facet->normal.x;
test_norm[1] = facet->normal.y;
test_norm[2] = facet->normal.z;
stl_normalize_vector(test_norm);
if( (ABS(normal[0] - test_norm[0]) < 0.001)
&& (ABS(normal[1] - test_norm[1]) < 0.001)
&& (ABS(normal[2] - test_norm[2]) < 0.001))
{
if(normal_fix_flag)
{
facet->normal.x = normal[0];
facet->normal.y = normal[1];
facet->normal.z = normal[2];
stl->stats.normals_fixed += 1;
}
return 1;
}
stl_reverse_vector(test_norm);
if( (ABS(normal[0] - test_norm[0]) < 0.001)
&& (ABS(normal[1] - test_norm[1]) < 0.001)
&& (ABS(normal[2] - test_norm[2]) < 0.001))
{
/* Facet is backwards. */
if(normal_fix_flag)
{
facet->normal.x = normal[0];
facet->normal.y = normal[1];
facet->normal.z = normal[2];
stl->stats.normals_fixed += 1;
}
return 2;
}
if(normal_fix_flag)
{
facet->normal.x = normal[0];
facet->normal.y = normal[1];
facet->normal.z = normal[2];
stl->stats.normals_fixed += 1;
}
return 4;
}
static void
stl_reverse_vector(float v[])
{
v[0] *= -1;
v[1] *= -1;
v[2] *= -1;
}
void
stl_calculate_normal(float normal[], stl_facet *facet)
{
float v1[3];
float v2[3];
v1[0] = facet->vertex[1].x - facet->vertex[0].x;
v1[1] = facet->vertex[1].y - facet->vertex[0].y;
v1[2] = facet->vertex[1].z - facet->vertex[0].z;
v2[0] = facet->vertex[2].x - facet->vertex[0].x;
v2[1] = facet->vertex[2].y - facet->vertex[0].y;
v2[2] = facet->vertex[2].z - facet->vertex[0].z;
normal[0] = (float)((double)v1[1] * (double)v2[2]) - ((double)v1[2] * (double)v2[1]);
normal[1] = (float)((double)v1[2] * (double)v2[0]) - ((double)v1[0] * (double)v2[2]);
normal[2] = (float)((double)v1[0] * (double)v2[1]) - ((double)v1[1] * (double)v2[0]);
}
/*
static float
stl_calculate_area(stl_facet *facet)
{
float cross[3][3];
float sum[3];
float normal[3];
float area;
int i;
for(i = 0; i < 3; i++)
{
cross[i][0] = ((facet->vertex[i].y * facet->vertex[(i + 1) % 3].z) -
(facet->vertex[i].z * facet->vertex[(i + 1) % 3].y));
cross[i][1] = ((facet->vertex[i].z * facet->vertex[(i + 1) % 3].x) -
(facet->vertex[i].x * facet->vertex[(i + 1) % 3].z));
cross[i][2] = ((facet->vertex[i].x * facet->vertex[(i + 1) % 3].y) -
(facet->vertex[i].y * facet->vertex[(i + 1) % 3].x));
}
sum[0] = cross[0][0] + cross[1][0] + cross[2][0];
sum[1] = cross[0][1] + cross[1][1] + cross[2][1];
sum[2] = cross[0][2] + cross[1][2] + cross[2][2];
stl_calculate_normal(normal, facet);
stl_normalize_vector(normal);
area = 0.5 * (normal[0] * sum[0] + normal[1] * sum[1] +
normal[2] * sum[2]);
return ABS(area);
}
*/
void stl_normalize_vector(float v[])
{
double length;
double factor;
float min_normal_length;
length = sqrt((double)v[0] * (double)v[0] + (double)v[1] * (double)v[1] + (double)v[2] * (double)v[2]);
min_normal_length = 0.000000000001;
if(length < min_normal_length)
{
v[0] = 0.0;
v[1] = 0.0;
v[2] = 0.0;
return;
}
factor = 1.0 / length;
v[0] *= factor;
v[1] *= factor;
v[2] *= factor;
}
void
stl_fix_normal_values(stl_file *stl)
{
int i;
for(i = 0; i < stl->stats.number_of_facets; i++)
{
stl_check_normal_vector(stl, i, 1);
}
}
void
stl_reverse_all_facets(stl_file *stl)
{
int i;
float normal[3];
for(i = 0; i < stl->stats.number_of_facets; i++)
{
stl_reverse_facet(stl, i);
stl_calculate_normal(normal, &stl->facet_start[i]);
stl_normalize_vector(normal);
stl->facet_start[i].normal.x = normal[0];
stl->facet_start[i].normal.y = normal[1];
stl->facet_start[i].normal.z = normal[2];
}
}