// Copyright 2013 Google Inc. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // // A btree implementation of the STL set and map interfaces. A btree is both // smaller and faster than STL set/map. The red-black tree implementation of // STL set/map has an overhead of 3 pointers (left, right and parent) plus the // node color information for each stored value. So a set consumes 20 // bytes for each value stored. This btree implementation stores multiple // values on fixed size nodes (usually 256 bytes) and doesn't store child // pointers for leaf nodes. The result is that a btree_set may use much // less memory per stored value. For the random insertion benchmark in // btree_test.cc, a btree_set with node-size of 256 uses 4.9 bytes per // stored value. // // The packing of multiple values on to each node of a btree has another effect // besides better space utilization: better cache locality due to fewer cache // lines being accessed. Better cache locality translates into faster // operations. // // CAVEATS // // Insertions and deletions on a btree can cause splitting, merging or // rebalancing of btree nodes. And even without these operations, insertions // and deletions on a btree will move values around within a node. In both // cases, the result is that insertions and deletions can invalidate iterators // pointing to values other than the one being inserted/deleted. This is // notably different from STL set/map which takes care to not invalidate // iterators on insert/erase except, of course, for iterators pointing to the // value being erased. A partial workaround when erasing is available: // erase() returns an iterator pointing to the item just after the one that was // erased (or end() if none exists). See also safe_btree. // PERFORMANCE // // btree_bench --benchmarks=. 2>&1 | ./benchmarks.awk // // Run on pmattis-warp.nyc (4 X 2200 MHz CPUs); 2010/03/04-15:23:06 // Benchmark STL(ns) B-Tree(ns) @ // -------------------------------------------------------- // BM_set_int32_insert 1516 608 +59.89% <256> [40.0, 5.2] // BM_set_int32_lookup 1160 414 +64.31% <256> [40.0, 5.2] // BM_set_int32_fulllookup 960 410 +57.29% <256> [40.0, 4.4] // BM_set_int32_delete 1741 528 +69.67% <256> [40.0, 5.2] // BM_set_int32_queueaddrem 3078 1046 +66.02% <256> [40.0, 5.5] // BM_set_int32_mixedaddrem 3600 1384 +61.56% <256> [40.0, 5.3] // BM_set_int32_fifo 227 113 +50.22% <256> [40.0, 4.4] // BM_set_int32_fwditer 158 26 +83.54% <256> [40.0, 5.2] // BM_map_int32_insert 1551 636 +58.99% <256> [48.0, 10.5] // BM_map_int32_lookup 1200 508 +57.67% <256> [48.0, 10.5] // BM_map_int32_fulllookup 989 487 +50.76% <256> [48.0, 8.8] // BM_map_int32_delete 1794 628 +64.99% <256> [48.0, 10.5] // BM_map_int32_queueaddrem 3189 1266 +60.30% <256> [48.0, 11.6] // BM_map_int32_mixedaddrem 3822 1623 +57.54% <256> [48.0, 10.9] // BM_map_int32_fifo 151 134 +11.26% <256> [48.0, 8.8] // BM_map_int32_fwditer 161 32 +80.12% <256> [48.0, 10.5] // BM_set_int64_insert 1546 636 +58.86% <256> [40.0, 10.5] // BM_set_int64_lookup 1200 512 +57.33% <256> [40.0, 10.5] // BM_set_int64_fulllookup 971 487 +49.85% <256> [40.0, 8.8] // BM_set_int64_delete 1745 616 +64.70% <256> [40.0, 10.5] // BM_set_int64_queueaddrem 3163 1195 +62.22% <256> [40.0, 11.6] // BM_set_int64_mixedaddrem 3760 1564 +58.40% <256> [40.0, 10.9] // BM_set_int64_fifo 146 103 +29.45% <256> [40.0, 8.8] // BM_set_int64_fwditer 162 31 +80.86% <256> [40.0, 10.5] // BM_map_int64_insert 1551 720 +53.58% <256> [48.0, 20.7] // BM_map_int64_lookup 1214 612 +49.59% <256> [48.0, 20.7] // BM_map_int64_fulllookup 994 592 +40.44% <256> [48.0, 17.2] // BM_map_int64_delete 1778 764 +57.03% <256> [48.0, 20.7] // BM_map_int64_queueaddrem 3189 1547 +51.49% <256> [48.0, 20.9] // BM_map_int64_mixedaddrem 3779 1887 +50.07% <256> [48.0, 21.6] // BM_map_int64_fifo 147 145 +1.36% <256> [48.0, 17.2] // BM_map_int64_fwditer 162 41 +74.69% <256> [48.0, 20.7] // BM_set_string_insert 1989 1966 +1.16% <256> [64.0, 44.5] // BM_set_string_lookup 1709 1600 +6.38% <256> [64.0, 44.5] // BM_set_string_fulllookup 1573 1529 +2.80% <256> [64.0, 35.4] // BM_set_string_delete 2520 1920 +23.81% <256> [64.0, 44.5] // BM_set_string_queueaddrem 4706 4309 +8.44% <256> [64.0, 48.3] // BM_set_string_mixedaddrem 5080 4654 +8.39% <256> [64.0, 46.7] // BM_set_string_fifo 318 512 -61.01% <256> [64.0, 35.4] // BM_set_string_fwditer 182 93 +48.90% <256> [64.0, 44.5] // BM_map_string_insert 2600 2227 +14.35% <256> [72.0, 55.8] // BM_map_string_lookup 2068 1730 +16.34% <256> [72.0, 55.8] // BM_map_string_fulllookup 1859 1618 +12.96% <256> [72.0, 44.0] // BM_map_string_delete 3168 2080 +34.34% <256> [72.0, 55.8] // BM_map_string_queueaddrem 5840 4701 +19.50% <256> [72.0, 59.4] // BM_map_string_mixedaddrem 6400 5200 +18.75% <256> [72.0, 57.8] // BM_map_string_fifo 398 596 -49.75% <256> [72.0, 44.0] // BM_map_string_fwditer 243 113 +53.50% <256> [72.0, 55.8] #ifndef UTIL_BTREE_BTREE_H__ #define UTIL_BTREE_BTREE_H__ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifndef NDEBUG #define NDEBUG 1 #endif namespace btree { // Inside a btree method, if we just call swap(), it will choose the // btree::swap method, which we don't want. And we can't say ::swap // because then MSVC won't pickup any std::swap() implementations. We // can't just use std::swap() directly because then we don't get the // specialization for types outside the std namespace. So the solution // is to have a special swap helper function whose name doesn't // collide with other swap functions defined by the btree classes. template inline void btree_swap_helper(T &a, T &b) { using std::swap; swap(a, b); } // A template helper used to select A or B based on a condition. template struct if_{ typedef A type; }; template struct if_ { typedef B type; }; // Types small_ and big_ are promise that sizeof(small_) < sizeof(big_) typedef char small_; struct big_ { char dummy[2]; }; // A compile-time assertion. template struct CompileAssert { }; #define COMPILE_ASSERT(expr, msg) \ typedef CompileAssert<(bool(expr))> msg[bool(expr) ? 1 : -1] // A helper type used to indicate that a key-compare-to functor has been // provided. A user can specify a key-compare-to functor by doing: // // struct MyStringComparer // : public util::btree::btree_key_compare_to_tag { // int operator()(const string &a, const string &b) const { // return a.compare(b); // } // }; // // Note that the return type is an int and not a bool. There is a // COMPILE_ASSERT which enforces this return type. struct btree_key_compare_to_tag { }; // A helper class that indicates if the Compare parameter is derived from // btree_key_compare_to_tag. template struct btree_is_key_compare_to : public std::is_convertible { }; // A helper class to convert a boolean comparison into a three-way // "compare-to" comparison that returns a negative value to indicate // less-than, zero to indicate equality and a positive value to // indicate greater-than. This helper class is specialized for // less and greater. The btree_key_compare_to_adapter // class is provided so that btree users automatically get the more // efficient compare-to code when using common google string types // with common comparison functors. template struct btree_key_compare_to_adapter : Compare { btree_key_compare_to_adapter() { } btree_key_compare_to_adapter(const Compare &c) : Compare(c) { } btree_key_compare_to_adapter(const btree_key_compare_to_adapter &c) : Compare(c) { } }; template <> struct btree_key_compare_to_adapter > : public btree_key_compare_to_tag { btree_key_compare_to_adapter() {} btree_key_compare_to_adapter(const std::less&) {} btree_key_compare_to_adapter( const btree_key_compare_to_adapter >&) {} int operator()(const std::string &a, const std::string &b) const { return a.compare(b); } }; template <> struct btree_key_compare_to_adapter > : public btree_key_compare_to_tag { btree_key_compare_to_adapter() {} btree_key_compare_to_adapter(const std::greater&) {} btree_key_compare_to_adapter( const btree_key_compare_to_adapter >&) {} int operator()(const std::string &a, const std::string &b) const { return b.compare(a); } }; // A helper class that allows a compare-to functor to behave like a plain // compare functor. This specialization is used when we do not have a // compare-to functor. template struct btree_key_comparer { btree_key_comparer() {} btree_key_comparer(Compare c) : comp(c) {} static bool bool_compare(const Compare &comp, const Key &x, const Key &y) { return comp(x, y); } bool operator()(const Key &x, const Key &y) const { return bool_compare(comp, x, y); } Compare comp; }; // A specialization of btree_key_comparer when a compare-to functor is // present. We need a plain (boolean) comparison in some parts of the btree // code, such as insert-with-hint. template struct btree_key_comparer { btree_key_comparer() {} btree_key_comparer(Compare c) : comp(c) {} static bool bool_compare(const Compare &comp, const Key &x, const Key &y) { return comp(x, y) < 0; } bool operator()(const Key &x, const Key &y) const { return bool_compare(comp, x, y); } Compare comp; }; // A helper function to compare to keys using the specified compare // functor. This dispatches to the appropriate btree_key_comparer comparison, // depending on whether we have a compare-to functor or not (which depends on // whether Compare is derived from btree_key_compare_to_tag). template static bool btree_compare_keys( const Compare &comp, const Key &x, const Key &y) { typedef btree_key_comparer::value> key_comparer; return key_comparer::bool_compare(comp, x, y); } template struct btree_common_params { // If Compare is derived from btree_key_compare_to_tag then use it as the // key_compare type. Otherwise, use btree_key_compare_to_adapter<> which will // fall-back to Compare if we don't have an appropriate specialization. typedef typename if_< btree_is_key_compare_to::value, Compare, btree_key_compare_to_adapter >::type key_compare; // A type which indicates if we have a key-compare-to functor or a plain old // key-compare functor. typedef btree_is_key_compare_to is_key_compare_to; typedef Alloc allocator_type; typedef Key key_type; typedef ssize_t size_type; typedef ptrdiff_t difference_type; enum { kTargetNodeSize = TargetNodeSize, // Available space for values. This is largest for leaf nodes, // which has overhead no fewer than two pointers. kNodeValueSpace = TargetNodeSize - 2 * sizeof(void*), }; // This is an integral type large enough to hold as many // ValueSize-values as will fit a node of TargetNodeSize bytes. typedef typename if_< (kNodeValueSpace / ValueSize) >= 256, uint16_t, uint8_t>::type node_count_type; }; // A parameters structure for holding the type parameters for a btree_map. template struct btree_map_params : public btree_common_params { typedef Data data_type; typedef Data mapped_type; typedef std::pair value_type; typedef std::pair mutable_value_type; typedef value_type* pointer; typedef const value_type* const_pointer; typedef value_type& reference; typedef const value_type& const_reference; enum { kValueSize = sizeof(Key) + sizeof(data_type), }; static const Key& key(const value_type &x) { return x.first; } static const Key& key(const mutable_value_type &x) { return x.first; } static void swap(mutable_value_type *a, mutable_value_type *b) { btree_swap_helper(a->first, b->first); btree_swap_helper(a->second, b->second); } }; // A parameters structure for holding the type parameters for a btree_set. template struct btree_set_params : public btree_common_params { typedef std::false_type data_type; typedef std::false_type mapped_type; typedef Key value_type; typedef value_type mutable_value_type; typedef value_type* pointer; typedef const value_type* const_pointer; typedef value_type& reference; typedef const value_type& const_reference; enum { kValueSize = sizeof(Key), }; static const Key& key(const value_type &x) { return x; } static void swap(mutable_value_type *a, mutable_value_type *b) { btree_swap_helper(*a, *b); } }; // An adapter class that converts a lower-bound compare into an upper-bound // compare. template struct btree_upper_bound_adapter : public Compare { btree_upper_bound_adapter(Compare c) : Compare(c) {} bool operator()(const Key &a, const Key &b) const { return !static_cast(*this)(b, a); } }; template struct btree_upper_bound_compare_to_adapter : public CompareTo { btree_upper_bound_compare_to_adapter(CompareTo c) : CompareTo(c) {} int operator()(const Key &a, const Key &b) const { return static_cast(*this)(b, a); } }; // Dispatch helper class for using linear search with plain compare. template struct btree_linear_search_plain_compare { static int lower_bound(const K &k, const N &n, Compare comp) { return n.linear_search_plain_compare(k, 0, n.count(), comp); } static int upper_bound(const K &k, const N &n, Compare comp) { typedef btree_upper_bound_adapter upper_compare; return n.linear_search_plain_compare(k, 0, n.count(), upper_compare(comp)); } }; // Dispatch helper class for using linear search with compare-to template struct btree_linear_search_compare_to { static int lower_bound(const K &k, const N &n, CompareTo comp) { return n.linear_search_compare_to(k, 0, n.count(), comp); } static int upper_bound(const K &k, const N &n, CompareTo comp) { typedef btree_upper_bound_adapter > upper_compare; return n.linear_search_plain_compare(k, 0, n.count(), upper_compare(comp)); } }; // Dispatch helper class for using binary search with plain compare. template struct btree_binary_search_plain_compare { static int lower_bound(const K &k, const N &n, Compare comp) { return n.binary_search_plain_compare(k, 0, n.count(), comp); } static int upper_bound(const K &k, const N &n, Compare comp) { typedef btree_upper_bound_adapter upper_compare; return n.binary_search_plain_compare(k, 0, n.count(), upper_compare(comp)); } }; // Dispatch helper class for using binary search with compare-to. template struct btree_binary_search_compare_to { static int lower_bound(const K &k, const N &n, CompareTo comp) { return n.binary_search_compare_to(k, 0, n.count(), CompareTo()); } static int upper_bound(const K &k, const N &n, CompareTo comp) { typedef btree_upper_bound_adapter > upper_compare; return n.linear_search_plain_compare(k, 0, n.count(), upper_compare(comp)); } }; // A node in the btree holding. The same node type is used for both internal // and leaf nodes in the btree, though the nodes are allocated in such a way // that the children array is only valid in internal nodes. template class btree_node { public: typedef Params params_type; typedef btree_node self_type; typedef typename Params::key_type key_type; typedef typename Params::data_type data_type; typedef typename Params::value_type value_type; typedef typename Params::mutable_value_type mutable_value_type; typedef typename Params::pointer pointer; typedef typename Params::const_pointer const_pointer; typedef typename Params::reference reference; typedef typename Params::const_reference const_reference; typedef typename Params::key_compare key_compare; typedef typename Params::size_type size_type; typedef typename Params::difference_type difference_type; // Typedefs for the various types of node searches. typedef btree_linear_search_plain_compare< key_type, self_type, key_compare> linear_search_plain_compare_type; typedef btree_linear_search_compare_to< key_type, self_type, key_compare> linear_search_compare_to_type; typedef btree_binary_search_plain_compare< key_type, self_type, key_compare> binary_search_plain_compare_type; typedef btree_binary_search_compare_to< key_type, self_type, key_compare> binary_search_compare_to_type; // If we have a valid key-compare-to type, use linear_search_compare_to, // otherwise use linear_search_plain_compare. typedef typename if_< Params::is_key_compare_to::value, linear_search_compare_to_type, linear_search_plain_compare_type>::type linear_search_type; // If we have a valid key-compare-to type, use binary_search_compare_to, // otherwise use binary_search_plain_compare. typedef typename if_< Params::is_key_compare_to::value, binary_search_compare_to_type, binary_search_plain_compare_type>::type binary_search_type; // If the key is an integral or floating point type, use linear search which // is faster than binary search for such types. Might be wise to also // configure linear search based on node-size. typedef typename if_< std::is_integral::value || std::is_floating_point::value, linear_search_type, binary_search_type>::type search_type; struct base_fields { typedef typename Params::node_count_type field_type; // A boolean indicating whether the node is a leaf or not. bool leaf; // The position of the node in the node's parent. field_type position; // The maximum number of values the node can hold. field_type max_count; // The count of the number of values in the node. field_type count; // A pointer to the node's parent. btree_node *parent; }; enum { kValueSize = params_type::kValueSize, kTargetNodeSize = params_type::kTargetNodeSize, // Compute how many values we can fit onto a leaf node. kNodeTargetValues = (kTargetNodeSize - sizeof(base_fields)) / kValueSize, // We need a minimum of 3 values per internal node in order to perform // splitting (1 value for the two nodes involved in the split and 1 value // propagated to the parent as the delimiter for the split). kNodeValues = kNodeTargetValues >= 3 ? kNodeTargetValues : 3, kExactMatch = 1 << 30, kMatchMask = kExactMatch - 1, }; struct leaf_fields : public base_fields { // The array of values. Only the first count of these values have been // constructed and are valid. mutable_value_type values[kNodeValues]; }; struct internal_fields : public leaf_fields { // The array of child pointers. The keys in children_[i] are all less than // key(i). The keys in children_[i + 1] are all greater than key(i). There // are always count + 1 children. btree_node *children[kNodeValues + 1]; }; struct root_fields : public internal_fields { btree_node *rightmost; size_type size; }; public: // Getter/setter for whether this is a leaf node or not. This value doesn't // change after the node is created. bool leaf() const { return fields_.leaf; } // Getter for the position of this node in its parent. int position() const { return fields_.position; } void set_position(int v) { fields_.position = v; } // Getter/setter for the number of values stored in this node. int count() const { return fields_.count; } void set_count(int v) { fields_.count = v; } int max_count() const { return fields_.max_count; } // Getter for the parent of this node. btree_node* parent() const { return fields_.parent; } // Getter for whether the node is the root of the tree. The parent of the // root of the tree is the leftmost node in the tree which is guaranteed to // be a leaf. bool is_root() const { return parent()->leaf(); } void make_root() { assert(parent()->is_root()); fields_.parent = fields_.parent->parent(); } // Getter for the rightmost root node field. Only valid on the root node. btree_node* rightmost() const { return fields_.rightmost; } btree_node** mutable_rightmost() { return &fields_.rightmost; } // Getter for the size root node field. Only valid on the root node. size_type size() const { return fields_.size; } size_type* mutable_size() { return &fields_.size; } // Getters for the key/value at position i in the node. const key_type& key(int i) const { return params_type::key(fields_.values[i]); } reference value(int i) { mutable_value_type *ptr = (mutable_value_type*)&fields_.values[i]; return reinterpret_cast(*ptr); } const_reference value(int i) const { value_type *ptr = (value_type*)&fields_.values[i]; return reinterpret_cast(*ptr); } mutable_value_type* mutable_value(int i) { return &fields_.values[i]; } // Swap value i in this node with value j in node x. void value_swap(int i, btree_node *x, int j) { params_type::swap(mutable_value(i), x->mutable_value(j)); } // Getters/setter for the child at position i in the node. btree_node* child(int i) const { return fields_.children[i]; } btree_node** mutable_child(int i) { return &fields_.children[i]; } void set_child(int i, btree_node *c) { *mutable_child(i) = c; c->fields_.parent = this; c->fields_.position = i; } // Returns the position of the first value whose key is not less than k. template int lower_bound(const key_type &k, const Compare &comp) const { return search_type::lower_bound(k, *this, comp); } // Returns the position of the first value whose key is greater than k. template int upper_bound(const key_type &k, const Compare &comp) const { return search_type::upper_bound(k, *this, comp); } // Returns the position of the first value whose key is not less than k using // linear search performed using plain compare. template int linear_search_plain_compare( const key_type &k, int s, int e, const Compare &comp) const { while (s < e) { if (!btree_compare_keys(comp, key(s), k)) { break; } ++s; } return s; } // Returns the position of the first value whose key is not less than k using // linear search performed using compare-to. template int linear_search_compare_to( const key_type &k, int s, int e, const Compare &comp) const { while (s < e) { int c = comp(key(s), k); if (c == 0) { return s | kExactMatch; } else if (c > 0) { break; } ++s; } return s; } // Returns the position of the first value whose key is not less than k using // binary search performed using plain compare. template int binary_search_plain_compare( const key_type &k, int s, int e, const Compare &comp) const { while (s != e) { int mid = (s + e) / 2; if (btree_compare_keys(comp, key(mid), k)) { s = mid + 1; } else { e = mid; } } return s; } // Returns the position of the first value whose key is not less than k using // binary search performed using compare-to. template int binary_search_compare_to( const key_type &k, int s, int e, const CompareTo &comp) const { while (s != e) { int mid = (s + e) / 2; int c = comp(key(mid), k); if (c < 0) { s = mid + 1; } else if (c > 0) { e = mid; } else { // Need to return the first value whose key is not less than k, which // requires continuing the binary search. Note that we are guaranteed // that the result is an exact match because if "key(mid-1) < k" the // call to binary_search_compare_to() will return "mid". s = binary_search_compare_to(k, s, mid, comp); return s | kExactMatch; } } return s; } // Inserts the value x at position i, shifting all existing values and // children at positions >= i to the right by 1. void insert_value(int i, const value_type &x); // Removes the value at position i, shifting all existing values and children // at positions > i to the left by 1. void remove_value(int i); // Rebalances a node with its right sibling. void rebalance_right_to_left(btree_node *sibling, int to_move); void rebalance_left_to_right(btree_node *sibling, int to_move); // Splits a node, moving a portion of the node's values to its right sibling. void split(btree_node *sibling, int insert_position); // Merges a node with its right sibling, moving all of the values and the // delimiting key in the parent node onto itself. void merge(btree_node *sibling); // Swap the contents of "this" and "src". void swap(btree_node *src); // Node allocation/deletion routines. static btree_node* init_leaf( leaf_fields *f, btree_node *parent, int max_count) { btree_node *n = reinterpret_cast(f); f->leaf = 1; f->position = 0; f->max_count = max_count; f->count = 0; f->parent = parent; if (!NDEBUG) { memset(&f->values, 0, max_count * sizeof(value_type)); } return n; } static btree_node* init_internal(internal_fields *f, btree_node *parent) { btree_node *n = init_leaf(f, parent, kNodeValues); f->leaf = 0; if (!NDEBUG) { memset(f->children, 0, sizeof(f->children)); } return n; } static btree_node* init_root(root_fields *f, btree_node *parent) { btree_node *n = init_internal(f, parent); f->rightmost = parent; f->size = parent->count(); return n; } void destroy() { for (int i = 0; i < count(); ++i) { value_destroy(i); } } private: void value_init(int i) { new (&fields_.values[i]) mutable_value_type; } void value_init(int i, const value_type &x) { new (&fields_.values[i]) mutable_value_type(x); } void value_destroy(int i) { fields_.values[i].~mutable_value_type(); } private: root_fields fields_; private: btree_node(const btree_node&); void operator=(const btree_node&); }; template struct btree_iterator { typedef typename Node::key_type key_type; typedef typename Node::size_type size_type; typedef typename Node::difference_type difference_type; typedef typename Node::params_type params_type; typedef Node node_type; typedef typename std::remove_const::type normal_node; typedef const Node const_node; typedef typename params_type::value_type value_type; typedef typename params_type::pointer normal_pointer; typedef typename params_type::reference normal_reference; typedef typename params_type::const_pointer const_pointer; typedef typename params_type::const_reference const_reference; typedef Pointer pointer; typedef Reference reference; typedef std::bidirectional_iterator_tag iterator_category; typedef btree_iterator< normal_node, normal_reference, normal_pointer> iterator; typedef btree_iterator< const_node, const_reference, const_pointer> const_iterator; typedef btree_iterator self_type; btree_iterator() : node(NULL), position(-1) { } btree_iterator(Node *n, int p) : node(n), position(p) { } btree_iterator(const iterator &x) : node(x.node), position(x.position) { } // Increment/decrement the iterator. void increment() { if (node->leaf() && ++position < node->count()) { return; } increment_slow(); } void increment_by(int count); void increment_slow(); void decrement() { if (node->leaf() && --position >= 0) { return; } decrement_slow(); } void decrement_slow(); bool operator==(const const_iterator &x) const { return node == x.node && position == x.position; } bool operator!=(const const_iterator &x) const { return node != x.node || position != x.position; } // Accessors for the key/value the iterator is pointing at. const key_type& key() const { return node->key(position); } reference operator*() const { return node->value(position); } pointer operator->() const { return &node->value(position); } self_type& operator++() { increment(); return *this; } self_type& operator--() { decrement(); return *this; } self_type operator++(int) { self_type tmp = *this; ++*this; return tmp; } self_type operator--(int) { self_type tmp = *this; --*this; return tmp; } // The node in the tree the iterator is pointing at. Node *node; // The position within the node of the tree the iterator is pointing at. int position; }; // Dispatch helper class for using btree::internal_locate with plain compare. struct btree_internal_locate_plain_compare { template static std::pair dispatch(const K &k, const T &t, Iter iter) { return t.internal_locate_plain_compare(k, iter); } }; // Dispatch helper class for using btree::internal_locate with compare-to. struct btree_internal_locate_compare_to { template static std::pair dispatch(const K &k, const T &t, Iter iter) { return t.internal_locate_compare_to(k, iter); } }; template class btree : public Params::key_compare { typedef btree self_type; typedef btree_node node_type; typedef typename node_type::base_fields base_fields; typedef typename node_type::leaf_fields leaf_fields; typedef typename node_type::internal_fields internal_fields; typedef typename node_type::root_fields root_fields; typedef typename Params::is_key_compare_to is_key_compare_to; friend struct btree_internal_locate_plain_compare; friend struct btree_internal_locate_compare_to; typedef typename if_< is_key_compare_to::value, btree_internal_locate_compare_to, btree_internal_locate_plain_compare>::type internal_locate_type; enum { kNodeValues = node_type::kNodeValues, kMinNodeValues = kNodeValues / 2, kValueSize = node_type::kValueSize, kExactMatch = node_type::kExactMatch, kMatchMask = node_type::kMatchMask, }; // A helper class to get the empty base class optimization for 0-size // allocators. Base is internal_allocator_type. // (e.g. empty_base_handle). If Base is // 0-size, the compiler doesn't have to reserve any space for it and // sizeof(empty_base_handle) will simply be sizeof(Data). Google [empty base // class optimization] for more details. template struct empty_base_handle : public Base { empty_base_handle(const Base &b, const Data &d) : Base(b), data(d) { } Data data; }; struct node_stats { node_stats(ssize_t l, ssize_t i) : leaf_nodes(l), internal_nodes(i) { } node_stats& operator+=(const node_stats &x) { leaf_nodes += x.leaf_nodes; internal_nodes += x.internal_nodes; return *this; } ssize_t leaf_nodes; ssize_t internal_nodes; }; public: typedef Params params_type; typedef typename Params::key_type key_type; typedef typename Params::data_type data_type; typedef typename Params::mapped_type mapped_type; typedef typename Params::value_type value_type; typedef typename Params::key_compare key_compare; typedef typename Params::pointer pointer; typedef typename Params::const_pointer const_pointer; typedef typename Params::reference reference; typedef typename Params::const_reference const_reference; typedef typename Params::size_type size_type; typedef typename Params::difference_type difference_type; typedef btree_iterator iterator; typedef typename iterator::const_iterator const_iterator; typedef std::reverse_iterator const_reverse_iterator; typedef std::reverse_iterator reverse_iterator; typedef typename Params::allocator_type allocator_type; typedef typename allocator_type::template rebind::other internal_allocator_type; public: // Default constructor. btree(const key_compare &comp, const allocator_type &alloc); // Copy constructor. btree(const self_type &x); // Destructor. ~btree() { clear(); } // Iterator routines. iterator begin() { return iterator(leftmost(), 0); } const_iterator begin() const { return const_iterator(leftmost(), 0); } iterator end() { return iterator(rightmost(), rightmost() ? rightmost()->count() : 0); } const_iterator end() const { return const_iterator(rightmost(), rightmost() ? rightmost()->count() : 0); } reverse_iterator rbegin() { return reverse_iterator(end()); } const_reverse_iterator rbegin() const { return const_reverse_iterator(end()); } reverse_iterator rend() { return reverse_iterator(begin()); } const_reverse_iterator rend() const { return const_reverse_iterator(begin()); } // Finds the first element whose key is not less than key. iterator lower_bound(const key_type &key) { return internal_end( internal_lower_bound(key, iterator(root(), 0))); } const_iterator lower_bound(const key_type &key) const { return internal_end( internal_lower_bound(key, const_iterator(root(), 0))); } // Finds the first element whose key is greater than key. iterator upper_bound(const key_type &key) { return internal_end( internal_upper_bound(key, iterator(root(), 0))); } const_iterator upper_bound(const key_type &key) const { return internal_end( internal_upper_bound(key, const_iterator(root(), 0))); } // Finds the range of values which compare equal to key. The first member of // the returned pair is equal to lower_bound(key). The second member pair of // the pair is equal to upper_bound(key). std::pair equal_range(const key_type &key) { return std::make_pair(lower_bound(key), upper_bound(key)); } std::pair equal_range(const key_type &key) const { return std::make_pair(lower_bound(key), upper_bound(key)); } // Inserts a value into the btree only if it does not already exist. The // boolean return value indicates whether insertion succeeded or failed. The // ValuePointer type is used to avoid instatiating the value unless the key // is being inserted. Value is not dereferenced if the key already exists in // the btree. See btree_map::operator[]. template std::pair insert_unique(const key_type &key, ValuePointer value); // Inserts a value into the btree only if it does not already exist. The // boolean return value indicates whether insertion succeeded or failed. std::pair insert_unique(const value_type &v) { return insert_unique(params_type::key(v), &v); } // Insert with hint. Check to see if the value should be placed immediately // before position in the tree. If it does, then the insertion will take // amortized constant time. If not, the insertion will take amortized // logarithmic time as if a call to insert_unique(v) were made. iterator insert_unique(iterator position, const value_type &v); // Insert a range of values into the btree. template void insert_unique(InputIterator b, InputIterator e); // Inserts a value into the btree. The ValuePointer type is used to avoid // instatiating the value unless the key is being inserted. Value is not // dereferenced if the key already exists in the btree. See // btree_map::operator[]. template iterator insert_multi(const key_type &key, ValuePointer value); // Inserts a value into the btree. iterator insert_multi(const value_type &v) { return insert_multi(params_type::key(v), &v); } // Insert with hint. Check to see if the value should be placed immediately // before position in the tree. If it does, then the insertion will take // amortized constant time. If not, the insertion will take amortized // logarithmic time as if a call to insert_multi(v) were made. iterator insert_multi(iterator position, const value_type &v); // Insert a range of values into the btree. template void insert_multi(InputIterator b, InputIterator e); void assign(const self_type &x); // Erase the specified iterator from the btree. The iterator must be valid // (i.e. not equal to end()). Return an iterator pointing to the node after // the one that was erased (or end() if none exists). iterator erase(iterator iter); // Erases range. Returns the number of keys erased. int erase(iterator begin, iterator end); // Erases the specified key from the btree. Returns 1 if an element was // erased and 0 otherwise. int erase_unique(const key_type &key); // Erases all of the entries matching the specified key from the // btree. Returns the number of elements erased. int erase_multi(const key_type &key); // Finds the iterator corresponding to a key or returns end() if the key is // not present. iterator find_unique(const key_type &key) { return internal_end( internal_find_unique(key, iterator(root(), 0))); } const_iterator find_unique(const key_type &key) const { return internal_end( internal_find_unique(key, const_iterator(root(), 0))); } iterator find_multi(const key_type &key) { return internal_end( internal_find_multi(key, iterator(root(), 0))); } const_iterator find_multi(const key_type &key) const { return internal_end( internal_find_multi(key, const_iterator(root(), 0))); } // Returns a count of the number of times the key appears in the btree. size_type count_unique(const key_type &key) const { const_iterator begin = internal_find_unique( key, const_iterator(root(), 0)); if (!begin.node) { // The key doesn't exist in the tree. return 0; } return 1; } // Returns a count of the number of times the key appears in the btree. size_type count_multi(const key_type &key) const { return distance(lower_bound(key), upper_bound(key)); } // Clear the btree, deleting all of the values it contains. void clear(); // Swap the contents of *this and x. void swap(self_type &x); // Assign the contents of x to *this. self_type& operator=(const self_type &x) { if (&x == this) { // Don't copy onto ourselves. return *this; } assign(x); return *this; } key_compare* mutable_key_comp() { return this; } const key_compare& key_comp() const { return *this; } bool compare_keys(const key_type &x, const key_type &y) const { return btree_compare_keys(key_comp(), x, y); } // Dump the btree to the specified ostream. Requires that operator<< is // defined for Key and Value. void dump(std::ostream &os) const { if (root() != NULL) { internal_dump(os, root(), 0); } } // Verifies the structure of the btree. void verify() const; // Size routines. Note that empty() is slightly faster than doing size()==0. size_type size() const { if (empty()) return 0; if (root()->leaf()) return root()->count(); return root()->size(); } size_type max_size() const { return std::numeric_limits::max(); } bool empty() const { return root() == NULL; } // The height of the btree. An empty tree will have height 0. size_type height() const { size_type h = 0; if (root()) { // Count the length of the chain from the leftmost node up to the // root. We actually count from the root back around to the level below // the root, but the calculation is the same because of the circularity // of that traversal. const node_type *n = root(); do { ++h; n = n->parent(); } while (n != root()); } return h; } // The number of internal, leaf and total nodes used by the btree. size_type leaf_nodes() const { return internal_stats(root()).leaf_nodes; } size_type internal_nodes() const { return internal_stats(root()).internal_nodes; } size_type nodes() const { node_stats stats = internal_stats(root()); return stats.leaf_nodes + stats.internal_nodes; } // The total number of bytes used by the btree. size_type bytes_used() const { node_stats stats = internal_stats(root()); if (stats.leaf_nodes == 1 && stats.internal_nodes == 0) { return sizeof(*this) + sizeof(base_fields) + root()->max_count() * sizeof(value_type); } else { return sizeof(*this) + sizeof(root_fields) - sizeof(internal_fields) + stats.leaf_nodes * sizeof(leaf_fields) + stats.internal_nodes * sizeof(internal_fields); } } // The average number of bytes used per value stored in the btree. static double average_bytes_per_value() { // Returns the number of bytes per value on a leaf node that is 75% // full. Experimentally, this matches up nicely with the computed number of // bytes per value in trees that had their values inserted in random order. return sizeof(leaf_fields) / (kNodeValues * 0.75); } // The fullness of the btree. Computed as the number of elements in the btree // divided by the maximum number of elements a tree with the current number // of nodes could hold. A value of 1 indicates perfect space // utilization. Smaller values indicate space wastage. double fullness() const { return double(size()) / (nodes() * kNodeValues); } // The overhead of the btree structure in bytes per node. Computed as the // total number of bytes used by the btree minus the number of bytes used for // storing elements divided by the number of elements. double overhead() const { if (empty()) { return 0.0; } return (bytes_used() - size() * kValueSize) / double(size()); } private: // Internal accessor routines. node_type* root() { return root_.data; } const node_type* root() const { return root_.data; } node_type** mutable_root() { return &root_.data; } // The rightmost node is stored in the root node. node_type* rightmost() { return (!root() || root()->leaf()) ? root() : root()->rightmost(); } const node_type* rightmost() const { return (!root() || root()->leaf()) ? root() : root()->rightmost(); } node_type** mutable_rightmost() { return root()->mutable_rightmost(); } // The leftmost node is stored as the parent of the root node. node_type* leftmost() { return root() ? root()->parent() : NULL; } const node_type* leftmost() const { return root() ? root()->parent() : NULL; } // The size of the tree is stored in the root node. size_type* mutable_size() { return root()->mutable_size(); } // Allocator routines. internal_allocator_type* mutable_internal_allocator() { return static_cast(&root_); } const internal_allocator_type& internal_allocator() const { return *static_cast(&root_); } // Node creation/deletion routines. node_type* new_internal_node(node_type *parent) { internal_fields *p = reinterpret_cast( mutable_internal_allocator()->allocate(sizeof(internal_fields))); return node_type::init_internal(p, parent); } node_type* new_internal_root_node() { root_fields *p = reinterpret_cast( mutable_internal_allocator()->allocate(sizeof(root_fields))); return node_type::init_root(p, root()->parent()); } node_type* new_leaf_node(node_type *parent) { leaf_fields *p = reinterpret_cast( mutable_internal_allocator()->allocate(sizeof(leaf_fields))); return node_type::init_leaf(p, parent, kNodeValues); } node_type* new_leaf_root_node(int max_count) { leaf_fields *p = reinterpret_cast( mutable_internal_allocator()->allocate( sizeof(base_fields) + max_count * sizeof(value_type))); return node_type::init_leaf(p, reinterpret_cast(p), max_count); } void delete_internal_node(node_type *node) { node->destroy(); assert(node != root()); mutable_internal_allocator()->deallocate( reinterpret_cast(node), sizeof(internal_fields)); } void delete_internal_root_node() { root()->destroy(); mutable_internal_allocator()->deallocate( reinterpret_cast(root()), sizeof(root_fields)); } void delete_leaf_node(node_type *node) { node->destroy(); mutable_internal_allocator()->deallocate( reinterpret_cast(node), sizeof(base_fields) + node->max_count() * sizeof(value_type)); } // Rebalances or splits the node iter points to. void rebalance_or_split(iterator *iter); // Merges the values of left, right and the delimiting key on their parent // onto left, removing the delimiting key and deleting right. void merge_nodes(node_type *left, node_type *right); // Tries to merge node with its left or right sibling, and failing that, // rebalance with its left or right sibling. Returns true if a merge // occurred, at which point it is no longer valid to access node. Returns // false if no merging took place. bool try_merge_or_rebalance(iterator *iter); // Tries to shrink the height of the tree by 1. void try_shrink(); iterator internal_end(iterator iter) { return iter.node ? iter : end(); } const_iterator internal_end(const_iterator iter) const { return iter.node ? iter : end(); } // Inserts a value into the btree immediately before iter. Requires that // key(v) <= iter.key() and (--iter).key() <= key(v). iterator internal_insert(iterator iter, const value_type &v); // Returns an iterator pointing to the first value >= the value "iter" is // pointing at. Note that "iter" might be pointing to an invalid location as // iter.position == iter.node->count(). This routine simply moves iter up in // the tree to a valid location. template static IterType internal_last(IterType iter); // Returns an iterator pointing to the leaf position at which key would // reside in the tree. We provide 2 versions of internal_locate. The first // version (internal_locate_plain_compare) always returns 0 for the second // field of the pair. The second version (internal_locate_compare_to) is for // the key-compare-to specialization and returns either kExactMatch (if the // key was found in the tree) or -kExactMatch (if it wasn't) in the second // field of the pair. The compare_to specialization allows the caller to // avoid a subsequent comparison to determine if an exact match was made, // speeding up string keys. template std::pair internal_locate( const key_type &key, IterType iter) const; template std::pair internal_locate_plain_compare( const key_type &key, IterType iter) const; template std::pair internal_locate_compare_to( const key_type &key, IterType iter) const; // Internal routine which implements lower_bound(). template IterType internal_lower_bound( const key_type &key, IterType iter) const; // Internal routine which implements upper_bound(). template IterType internal_upper_bound( const key_type &key, IterType iter) const; // Internal routine which implements find_unique(). template IterType internal_find_unique( const key_type &key, IterType iter) const; // Internal routine which implements find_multi(). template IterType internal_find_multi( const key_type &key, IterType iter) const; // Deletes a node and all of its children. void internal_clear(node_type *node); // Dumps a node and all of its children to the specified ostream. void internal_dump(std::ostream &os, const node_type *node, int level) const; // Verifies the tree structure of node. int internal_verify(const node_type *node, const key_type *lo, const key_type *hi) const; node_stats internal_stats(const node_type *node) const { if (!node) { return node_stats(0, 0); } if (node->leaf()) { return node_stats(1, 0); } node_stats res(0, 1); for (int i = 0; i <= node->count(); ++i) { res += internal_stats(node->child(i)); } return res; } private: empty_base_handle root_; private: // A never instantiated helper function that returns big_ if we have a // key-compare-to functor or if R is bool and small_ otherwise. template static typename if_< if_, std::is_same >::type::value, big_, small_>::type key_compare_checker(R); // A never instantiated helper function that returns the key comparison // functor. static key_compare key_compare_helper(); // Verify that key_compare returns a bool. This is similar to the way // is_convertible in base/type_traits.h works. Note that key_compare_checker // is never actually invoked. The compiler will select which // key_compare_checker() to instantiate and then figure out the size of the // return type of key_compare_checker() at compile time which we then check // against the sizeof of big_. COMPILE_ASSERT( sizeof(key_compare_checker(key_compare_helper()(key_type(), key_type()))) == sizeof(big_), key_comparison_function_must_return_bool); // Note: We insist on kTargetValues, which is computed from // Params::kTargetNodeSize, must fit the base_fields::field_type. COMPILE_ASSERT(kNodeValues < (1 << (8 * sizeof(typename base_fields::field_type))), target_node_size_too_large); // Test the assumption made in setting kNodeValueSpace. COMPILE_ASSERT(sizeof(base_fields) >= 2 * sizeof(void*), node_space_assumption_incorrect); }; //// // btree_node methods template inline void btree_node

::insert_value(int i, const value_type &x) { assert(i <= count()); value_init(count(), x); for (int j = count(); j > i; --j) { value_swap(j, this, j - 1); } set_count(count() + 1); if (!leaf()) { ++i; for (int j = count(); j > i; --j) { *mutable_child(j) = child(j - 1); child(j)->set_position(j); } *mutable_child(i) = NULL; } } template inline void btree_node

::remove_value(int i) { if (!leaf()) { assert(child(i + 1)->count() == 0); for (int j = i + 1; j < count(); ++j) { *mutable_child(j) = child(j + 1); child(j)->set_position(j); } *mutable_child(count()) = NULL; } set_count(count() - 1); for (; i < count(); ++i) { value_swap(i, this, i + 1); } value_destroy(i); } template void btree_node

::rebalance_right_to_left(btree_node *src, int to_move) { assert(parent() == src->parent()); assert(position() + 1 == src->position()); assert(src->count() >= count()); assert(to_move >= 1); assert(to_move <= src->count()); // Make room in the left node for the new values. for (int i = 0; i < to_move; ++i) { value_init(i + count()); } // Move the delimiting value to the left node and the new delimiting value // from the right node. value_swap(count(), parent(), position()); parent()->value_swap(position(), src, to_move - 1); // Move the values from the right to the left node. for (int i = 1; i < to_move; ++i) { value_swap(count() + i, src, i - 1); } // Shift the values in the right node to their correct position. for (int i = to_move; i < src->count(); ++i) { src->value_swap(i - to_move, src, i); } for (int i = 1; i <= to_move; ++i) { src->value_destroy(src->count() - i); } if (!leaf()) { // Move the child pointers from the right to the left node. for (int i = 0; i < to_move; ++i) { set_child(1 + count() + i, src->child(i)); } for (int i = 0; i <= src->count() - to_move; ++i) { assert(i + to_move <= src->max_count()); src->set_child(i, src->child(i + to_move)); *src->mutable_child(i + to_move) = NULL; } } // Fixup the counts on the src and dest nodes. set_count(count() + to_move); src->set_count(src->count() - to_move); } template void btree_node

::rebalance_left_to_right(btree_node *dest, int to_move) { assert(parent() == dest->parent()); assert(position() + 1 == dest->position()); assert(count() >= dest->count()); assert(to_move >= 1); assert(to_move <= count()); // Make room in the right node for the new values. for (int i = 0; i < to_move; ++i) { dest->value_init(i + dest->count()); } for (int i = dest->count() - 1; i >= 0; --i) { dest->value_swap(i, dest, i + to_move); } // Move the delimiting value to the right node and the new delimiting value // from the left node. dest->value_swap(to_move - 1, parent(), position()); parent()->value_swap(position(), this, count() - to_move); value_destroy(count() - to_move); // Move the values from the left to the right node. for (int i = 1; i < to_move; ++i) { value_swap(count() - to_move + i, dest, i - 1); value_destroy(count() - to_move + i); } if (!leaf()) { // Move the child pointers from the left to the right node. for (int i = dest->count(); i >= 0; --i) { dest->set_child(i + to_move, dest->child(i)); *dest->mutable_child(i) = NULL; } for (int i = 1; i <= to_move; ++i) { dest->set_child(i - 1, child(count() - to_move + i)); *mutable_child(count() - to_move + i) = NULL; } } // Fixup the counts on the src and dest nodes. set_count(count() - to_move); dest->set_count(dest->count() + to_move); } template void btree_node

::split(btree_node *dest, int insert_position) { assert(dest->count() == 0); // We bias the split based on the position being inserted. If we're // inserting at the beginning of the left node then bias the split to put // more values on the right node. If we're inserting at the end of the // right node then bias the split to put more values on the left node. if (insert_position == 0) { dest->set_count(count() - 1); } else if (insert_position == max_count()) { dest->set_count(0); } else { dest->set_count(count() / 2); } set_count(count() - dest->count()); assert(count() >= 1); // Move values from the left sibling to the right sibling. for (int i = 0; i < dest->count(); ++i) { dest->value_init(i); value_swap(count() + i, dest, i); value_destroy(count() + i); } // The split key is the largest value in the left sibling. set_count(count() - 1); parent()->insert_value(position(), value_type()); value_swap(count(), parent(), position()); value_destroy(count()); parent()->set_child(position() + 1, dest); if (!leaf()) { for (int i = 0; i <= dest->count(); ++i) { assert(child(count() + i + 1) != NULL); dest->set_child(i, child(count() + i + 1)); *mutable_child(count() + i + 1) = NULL; } } } template void btree_node

::merge(btree_node *src) { assert(parent() == src->parent()); assert(position() + 1 == src->position()); // Move the delimiting value to the left node. value_init(count()); value_swap(count(), parent(), position()); // Move the values from the right to the left node. for (int i = 0; i < src->count(); ++i) { value_init(1 + count() + i); value_swap(1 + count() + i, src, i); src->value_destroy(i); } if (!leaf()) { // Move the child pointers from the right to the left node. for (int i = 0; i <= src->count(); ++i) { set_child(1 + count() + i, src->child(i)); *src->mutable_child(i) = NULL; } } // Fixup the counts on the src and dest nodes. set_count(1 + count() + src->count()); src->set_count(0); // Remove the value on the parent node. parent()->remove_value(position()); } template void btree_node

::swap(btree_node *x) { assert(leaf() == x->leaf()); // Swap the values. for (int i = count(); i < x->count(); ++i) { value_init(i); } for (int i = x->count(); i < count(); ++i) { x->value_init(i); } int n = std::max(count(), x->count()); for (int i = 0; i < n; ++i) { value_swap(i, x, i); } for (int i = count(); i < x->count(); ++i) { x->value_destroy(i); } for (int i = x->count(); i < count(); ++i) { value_destroy(i); } if (!leaf()) { // Swap the child pointers. for (int i = 0; i <= n; ++i) { btree_swap_helper(*mutable_child(i), *x->mutable_child(i)); } for (int i = 0; i <= count(); ++i) { x->child(i)->fields_.parent = x; } for (int i = 0; i <= x->count(); ++i) { child(i)->fields_.parent = this; } } // Swap the counts. btree_swap_helper(fields_.count, x->fields_.count); } //// // btree_iterator methods template void btree_iterator::increment_slow() { if (node->leaf()) { assert(position >= node->count()); self_type save(*this); while (position == node->count() && !node->is_root()) { assert(node->parent()->child(node->position()) == node); position = node->position(); node = node->parent(); } if (position == node->count()) { *this = save; } } else { assert(position < node->count()); node = node->child(position + 1); while (!node->leaf()) { node = node->child(0); } position = 0; } } template void btree_iterator::increment_by(int count) { while (count > 0) { if (node->leaf()) { int rest = node->count() - position; position += std::min(rest, count); count = count - rest; if (position < node->count()) { return; } } else { --count; } increment_slow(); } } template void btree_iterator::decrement_slow() { if (node->leaf()) { assert(position <= -1); self_type save(*this); while (position < 0 && !node->is_root()) { assert(node->parent()->child(node->position()) == node); position = node->position() - 1; node = node->parent(); } if (position < 0) { *this = save; } } else { assert(position >= 0); node = node->child(position); while (!node->leaf()) { node = node->child(node->count()); } position = node->count() - 1; } } //// // btree methods template btree

::btree(const key_compare &comp, const allocator_type &alloc) : key_compare(comp), root_(alloc, NULL) { } template btree

::btree(const self_type &x) : key_compare(x.key_comp()), root_(x.internal_allocator(), NULL) { assign(x); } template template std::pair::iterator, bool> btree

::insert_unique(const key_type &key, ValuePointer value) { if (empty()) { *mutable_root() = new_leaf_root_node(1); } std::pair res = internal_locate(key, iterator(root(), 0)); iterator &iter = res.first; if (res.second == kExactMatch) { // The key already exists in the tree, do nothing. return std::make_pair(internal_last(iter), false); } else if (!res.second) { iterator last = internal_last(iter); if (last.node && !compare_keys(key, last.key())) { // The key already exists in the tree, do nothing. return std::make_pair(last, false); } } return std::make_pair(internal_insert(iter, *value), true); } template inline typename btree

::iterator btree

::insert_unique(iterator position, const value_type &v) { if (!empty()) { const key_type &key = params_type::key(v); if (position == end() || compare_keys(key, position.key())) { iterator prev = position; if (position == begin() || compare_keys((--prev).key(), key)) { // prev.key() < key < position.key() return internal_insert(position, v); } } else if (compare_keys(position.key(), key)) { iterator next = position; ++next; if (next == end() || compare_keys(key, next.key())) { // position.key() < key < next.key() return internal_insert(next, v); } } else { // position.key() == key return position; } } return insert_unique(v).first; } template template void btree

::insert_unique(InputIterator b, InputIterator e) { for (; b != e; ++b) { insert_unique(end(), *b); } } template template typename btree

::iterator btree

::insert_multi(const key_type &key, ValuePointer value) { if (empty()) { *mutable_root() = new_leaf_root_node(1); } iterator iter = internal_upper_bound(key, iterator(root(), 0)); if (!iter.node) { iter = end(); } return internal_insert(iter, *value); } template typename btree

::iterator btree

::insert_multi(iterator position, const value_type &v) { if (!empty()) { const key_type &key = params_type::key(v); if (position == end() || !compare_keys(position.key(), key)) { iterator prev = position; if (position == begin() || !compare_keys(key, (--prev).key())) { // prev.key() <= key <= position.key() return internal_insert(position, v); } } else { iterator next = position; ++next; if (next == end() || !compare_keys(next.key(), key)) { // position.key() < key <= next.key() return internal_insert(next, v); } } } return insert_multi(v); } template template void btree

::insert_multi(InputIterator b, InputIterator e) { for (; b != e; ++b) { insert_multi(end(), *b); } } template void btree

::assign(const self_type &x) { clear(); *mutable_key_comp() = x.key_comp(); *mutable_internal_allocator() = x.internal_allocator(); // Assignment can avoid key comparisons because we know the order of the // values is the same order we'll store them in. for (const_iterator iter = x.begin(); iter != x.end(); ++iter) { if (empty()) { insert_multi(*iter); } else { // If the btree is not empty, we can just insert the new value at the end // of the tree! internal_insert(end(), *iter); } } } template typename btree

::iterator btree

::erase(iterator iter) { bool internal_delete = false; if (!iter.node->leaf()) { // Deletion of a value on an internal node. Swap the key with the largest // value of our left child. This is easy, we just decrement iter. iterator tmp_iter(iter--); assert(iter.node->leaf()); assert(!compare_keys(tmp_iter.key(), iter.key())); iter.node->value_swap(iter.position, tmp_iter.node, tmp_iter.position); internal_delete = true; --*mutable_size(); } else if (!root()->leaf()) { --*mutable_size(); } // Delete the key from the leaf. iter.node->remove_value(iter.position); // We want to return the next value after the one we just erased. If we // erased from an internal node (internal_delete == true), then the next // value is ++(++iter). If we erased from a leaf node (internal_delete == // false) then the next value is ++iter. Note that ++iter may point to an // internal node and the value in the internal node may move to a leaf node // (iter.node) when rebalancing is performed at the leaf level. // Merge/rebalance as we walk back up the tree. iterator res(iter); for (;;) { if (iter.node == root()) { try_shrink(); if (empty()) { return end(); } break; } if (iter.node->count() >= kMinNodeValues) { break; } bool merged = try_merge_or_rebalance(&iter); if (iter.node->leaf()) { res = iter; } if (!merged) { break; } iter.node = iter.node->parent(); } // Adjust our return value. If we're pointing at the end of a node, advance // the iterator. if (res.position == res.node->count()) { res.position = res.node->count() - 1; ++res; } // If we erased from an internal node, advance the iterator. if (internal_delete) { ++res; } return res; } template int btree

::erase(iterator begin, iterator end) { int count = distance(begin, end); for (int i = 0; i < count; i++) { begin = erase(begin); } return count; } template int btree

::erase_unique(const key_type &key) { iterator iter = internal_find_unique(key, iterator(root(), 0)); if (!iter.node) { // The key doesn't exist in the tree, return nothing done. return 0; } erase(iter); return 1; } template int btree

::erase_multi(const key_type &key) { iterator begin = internal_lower_bound(key, iterator(root(), 0)); if (!begin.node) { // The key doesn't exist in the tree, return nothing done. return 0; } // Delete all of the keys between begin and upper_bound(key). iterator end = internal_end( internal_upper_bound(key, iterator(root(), 0))); return erase(begin, end); } template void btree

::clear() { if (root() != NULL) { internal_clear(root()); } *mutable_root() = NULL; } template void btree

::swap(self_type &x) { std::swap(static_cast(*this), static_cast(x)); std::swap(root_, x.root_); } template void btree

::verify() const { if (root() != NULL) { assert(size() == internal_verify(root(), NULL, NULL)); assert(leftmost() == (++const_iterator(root(), -1)).node); assert(rightmost() == (--const_iterator(root(), root()->count())).node); assert(leftmost()->leaf()); assert(rightmost()->leaf()); } else { assert(size() == 0); assert(leftmost() == NULL); assert(rightmost() == NULL); } } template void btree

::rebalance_or_split(iterator *iter) { node_type *&node = iter->node; int &insert_position = iter->position; assert(node->count() == node->max_count()); // First try to make room on the node by rebalancing. node_type *parent = node->parent(); if (node != root()) { if (node->position() > 0) { // Try rebalancing with our left sibling. node_type *left = parent->child(node->position() - 1); if (left->count() < left->max_count()) { // We bias rebalancing based on the position being inserted. If we're // inserting at the end of the right node then we bias rebalancing to // fill up the left node. int to_move = (left->max_count() - left->count()) / (1 + (insert_position < left->max_count())); to_move = std::max(1, to_move); if (((insert_position - to_move) >= 0) || ((left->count() + to_move) < left->max_count())) { left->rebalance_right_to_left(node, to_move); assert(node->max_count() - node->count() == to_move); insert_position = insert_position - to_move; if (insert_position < 0) { insert_position = insert_position + left->count() + 1; node = left; } assert(node->count() < node->max_count()); return; } } } if (node->position() < parent->count()) { // Try rebalancing with our right sibling. node_type *right = parent->child(node->position() + 1); if (right->count() < right->max_count()) { // We bias rebalancing based on the position being inserted. If we're // inserting at the beginning of the left node then we bias rebalancing // to fill up the right node. int to_move = (right->max_count() - right->count()) / (1 + (insert_position > 0)); to_move = std::max(1, to_move); if ((insert_position <= (node->count() - to_move)) || ((right->count() + to_move) < right->max_count())) { node->rebalance_left_to_right(right, to_move); if (insert_position > node->count()) { insert_position = insert_position - node->count() - 1; node = right; } assert(node->count() < node->max_count()); return; } } } // Rebalancing failed, make sure there is room on the parent node for a new // value. if (parent->count() == parent->max_count()) { iterator parent_iter(node->parent(), node->position()); rebalance_or_split(&parent_iter); } } else { // Rebalancing not possible because this is the root node. if (root()->leaf()) { // The root node is currently a leaf node: create a new root node and set // the current root node as the child of the new root. parent = new_internal_root_node(); parent->set_child(0, root()); *mutable_root() = parent; assert(*mutable_rightmost() == parent->child(0)); } else { // The root node is an internal node. We do not want to create a new root // node because the root node is special and holds the size of the tree // and a pointer to the rightmost node. So we create a new internal node // and move all of the items on the current root into the new node. parent = new_internal_node(parent); parent->set_child(0, parent); parent->swap(root()); node = parent; } } // Split the node. node_type *split_node; if (node->leaf()) { split_node = new_leaf_node(parent); node->split(split_node, insert_position); if (rightmost() == node) { *mutable_rightmost() = split_node; } } else { split_node = new_internal_node(parent); node->split(split_node, insert_position); } if (insert_position > node->count()) { insert_position = insert_position - node->count() - 1; node = split_node; } } template void btree

::merge_nodes(node_type *left, node_type *right) { left->merge(right); if (right->leaf()) { if (rightmost() == right) { *mutable_rightmost() = left; } delete_leaf_node(right); } else { delete_internal_node(right); } } template bool btree

::try_merge_or_rebalance(iterator *iter) { node_type *parent = iter->node->parent(); if (iter->node->position() > 0) { // Try merging with our left sibling. node_type *left = parent->child(iter->node->position() - 1); if ((1 + left->count() + iter->node->count()) <= left->max_count()) { iter->position += 1 + left->count(); merge_nodes(left, iter->node); iter->node = left; return true; } } if (iter->node->position() < parent->count()) { // Try merging with our right sibling. node_type *right = parent->child(iter->node->position() + 1); if ((1 + iter->node->count() + right->count()) <= right->max_count()) { merge_nodes(iter->node, right); return true; } // Try rebalancing with our right sibling. We don't perform rebalancing if // we deleted the first element from iter->node and the node is not // empty. This is a small optimization for the common pattern of deleting // from the front of the tree. if ((right->count() > kMinNodeValues) && ((iter->node->count() == 0) || (iter->position > 0))) { int to_move = (right->count() - iter->node->count()) / 2; to_move = std::min(to_move, right->count() - 1); iter->node->rebalance_right_to_left(right, to_move); return false; } } if (iter->node->position() > 0) { // Try rebalancing with our left sibling. We don't perform rebalancing if // we deleted the last element from iter->node and the node is not // empty. This is a small optimization for the common pattern of deleting // from the back of the tree. node_type *left = parent->child(iter->node->position() - 1); if ((left->count() > kMinNodeValues) && ((iter->node->count() == 0) || (iter->position < iter->node->count()))) { int to_move = (left->count() - iter->node->count()) / 2; to_move = std::min(to_move, left->count() - 1); left->rebalance_left_to_right(iter->node, to_move); iter->position += to_move; return false; } } return false; } template void btree

::try_shrink() { if (root()->count() > 0) { return; } // Deleted the last item on the root node, shrink the height of the tree. if (root()->leaf()) { assert(size() == 0); delete_leaf_node(root()); *mutable_root() = NULL; } else { node_type *child = root()->child(0); if (child->leaf()) { // The child is a leaf node so simply make it the root node in the tree. child->make_root(); delete_internal_root_node(); *mutable_root() = child; } else { // The child is an internal node. We want to keep the existing root node // so we move all of the values from the child node into the existing // (empty) root node. child->swap(root()); delete_internal_node(child); } } } template template inline IterType btree

::internal_last(IterType iter) { while (iter.node && iter.position == iter.node->count()) { iter.position = iter.node->position(); iter.node = iter.node->parent(); if (iter.node->leaf()) { iter.node = NULL; } } return iter; } template inline typename btree

::iterator btree

::internal_insert(iterator iter, const value_type &v) { if (!iter.node->leaf()) { // We can't insert on an internal node. Instead, we'll insert after the // previous value which is guaranteed to be on a leaf node. --iter; ++iter.position; } if (iter.node->count() == iter.node->max_count()) { // Make room in the leaf for the new item. if (iter.node->max_count() < kNodeValues) { // Insertion into the root where the root is smaller that the full node // size. Simply grow the size of the root node. assert(iter.node == root()); iter.node = new_leaf_root_node( std::min(kNodeValues, 2 * iter.node->max_count())); iter.node->swap(root()); delete_leaf_node(root()); *mutable_root() = iter.node; } else { rebalance_or_split(&iter); ++*mutable_size(); } } else if (!root()->leaf()) { ++*mutable_size(); } iter.node->insert_value(iter.position, v); return iter; } template template inline std::pair btree

::internal_locate( const key_type &key, IterType iter) const { return internal_locate_type::dispatch(key, *this, iter); } template template inline std::pair btree

::internal_locate_plain_compare( const key_type &key, IterType iter) const { for (;;) { iter.position = iter.node->lower_bound(key, key_comp()); if (iter.node->leaf()) { break; } iter.node = iter.node->child(iter.position); } return std::make_pair(iter, 0); } template template inline std::pair btree

::internal_locate_compare_to( const key_type &key, IterType iter) const { for (;;) { int res = iter.node->lower_bound(key, key_comp()); iter.position = res & kMatchMask; if (res & kExactMatch) { return std::make_pair(iter, static_cast(kExactMatch)); } if (iter.node->leaf()) { break; } iter.node = iter.node->child(iter.position); } return std::make_pair(iter, -kExactMatch); } template template IterType btree

::internal_lower_bound( const key_type &key, IterType iter) const { if (iter.node) { for (;;) { iter.position = iter.node->lower_bound(key, key_comp()) & kMatchMask; if (iter.node->leaf()) { break; } iter.node = iter.node->child(iter.position); } iter = internal_last(iter); } return iter; } template template IterType btree

::internal_upper_bound( const key_type &key, IterType iter) const { if (iter.node) { for (;;) { iter.position = iter.node->upper_bound(key, key_comp()); if (iter.node->leaf()) { break; } iter.node = iter.node->child(iter.position); } iter = internal_last(iter); } return iter; } template template IterType btree

::internal_find_unique( const key_type &key, IterType iter) const { if (iter.node) { std::pair res = internal_locate(key, iter); if (res.second == kExactMatch) { return res.first; } if (!res.second) { iter = internal_last(res.first); if (iter.node && !compare_keys(key, iter.key())) { return iter; } } } return IterType(NULL, 0); } template template IterType btree

::internal_find_multi( const key_type &key, IterType iter) const { if (iter.node) { iter = internal_lower_bound(key, iter); if (iter.node) { iter = internal_last(iter); if (iter.node && !compare_keys(key, iter.key())) { return iter; } } } return IterType(NULL, 0); } template void btree

::internal_clear(node_type *node) { if (!node->leaf()) { for (int i = 0; i <= node->count(); ++i) { internal_clear(node->child(i)); } if (node == root()) { delete_internal_root_node(); } else { delete_internal_node(node); } } else { delete_leaf_node(node); } } template void btree

::internal_dump( std::ostream &os, const node_type *node, int level) const { for (int i = 0; i < node->count(); ++i) { if (!node->leaf()) { internal_dump(os, node->child(i), level + 1); } for (int j = 0; j < level; ++j) { os << " "; } os << node->key(i) << " [" << level << "]\n"; } if (!node->leaf()) { internal_dump(os, node->child(node->count()), level + 1); } } template int btree

::internal_verify( const node_type *node, const key_type *lo, const key_type *hi) const { assert(node->count() > 0); assert(node->count() <= node->max_count()); if (lo) { assert(!compare_keys(node->key(0), *lo)); } if (hi) { assert(!compare_keys(*hi, node->key(node->count() - 1))); } for (int i = 1; i < node->count(); ++i) { assert(!compare_keys(node->key(i), node->key(i - 1))); } int count = node->count(); if (!node->leaf()) { for (int i = 0; i <= node->count(); ++i) { assert(node->child(i) != NULL); assert(node->child(i)->parent() == node); assert(node->child(i)->position() == i); count += internal_verify( node->child(i), (i == 0) ? lo : &node->key(i - 1), (i == node->count()) ? hi : &node->key(i)); } } return count; } } // namespace btree #endif // UTIL_BTREE_BTREE_H__