Slic3r/xs/src/Point.cpp

242 lines
5.5 KiB
C++

#include <cmath>
#include <sstream>
#include "Point.hpp"
#include "Line.hpp"
namespace Slic3r {
bool
Point::operator==(const Point& rhs) const
{
return this->coincides_with(rhs);
}
std::string
Point::wkt() const
{
std::ostringstream ss;
ss << "POINT(" << this->x << " " << this->y << ")";
return ss.str();
}
void
Point::scale(double factor)
{
this->x *= factor;
this->y *= factor;
}
void
Point::translate(double x, double y)
{
this->x += x;
this->y += y;
}
void
Point::rotate(double angle, Point* center)
{
double cur_x = (double)this->x;
double cur_y = (double)this->y;
this->x = (coord_t)round( (double)center->x + cos(angle) * (cur_x - (double)center->x) - sin(angle) * (cur_y - (double)center->y) );
this->y = (coord_t)round( (double)center->y + cos(angle) * (cur_y - (double)center->y) + sin(angle) * (cur_x - (double)center->x) );
}
bool
Point::coincides_with(const Point* point) const
{
return this->coincides_with(*point);
}
bool
Point::coincides_with(const Point &point) const
{
return this->x == point.x && this->y == point.y;
}
int
Point::nearest_point_index(Points &points) const
{
PointPtrs p;
p.reserve(points.size());
for (Points::iterator it = points.begin(); it != points.end(); ++it)
p.push_back(&*it);
return this->nearest_point_index(p);
}
int
Point::nearest_point_index(PointPtrs &points) const
{
int idx = -1;
double distance = -1; // double because long is limited to 2147483647 on some platforms and it's not enough
for (PointPtrs::const_iterator it = points.begin(); it != points.end(); ++it) {
/* If the X distance of the candidate is > than the total distance of the
best previous candidate, we know we don't want it */
double d = pow(this->x - (*it)->x, 2);
if (distance != -1 && d > distance) continue;
/* If the Y distance of the candidate is > than the total distance of the
best previous candidate, we know we don't want it */
d += pow(this->y - (*it)->y, 2);
if (distance != -1 && d > distance) continue;
idx = it - points.begin();
distance = d;
if (distance < EPSILON) break;
}
return idx;
}
Point*
Point::nearest_point(Points points) const
{
return &(points.at(this->nearest_point_index(points)));
}
double
Point::distance_to(const Point* point) const
{
double dx = ((double)point->x - this->x);
double dy = ((double)point->y - this->y);
return sqrt(dx*dx + dy*dy);
}
double
Point::distance_to(const Line* line) const
{
return this->distance_to(*line);
}
double
Point::distance_to(const Line &line) const
{
if (line.a.coincides_with(&line.b)) return this->distance_to(&line.a);
double n = (double)(line.b.x - line.a.x) * (double)(line.a.y - this->y)
- (double)(line.a.x - this->x) * (double)(line.b.y - line.a.y);
return std::abs(n) / line.length();
}
/* Three points are a counter-clockwise turn if ccw > 0, clockwise if
* ccw < 0, and collinear if ccw = 0 because ccw is a determinant that
* gives the signed area of the triangle formed by p1, p2 and this point.
* In other words it is the 2D cross product of p1-p2 and p1-this, i.e.
* z-component of their 3D cross product.
* We return double because it must be big enough to hold 2*max(|coordinate|)^2
*/
double
Point::ccw(const Point &p1, const Point &p2) const
{
return (double)(p2.x - p1.x)*(double)(this->y - p1.y) - (double)(p2.y - p1.y)*(double)(this->x - p1.x);
}
double
Point::ccw(const Point* p1, const Point* p2) const
{
return this->ccw(*p1, *p2);
}
double
Point::ccw(const Line &line) const
{
return this->ccw(line.a, line.b);
}
#ifdef SLIC3RXS
SV*
Point::to_SV_ref() {
SV* sv = newSV(0);
sv_setref_pv( sv, "Slic3r::Point::Ref", (void*)this );
return sv;
}
SV*
Point::to_SV_clone_ref() const {
SV* sv = newSV(0);
sv_setref_pv( sv, "Slic3r::Point", new Point(*this) );
return sv;
}
SV*
Point::to_SV_pureperl() const {
AV* av = newAV();
av_fill(av, 1);
av_store(av, 0, newSViv(this->x));
av_store(av, 1, newSViv(this->y));
return newRV_noinc((SV*)av);
}
void
Point::from_SV(SV* point_sv)
{
AV* point_av = (AV*)SvRV(point_sv);
// get a double from Perl and round it, otherwise
// it would get truncated
this->x = lrint(SvNV(*av_fetch(point_av, 0, 0)));
this->y = lrint(SvNV(*av_fetch(point_av, 1, 0)));
}
void
Point::from_SV_check(SV* point_sv)
{
if (sv_isobject(point_sv) && (SvTYPE(SvRV(point_sv)) == SVt_PVMG)) {
if (!sv_isa(point_sv, "Slic3r::Point") && !sv_isa(point_sv, "Slic3r::Point::Ref"))
CONFESS("Not a valid Slic3r::Point object");
*this = *(Point*)SvIV((SV*)SvRV( point_sv ));
} else {
this->from_SV(point_sv);
}
}
SV*
Pointf::to_SV_pureperl() const {
AV* av = newAV();
av_fill(av, 1);
av_store(av, 0, newSVnv(this->x));
av_store(av, 1, newSVnv(this->y));
return newRV_noinc((SV*)av);
}
void
Pointf::from_SV(SV* point_sv)
{
AV* point_av = (AV*)SvRV(point_sv);
this->x = SvNV(*av_fetch(point_av, 0, 0));
this->y = SvNV(*av_fetch(point_av, 1, 0));
}
#endif
void
Pointf::scale(double factor)
{
this->x *= factor;
this->y *= factor;
}
void
Pointf::translate(double x, double y)
{
this->x += x;
this->y += y;
}
void
Pointf3::scale(double factor)
{
Pointf::scale(factor);
this->z *= factor;
}
void
Pointf3::translate(double x, double y, double z)
{
Pointf::translate(x, y);
this->z += z;
}
}