Slic3r/xs/src/TriangleMesh.cpp

764 lines
30 KiB
C++

#include "TriangleMesh.hpp"
#include "ClipperUtils.hpp"
#include "Geometry.hpp"
#include <cmath>
#include <queue>
#include <deque>
#include <set>
#include <vector>
#include <map>
#include <utility>
#include <algorithm>
#include <math.h>
#include <assert.h>
#ifdef SLIC3R_DEBUG
#include "SVG.hpp"
#endif
namespace Slic3r {
TriangleMesh::TriangleMesh()
: repaired(false)
{
stl_initialize(&this->stl);
}
TriangleMesh::TriangleMesh(const TriangleMesh &other)
: stl(other.stl), repaired(other.repaired)
{
this->stl.heads = NULL;
this->stl.tail = NULL;
if (other.stl.facet_start != NULL) {
this->stl.facet_start = (stl_facet*)calloc(other.stl.stats.number_of_facets, sizeof(stl_facet));
std::copy(other.stl.facet_start, other.stl.facet_start + other.stl.stats.number_of_facets, this->stl.facet_start);
}
if (other.stl.neighbors_start != NULL) {
this->stl.neighbors_start = (stl_neighbors*)calloc(other.stl.stats.number_of_facets, sizeof(stl_neighbors));
std::copy(other.stl.neighbors_start, other.stl.neighbors_start + other.stl.stats.number_of_facets, this->stl.neighbors_start);
}
if (other.stl.v_indices != NULL) {
this->stl.v_indices = (v_indices_struct*)calloc(other.stl.stats.number_of_facets, sizeof(v_indices_struct));
std::copy(other.stl.v_indices, other.stl.v_indices + other.stl.stats.number_of_facets, this->stl.v_indices);
}
if (other.stl.v_shared != NULL) {
this->stl.v_shared = (stl_vertex*)calloc(other.stl.stats.shared_vertices, sizeof(stl_vertex));
std::copy(other.stl.v_shared, other.stl.v_shared + other.stl.stats.shared_vertices, this->stl.v_shared);
}
}
TriangleMesh::~TriangleMesh() {
stl_close(&this->stl);
}
void
TriangleMesh::ReadSTLFile(char* input_file) {
stl_open(&stl, input_file);
}
void
TriangleMesh::write_ascii(char* output_file)
{
stl_write_ascii(&this->stl, output_file, "");
}
void
TriangleMesh::write_binary(char* output_file)
{
stl_write_binary(&this->stl, output_file, "");
}
void
TriangleMesh::repair() {
if (this->repaired) return;
// checking exact
stl_check_facets_exact(&stl);
stl.stats.facets_w_1_bad_edge = (stl.stats.connected_facets_2_edge - stl.stats.connected_facets_3_edge);
stl.stats.facets_w_2_bad_edge = (stl.stats.connected_facets_1_edge - stl.stats.connected_facets_2_edge);
stl.stats.facets_w_3_bad_edge = (stl.stats.number_of_facets - stl.stats.connected_facets_1_edge);
// checking nearby
int last_edges_fixed = 0;
float tolerance = stl.stats.shortest_edge;
float increment = stl.stats.bounding_diameter / 10000.0;
int iterations = 2;
if (stl.stats.connected_facets_3_edge < stl.stats.number_of_facets) {
for (int i = 0; i < iterations; i++) {
if (stl.stats.connected_facets_3_edge < stl.stats.number_of_facets) {
//printf("Checking nearby. Tolerance= %f Iteration=%d of %d...", tolerance, i + 1, iterations);
stl_check_facets_nearby(&stl, tolerance);
//printf(" Fixed %d edges.\n", stl.stats.edges_fixed - last_edges_fixed);
last_edges_fixed = stl.stats.edges_fixed;
tolerance += increment;
} else {
break;
}
}
}
// remove_unconnected
if (stl.stats.connected_facets_3_edge < stl.stats.number_of_facets) {
stl_remove_unconnected_facets(&stl);
}
// fill_holes
if (stl.stats.connected_facets_3_edge < stl.stats.number_of_facets) {
stl_fill_holes(&stl);
}
// normal_directions
stl_fix_normal_directions(&stl);
// normal_values
stl_fix_normal_values(&stl);
// always calculate the volume and reverse all normals if volume is negative
stl_calculate_volume(&stl);
// neighbors
stl_verify_neighbors(&stl);
this->repaired = true;
}
void
TriangleMesh::WriteOBJFile(char* output_file) {
stl_generate_shared_vertices(&stl);
stl_write_obj(&stl, output_file);
}
void TriangleMesh::scale(float factor)
{
stl_scale(&(this->stl), factor);
}
void TriangleMesh::scale(std::vector<double> versor)
{
float fversor[3];
fversor[0] = versor[0];
fversor[1] = versor[1];
fversor[2] = versor[2];
stl_scale_versor(&this->stl, fversor);
}
void TriangleMesh::translate(float x, float y, float z)
{
stl_translate_relative(&(this->stl), x, y, z);
}
void TriangleMesh::align_to_origin()
{
this->translate(
-(this->stl.stats.min.x),
-(this->stl.stats.min.y),
-(this->stl.stats.min.z)
);
}
void TriangleMesh::rotate(double angle, Point* center)
{
this->translate(-center->x, -center->y, 0);
stl_rotate_z(&(this->stl), (float)angle);
this->translate(+center->x, +center->y, 0);
}
void
TriangleMesh::slice(const std::vector<double> &z, std::vector<Polygons>* layers)
{
/*
This method gets called with a list of unscaled Z coordinates and outputs
a vector pointer having the same number of items as the original list.
Each item is a vector of polygons created by slicing our mesh at the
given heights.
This method should basically combine the behavior of the existing
Perl methods defined in lib/Slic3r/TriangleMesh.pm:
- analyze(): this creates the 'facets_edges' and the 'edges_facets'
tables (we don't need the 'edges' table)
- slice_facet(): this has to be done for each facet. It generates
intersection lines with each plane identified by the Z list.
The get_layer_range() binary search used to identify the Z range
of the facet is already ported to C++ (see Object.xsp)
- make_loops(): this has to be done for each layer. It creates polygons
from the lines generated by the previous step.
At the end, we free the tables generated by analyze() as we don't
need them anymore.
FUTURE: parallelize slice_facet() and make_loops()
*/
// build a table to map a facet_idx to its three edge indices
this->require_shared_vertices();
typedef std::pair<int,int> t_edge;
typedef std::vector<t_edge> t_edges; // edge_idx => a_id,b_id
typedef std::map<t_edge,int> t_edges_map; // a_id,b_id => edge_idx
typedef std::vector< std::vector<int> > t_facets_edges;
t_facets_edges facets_edges;
facets_edges.resize(this->stl.stats.number_of_facets);
{
t_edges edges;
// reserve() instad of resize() because otherwise we couldn't read .size() below to assign edge_idx
edges.reserve(this->stl.stats.number_of_facets * 3); // number of edges = number of facets * 3
t_edges_map edges_map;
for (int facet_idx = 0; facet_idx < this->stl.stats.number_of_facets; facet_idx++) {
facets_edges[facet_idx].resize(3);
for (int i = 0; i <= 2; i++) {
int a_id = this->stl.v_indices[facet_idx].vertex[i];
int b_id = this->stl.v_indices[facet_idx].vertex[(i+1) % 3];
int edge_idx;
t_edges_map::const_iterator my_edge = edges_map.find(std::make_pair(b_id,a_id));
if (my_edge != edges_map.end()) {
edge_idx = my_edge->second;
} else {
/* admesh can assign the same edge ID to more than two facets (which is
still topologically correct), so we have to search for a duplicate of
this edge too in case it was already seen in this orientation */
my_edge = edges_map.find(std::make_pair(a_id,b_id));
if (my_edge != edges_map.end()) {
edge_idx = my_edge->second;
} else {
// edge isn't listed in table, so we insert it
edge_idx = edges.size();
edges.push_back(std::make_pair(a_id,b_id));
edges_map[ edges[edge_idx] ] = edge_idx;
}
}
facets_edges[facet_idx][i] = edge_idx;
#ifdef SLIC3R_DEBUG
printf(" [facet %d, edge %d] a_id = %d, b_id = %d --> edge %d\n", facet_idx, i, a_id, b_id, edge_idx);
#endif
}
}
}
std::vector<IntersectionLines> lines(z.size());
// clone shared vertices coordinates and scale them
stl_vertex* v_scaled_shared = (stl_vertex*)calloc(this->stl.stats.shared_vertices, sizeof(stl_vertex));
std::copy(this->stl.v_shared, this->stl.v_shared + this->stl.stats.shared_vertices, v_scaled_shared);
for (int i = 0; i < this->stl.stats.shared_vertices; i++) {
v_scaled_shared[i].x /= SCALING_FACTOR;
v_scaled_shared[i].y /= SCALING_FACTOR;
v_scaled_shared[i].z /= SCALING_FACTOR;
}
for (int facet_idx = 0; facet_idx < this->stl.stats.number_of_facets; facet_idx++) {
stl_facet* facet = &this->stl.facet_start[facet_idx];
// find facet extents
double min_z = fminf(facet->vertex[0].z, fminf(facet->vertex[1].z, facet->vertex[2].z));
double max_z = fmaxf(facet->vertex[0].z, fmaxf(facet->vertex[1].z, facet->vertex[2].z));
#ifdef SLIC3R_DEBUG
printf("\n==> FACET %d (%f,%f,%f - %f,%f,%f - %f,%f,%f):\n", facet_idx,
facet->vertex[0].x, facet->vertex[0].y, facet->vertex[0].z,
facet->vertex[1].x, facet->vertex[1].y, facet->vertex[1].z,
facet->vertex[2].x, facet->vertex[2].y, facet->vertex[2].z);
printf("z: min = %.2f, max = %.2f\n", min_z, max_z);
#endif
if (min_z == max_z) {
#ifdef SLIC3R_DEBUG
printf("Facet is horizontal; ignoring\n");
#endif
continue;
}
// find layer extents
std::vector<double>::const_iterator min_layer, max_layer;
min_layer = std::lower_bound(z.begin(), z.end(), min_z); // first layer whose slice_z is >= min_z
max_layer = std::upper_bound(z.begin() + (min_layer - z.begin()), z.end(), max_z) - 1; // last layer whose slice_z is <= max_z
#ifdef SLIC3R_DEBUG
printf("layers: min = %d, max = %d\n", (int)(min_layer - z.begin()), (int)(max_layer - z.begin()));
#endif
for (std::vector<double>::const_iterator it = min_layer; it != max_layer + 1; ++it) {
std::vector<double>::size_type layer_idx = it - z.begin();
double slice_z_u = *it; // unscaled
double slice_z = slice_z_u / SCALING_FACTOR;
std::vector<IntersectionPoint> points;
std::vector< std::vector<IntersectionPoint>::size_type > points_on_layer;
bool found_horizontal_edge = false;
/* reorder vertices so that the first one is the one with lowest Z
this is needed to get all intersection lines in a consistent order
(external on the right of the line) */
int i = 0;
if (facet->vertex[1].z == min_z) {
// vertex 1 has lowest Z
i = 1;
} else if (facet->vertex[2].z == min_z) {
// vertex 2 has lowest Z
i = 2;
}
for (int j = i; (j-i) < 3; j++) { // loop through facet edges
int edge_id = facets_edges[facet_idx][j % 3];
int a_id = this->stl.v_indices[facet_idx].vertex[j % 3];
int b_id = this->stl.v_indices[facet_idx].vertex[(j+1) % 3];
stl_vertex* a = &v_scaled_shared[a_id];
stl_vertex* b = &v_scaled_shared[b_id];
if (a->z == b->z && a->z == slice_z) {
// edge is horizontal and belongs to the current layer
/* We assume that this method is never being called for horizontal
facets, so no other edge is going to be on this layer. */
IntersectionLine line;
if (facet->vertex[0].z < slice_z_u || facet->vertex[1].z < slice_z_u || facet->vertex[2].z < slice_z_u) {
line.edge_type = feTop;
std::swap(a, b);
std::swap(a_id, b_id);
} else {
line.edge_type = feBottom;
}
line.a.x = a->x;
line.a.y = a->y;
line.b.x = b->x;
line.b.y = b->y;
line.a_id = a_id;
line.b_id = b_id;
lines[layer_idx].push_back(line);
found_horizontal_edge = true;
break;
} else if (a->z == slice_z) {
IntersectionPoint point;
point.x = a->x;
point.y = a->y;
point.point_id = a_id;
points.push_back(point);
points_on_layer.push_back(points.size()-1);
} else if (b->z == slice_z) {
IntersectionPoint point;
point.x = b->x;
point.y = b->y;
point.point_id = b_id;
points.push_back(point);
points_on_layer.push_back(points.size()-1);
} else if ((a->z < slice_z && b->z > slice_z) || (b->z < slice_z && a->z > slice_z)) {
// edge intersects the current layer; calculate intersection
IntersectionPoint point;
point.x = b->x + (a->x - b->x) * (slice_z - b->z) / (a->z - b->z);
point.y = b->y + (a->y - b->y) * (slice_z - b->z) / (a->z - b->z);
point.edge_id = edge_id;
points.push_back(point);
}
}
if (found_horizontal_edge) continue;
if (!points_on_layer.empty()) {
// we can't have only one point on layer because each vertex gets detected
// twice (once for each edge), and we can't have three points on layer because
// we assume this code is not getting called for horizontal facets
assert(points_on_layer.size() == 2);
assert( points[ points_on_layer[0] ].point_id == points[ points_on_layer[1] ].point_id );
if (points.size() < 3) continue; // no intersection point, this is a V-shaped facet tangent to plane
points.erase( points.begin() + points_on_layer[1] );
}
if (!points.empty()) {
assert(points.size() == 2); // facets must intersect each plane 0 or 2 times
IntersectionLine line;
line.a.x = points[1].x;
line.a.y = points[1].y;
line.b.x = points[0].x;
line.b.y = points[0].y;
line.a_id = points[1].point_id;
line.b_id = points[0].point_id;
line.edge_a_id = points[1].edge_id;
line.edge_b_id = points[0].edge_id;
lines[layer_idx].push_back(line);
}
}
}
free(v_scaled_shared);
// build loops
layers->resize(z.size());
for (std::vector<IntersectionLines>::iterator it = lines.begin(); it != lines.end(); ++it) {
int layer_idx = it - lines.begin();
#ifdef SLIC3R_DEBUG
printf("Layer %d:\n", layer_idx);
#endif
// remove tangent edges
for (IntersectionLines::iterator line = it->begin(); line != it->end(); ++line) {
if (line->skip || line->edge_type == feNone) continue;
/* if the line is a facet edge, find another facet edge
having the same endpoints but in reverse order */
for (IntersectionLines::iterator line2 = line + 1; line2 != it->end(); ++line2) {
if (line2->skip || line2->edge_type == feNone) continue;
// are these facets adjacent? (sharing a common edge on this layer)
if (line->a_id == line2->a_id && line->b_id == line2->b_id) {
line2->skip = true;
/* if they are both oriented upwards or downwards (like a 'V')
then we can remove both edges from this layer since it won't
affect the sliced shape */
/* if one of them is oriented upwards and the other is oriented
downwards, let's only keep one of them (it doesn't matter which
one since all 'top' lines were reversed at slicing) */
if (line->edge_type == line2->edge_type) {
line->skip = true;
break;
}
}
}
}
// build a map of lines by edge_a_id and a_id
std::vector<IntersectionLinePtrs> by_edge_a_id, by_a_id;
by_edge_a_id.resize(this->stl.stats.number_of_facets * 3);
by_a_id.resize(this->stl.stats.shared_vertices);
for (IntersectionLines::iterator line = it->begin(); line != it->end(); ++line) {
if (line->skip) continue;
if (line->edge_a_id != -1) by_edge_a_id[line->edge_a_id].push_back(&(*line));
if (line->a_id != -1) by_a_id[line->a_id].push_back(&(*line));
}
CYCLE: while (1) {
// take first spare line and start a new loop
IntersectionLine* first_line = NULL;
for (IntersectionLines::iterator line = it->begin(); line != it->end(); ++line) {
if (line->skip) continue;
first_line = &(*line);
break;
}
if (first_line == NULL) break;
first_line->skip = true;
IntersectionLinePtrs loop;
loop.push_back(first_line);
/*
printf("first_line edge_a_id = %d, edge_b_id = %d, a_id = %d, b_id = %d, a = %d,%d, b = %d,%d\n",
first_line->edge_a_id, first_line->edge_b_id, first_line->a_id, first_line->b_id,
first_line->a.x, first_line->a.y, first_line->b.x, first_line->b.y);
*/
while (1) {
// find a line starting where last one finishes
IntersectionLine* next_line = NULL;
if (loop.back()->edge_b_id != -1) {
IntersectionLinePtrs* candidates = &(by_edge_a_id[loop.back()->edge_b_id]);
for (IntersectionLinePtrs::iterator lineptr = candidates->begin(); lineptr != candidates->end(); ++lineptr) {
if ((*lineptr)->skip) continue;
next_line = *lineptr;
break;
}
}
if (next_line == NULL && loop.back()->b_id != -1) {
IntersectionLinePtrs* candidates = &(by_a_id[loop.back()->b_id]);
for (IntersectionLinePtrs::iterator lineptr = candidates->begin(); lineptr != candidates->end(); ++lineptr) {
if ((*lineptr)->skip) continue;
next_line = *lineptr;
break;
}
}
if (next_line == NULL) {
// check whether we closed this loop
if ((loop.front()->edge_a_id != -1 && loop.front()->edge_a_id == loop.back()->edge_b_id)
|| (loop.front()->a_id != -1 && loop.front()->a_id == loop.back()->b_id)) {
// loop is complete
Polygon p;
p.points.reserve(loop.size());
for (IntersectionLinePtrs::iterator lineptr = loop.begin(); lineptr != loop.end(); ++lineptr) {
p.points.push_back((*lineptr)->a);
}
(*layers)[layer_idx].push_back(p);
#ifdef SLIC3R_DEBUG
printf(" Discovered %s polygon of %d points\n", (p.is_counter_clockwise() ? "ccw" : "cw"), (int)p.points.size());
#endif
goto CYCLE;
}
// we can't close this loop!
//// push @failed_loops, [@loop];
#ifdef SLIC3R_DEBUG
printf(" Unable to close this loop having %d points\n", (int)loop.size());
#endif
goto CYCLE;
}
/*
printf("next_line edge_a_id = %d, edge_b_id = %d, a_id = %d, b_id = %d, a = %d,%d, b = %d,%d\n",
next_line->edge_a_id, next_line->edge_b_id, next_line->a_id, next_line->b_id,
next_line->a.x, next_line->a.y, next_line->b.x, next_line->b.y);
*/
loop.push_back(next_line);
next_line->skip = true;
}
}
}
}
class _area_comp {
public:
_area_comp(std::vector<double>* _aa) : abs_area(_aa) {};
bool operator() (const size_t &a, const size_t &b) {
return (*this->abs_area)[a] > (*this->abs_area)[b];
}
private:
std::vector<double>* abs_area;
};
void
TriangleMesh::slice(const std::vector<double> &z, std::vector<ExPolygons>* layers)
{
std::vector<Polygons> layers_p;
this->slice(z, &layers_p);
/*
Input loops are not suitable for evenodd nor nonzero fill types, as we might get
two consecutive concentric loops having the same winding order - and we have to
respect such order. In that case, evenodd would create wrong inversions, and nonzero
would ignore holes inside two concentric contours.
So we're ordering loops and collapse consecutive concentric loops having the same
winding order.
TODO: find a faster algorithm for this, maybe with some sort of binary search.
If we computed a "nesting tree" we could also just remove the consecutive loops
having the same winding order, and remove the extra one(s) so that we could just
supply everything to offset_ex() instead of performing several union/diff calls.
we sort by area assuming that the outermost loops have larger area;
the previous sorting method, based on $b->contains_point($a->[0]), failed to nest
loops correctly in some edge cases when original model had overlapping facets
*/
layers->resize(z.size());
for (std::vector<Polygons>::const_iterator loops = layers_p.begin(); loops != layers_p.end(); ++loops) {
size_t layer_id = loops - layers_p.begin();
std::vector<double> area;
std::vector<double> abs_area;
std::vector<size_t> sorted_area; // vector of indices
for (Polygons::const_iterator loop = loops->begin(); loop != loops->end(); ++loop) {
double a = loop->area();
area.push_back(a);
abs_area.push_back(std::fabs(a));
sorted_area.push_back(loop - loops->begin());
}
std::sort(sorted_area.begin(), sorted_area.end(), _area_comp(&abs_area)); // outer first
// we don't perform a safety offset now because it might reverse cw loops
Polygons slices;
for (std::vector<size_t>::const_iterator loop_idx = sorted_area.begin(); loop_idx != sorted_area.end(); ++loop_idx) {
/* we rely on the already computed area to determine the winding order
of the loops, since the Orientation() function provided by Clipper
would do the same, thus repeating the calculation */
Polygons::const_iterator loop = loops->begin() + *loop_idx;
if (area[*loop_idx] >= 0) {
slices.push_back(*loop);
} else {
diff(slices, *loop, slices);
}
}
// perform a safety offset to merge very close facets (TODO: find test case for this)
double safety_offset = scale_(0.0499);
ExPolygons ex_slices;
offset2_ex(slices, ex_slices, +safety_offset, -safety_offset);
#ifdef SLIC3R_DEBUG
size_t holes_count = 0;
for (ExPolygons::const_iterator e = ex_slices.begin(); e != ex_slices.end(); ++e) {
holes_count += e->holes.size();
}
printf("Layer %zu (slice_z = %.2f): %zu surface(s) having %zu holes detected from %zu polylines\n",
layer_id, z[layer_id], ex_slices.size(), holes_count, loops->size());
#endif
ExPolygons* layer = &(*layers)[layer_id];
layer->insert(layer->end(), ex_slices.begin(), ex_slices.end());
}
}
TriangleMeshPtrs
TriangleMesh::split() const
{
TriangleMeshPtrs meshes;
std::set<int> seen_facets;
// we need neighbors
if (!this->repaired) CONFESS("split() requires repair()");
// loop while we have remaining facets
while (1) {
// get the first facet
std::queue<int> facet_queue;
std::deque<int> facets;
for (int facet_idx = 0; facet_idx < this->stl.stats.number_of_facets; facet_idx++) {
if (seen_facets.find(facet_idx) == seen_facets.end()) {
// if facet was not seen put it into queue and start searching
facet_queue.push(facet_idx);
break;
}
}
if (facet_queue.empty()) break;
while (!facet_queue.empty()) {
int facet_idx = facet_queue.front();
facet_queue.pop();
if (seen_facets.find(facet_idx) != seen_facets.end()) continue;
facets.push_back(facet_idx);
for (int j = 0; j <= 2; j++) {
facet_queue.push(this->stl.neighbors_start[facet_idx].neighbor[j]);
}
seen_facets.insert(facet_idx);
}
TriangleMesh* mesh = new TriangleMesh;
meshes.push_back(mesh);
mesh->stl.stats.type = inmemory;
mesh->stl.stats.number_of_facets = facets.size();
mesh->stl.stats.original_num_facets = mesh->stl.stats.number_of_facets;
stl_allocate(&mesh->stl);
int first = 1;
for (std::deque<int>::const_iterator facet = facets.begin(); facet != facets.end(); facet++) {
mesh->stl.facet_start[facet - facets.begin()] = this->stl.facet_start[*facet];
stl_facet_stats(&mesh->stl, this->stl.facet_start[*facet], first);
first = 0;
}
}
return meshes;
}
void
TriangleMesh::merge(const TriangleMesh* mesh)
{
// reset stats and metadata
int number_of_facets = this->stl.stats.number_of_facets;
stl_invalidate_shared_vertices(&this->stl);
this->repaired = false;
// update facet count and allocate more memory
this->stl.stats.number_of_facets = number_of_facets + mesh->stl.stats.number_of_facets;
this->stl.stats.original_num_facets = this->stl.stats.number_of_facets;
stl_reallocate(&this->stl);
// copy facets
for (int i = 0; i < mesh->stl.stats.number_of_facets; i++) {
this->stl.facet_start[number_of_facets + i] = mesh->stl.facet_start[i];
}
// update size
stl_get_size(&this->stl);
}
/* this will return scaled ExPolygons */
void
TriangleMesh::horizontal_projection(ExPolygons &retval) const
{
Polygons pp;
pp.reserve(this->stl.stats.number_of_facets);
for (int i = 0; i < this->stl.stats.number_of_facets; i++) {
stl_facet* facet = &this->stl.facet_start[i];
Polygon p;
p.points.resize(3);
p.points[0] = Point(facet->vertex[0].x / SCALING_FACTOR, facet->vertex[0].y / SCALING_FACTOR);
p.points[1] = Point(facet->vertex[1].x / SCALING_FACTOR, facet->vertex[1].y / SCALING_FACTOR);
p.points[2] = Point(facet->vertex[2].x / SCALING_FACTOR, facet->vertex[2].y / SCALING_FACTOR);
p.make_counter_clockwise(); // do this after scaling, as winding order might change while doing that
pp.push_back(p);
}
// the offset factor was tuned using groovemount.stl
offset(pp, pp, 0.01 / SCALING_FACTOR);
union_(pp, retval, true);
}
void
TriangleMesh::convex_hull(Polygon* hull)
{
this->require_shared_vertices();
Points pp;
pp.reserve(this->stl.stats.shared_vertices);
for (int i = 0; i < this->stl.stats.shared_vertices; i++) {
stl_vertex* v = &this->stl.v_shared[i];
pp.push_back(Point(v->x / SCALING_FACTOR, v->y / SCALING_FACTOR));
}
Slic3r::Geometry::convex_hull(pp, hull);
}
void
TriangleMesh::bounding_box(BoundingBoxf3* bb) const
{
bb->min.x = this->stl.stats.min.x;
bb->min.y = this->stl.stats.min.y;
bb->min.z = this->stl.stats.min.z;
bb->max.x = this->stl.stats.max.x;
bb->max.y = this->stl.stats.max.y;
bb->max.z = this->stl.stats.max.z;
}
void
TriangleMesh::require_shared_vertices()
{
if (!this->repaired) this->repair();
if (this->stl.v_shared == NULL) stl_generate_shared_vertices(&(this->stl));
}
#ifdef SLIC3RXS
SV*
TriangleMesh::to_SV() {
SV* sv = newSV(0);
sv_setref_pv( sv, "Slic3r::TriangleMesh", (void*)this );
return sv;
}
void TriangleMesh::ReadFromPerl(SV* vertices, SV* facets)
{
stl.stats.type = inmemory;
// count facets and allocate memory
AV* facets_av = (AV*)SvRV(facets);
stl.stats.number_of_facets = av_len(facets_av)+1;
stl.stats.original_num_facets = stl.stats.number_of_facets;
stl_allocate(&stl);
// read geometry
AV* vertices_av = (AV*)SvRV(vertices);
for (unsigned int i = 0; i < stl.stats.number_of_facets; i++) {
AV* facet_av = (AV*)SvRV(*av_fetch(facets_av, i, 0));
stl_facet facet;
facet.normal.x = 0;
facet.normal.y = 0;
facet.normal.z = 0;
for (unsigned int v = 0; v <= 2; v++) {
AV* vertex_av = (AV*)SvRV(*av_fetch(vertices_av, SvIV(*av_fetch(facet_av, v, 0)), 0));
facet.vertex[v].x = SvNV(*av_fetch(vertex_av, 0, 0));
facet.vertex[v].y = SvNV(*av_fetch(vertex_av, 1, 0));
facet.vertex[v].z = SvNV(*av_fetch(vertex_av, 2, 0));
}
facet.extra[0] = 0;
facet.extra[1] = 0;
stl.facet_start[i] = facet;
}
stl_get_size(&(this->stl));
}
#endif
}