Many files:

journal.c: implement loading of ext3 journal for recovery code
  problem.c (fix_problem): return answer from PR_AFTER_CODE to caller.
  	Add journal problems.
  recovery.c (journal_recover): user-space ext3 journal recovery code
  unix.c (main) : check journal and do recovery in separate steps
  jfs.h, recovery.c: Files ext3 kernel code.
  jfs_compat.h: Compatibility header file to allow kernel code to be
  	linked to e2fsck.
bitmap-optimize
Theodore Ts'o 2000-08-14 14:25:19 +00:00
parent b8d164cd24
commit 3b5386dca8
12 changed files with 1809 additions and 92 deletions

View File

@ -1,3 +1,14 @@
2000-07-12 Andreas Dilger <adilger@turbolinux.com>
* journal.c: implement loading of ext3 journal for recovery code
* problem.c (fix_problem): return answer from PR_AFTER_CODE to caller.
Add journal problems.
* recovery.c (journal_recover): user-space ext3 journal recovery code
* unix.c (main) : check journal and do recovery in separate steps
2000-08-07 <tytso@snap.thunk.org>
* unix.c (calc_percent): Make sure that we don't take a floating

View File

@ -56,14 +56,14 @@ PROFILED_DEPLIBS= $(PROFILED_LIBEXT2FS) $(PROFILED_LIBCOM_ERR) \
OBJS= unix.o e2fsck.o super.o pass1.o pass1b.o pass2.o pass3.o pass4.o \
pass5.o journal.o swapfs.o badblocks.o util.o dirinfo.o ehandler.o \
problem.o message.o $(MTRACE_OBJ)
problem.o message.o recovery.o $(MTRACE_OBJ)
PROFILED_OBJS= profiled/unix.o profiled/e2fsck.o profiled/super.o \
profiled/pass1.o profiled/pass1b.o \
profiled/pass2.o profiled/pass3.o profiled/pass4.o profiled/pass5.o \
profiled/journal.o profiled/badblocks.o profiled/util.o \
profiled/dirinfo.o profiled/ehandler.o profiled/message.o \
profiled/problem.o profiled/swapfs.o
profiled/problem.o profiled/swapfs.o profiled/recovery.o
SRCS= $(srcdir)/e2fsck.c \
$(srcdir)/super.c \
@ -74,6 +74,7 @@ SRCS= $(srcdir)/e2fsck.c \
$(srcdir)/pass4.c \
$(srcdir)/pass5.c \
$(srcdir)/journal.c \
$(srcdir)/recovery.c \
$(srcdir)/badblocks.c \
$(srcdir)/util.c \
$(srcdir)/unix.c \
@ -157,15 +158,15 @@ distclean: clean
# Makefile dependencies follow. This must be the last section in
# the Makefile.in file
#
e2fsck.o: $(srcdir)/e2fsck.c $(srcdir)/e2fsck.h \
e2fsck.o: $(srcdir)/e2fsck.c $(srcdir)/e2fsck.h $(srcdir)/jfs_compat.h \
$(top_srcdir)/lib/ext2fs/ext2fs.h $(top_srcdir)/lib/et/com_err.h \
$(top_srcdir)/lib/ext2fs/ext2_io.h $(top_builddir)/lib/ext2fs/ext2_err.h \
$(top_srcdir)/lib/ext2fs/bitops.h $(srcdir)/problem.h
$(top_srcdir)/lib/ext2fs/bitops.h $(srcdir)/problem.h $(srcdir)/jfs.h
super.o: $(srcdir)/super.c $(top_srcdir)/lib/uuid/uuid.h $(srcdir)/e2fsck.h \
$(top_srcdir)/lib/ext2fs/ext2fs.h $(top_srcdir)/lib/et/com_err.h \
$(top_srcdir)/lib/ext2fs/ext2_io.h $(top_builddir)/lib/ext2fs/ext2_err.h \
$(top_srcdir)/lib/ext2fs/bitops.h $(srcdir)/problem.h
pass1.o: $(srcdir)/pass1.c $(srcdir)/e2fsck.h \
pass1.o: $(srcdir)/pass1.c $(srcdir)/e2fsck.h $(srcdir)/jfs_compat.h \
$(top_srcdir)/lib/ext2fs/ext2fs.h $(top_srcdir)/lib/et/com_err.h \
$(top_srcdir)/lib/ext2fs/ext2_io.h $(top_builddir)/lib/ext2fs/ext2_err.h \
$(top_srcdir)/lib/ext2fs/bitops.h $(srcdir)/problem.h
@ -189,6 +190,12 @@ pass5.o: $(srcdir)/pass5.c $(srcdir)/e2fsck.h \
$(top_srcdir)/lib/ext2fs/ext2fs.h $(top_srcdir)/lib/et/com_err.h \
$(top_srcdir)/lib/ext2fs/ext2_io.h $(top_builddir)/lib/ext2fs/ext2_err.h \
$(top_srcdir)/lib/ext2fs/bitops.h $(srcdir)/problem.h
journal.o: $(srcdir)/journal.c $(srcdir)/jfs_compat.h $(srcdir)/e2fsck.h \
$(top_srcdir)/lib/ext2fs/ext2fs.h $(top_srcdir)/lib/et/com_err.h \
$(top_srcdir)/lib/ext2fs/ext2_io.h $(top_builddir)/lib/ext2fs/ext2_err.h \
$(srcdir)/jfs.h
recovery.o: $(srcdir)/recovery.c $(srcdir)/jfs_compat.h $(srcdir)/e2fsck.h \
$(srcdir)/jfs.h
badblocks.o: $(srcdir)/badblocks.c $(top_srcdir)/lib/et/com_err.h \
$(srcdir)/e2fsck.h $(top_srcdir)/lib/ext2fs/ext2fs.h \
$(top_srcdir)/lib/ext2fs/ext2_io.h $(top_builddir)/lib/ext2fs/ext2_err.h \

View File

@ -29,7 +29,9 @@ e2fsck \- check a Linux second extended file system
.I device
.SH DESCRIPTION
.B e2fsck
is used to check a Linux second extended file system.
is used to check a Linux second extended file system (e2fs). E2fsck also
supports ext2 filesystems countaining a journal, which are
also sometimes known as ext3 filesystems.
.TP
.I device
is the special file corresponding to the device (e.g

View File

@ -283,7 +283,8 @@ extern const char *ehandler_operation(const char *op);
extern void ehandler_init(io_channel channel);
/* journal.c */
extern int e2fsck_run_ext3_journal(const char *device);
extern int e2fsck_check_ext3_journal(e2fsck_t ctx);
extern int e2fsck_run_ext3_journal(e2fsck_t ctx);
/* pass1.c */
extern void e2fsck_use_inode_shortcuts(e2fsck_t ctx, int bool);

531
e2fsck/jfs.h Normal file
View File

@ -0,0 +1,531 @@
/*
* linux/include/linux/jfs.h
*
* Written by Stephen C. Tweedie <sct@redhat.com>, 1998
*
* Copyright 1998 Red Hat corp --- All Rights Reserved
*
* This file is part of the Linux kernel and is made available under
* the terms of the GNU General Public License, version 2, or at your
* option, any later version, incorporated herein by reference.
*
* Definitions for transaction data structures for the buffer cache
* filesystem journaling support.
*/
#ifndef _LINUX_JFS_H
#define _LINUX_JFS_H
#ifndef __KERNEL__
#include "jfs_compat.h"
#endif
/*
* Debug code
*/
/* #define JFS_DEBUG */
#ifdef JFS_DEBUG
extern int jfs_enable_debug;
#define jfs_debug(n, f, a...) \
do { \
if ((n) <= jfs_enable_debug) { \
printk (KERN_DEBUG "JFS DEBUG: (%s, %d): %s: ", \
__FILE__, __LINE__, __FUNCTION__); \
printk (f, ## a); \
} \
} while (0)
#else
#define jfs_debug(f, a...) /**/
#endif
#define JFS_MIN_JOURNAL_BLOCKS 1024
/*
* Internal structures used by the logging mechanism:
*/
#define JFS_MAGIC_NUMBER 0xc03b3998U /* The first 4 bytes of /dev/random! */
/*
* On-disk structures
*/
/*
* Descriptor block types:
*/
#define JFS_DESCRIPTOR_BLOCK 1
#define JFS_COMMIT_BLOCK 2
#define JFS_SUPERBLOCK 3
/*
* Standard header for all descriptor blocks:
*/
typedef struct journal_header_s
{
__u32 h_magic;
__u32 h_blocktype;
__u32 h_sequence;
} journal_header_t;
/*
* The block tag: used to describe a single buffer in the journal
*/
typedef struct journal_block_tag_s
{
__u32 t_blocknr; /* The on-disk block number */
__u32 t_flags; /* See below */
} journal_block_tag_t;
/* Definitions for the journal tag flags word: */
#define JFS_FLAG_ESCAPE 1 /* on-disk block is escaped */
#define JFS_FLAG_SAME_UUID 2 /* block has same uuid as previous */
#define JFS_FLAG_DELETED 4 /* block deleted by this transaction */
#define JFS_FLAG_LAST_TAG 8 /* last tag in this descriptor block */
/*
* The journal superblock
*/
typedef struct journal_superblock_s
{
journal_header_t s_header;
/* Static information describing the journal */
__u32 s_blocksize; /* journal device blocksize */
__u32 s_maxlen; /* total blocks in journal file */
__u32 s_first; /* first block of log information */
/* Dynamic information describing the current state of the log */
__u32 s_sequence; /* first commit ID expected in log */
__u32 s_start; /* blocknr of start of log */
} journal_superblock_t;
#ifdef __KERNEL__
#include <asm/semaphone.h>
#include <linux/fs.h>
#define J_ASSERT(assert) \
do { if (!(assert)) { \
printk (KERN_CRIT \
"Assertion failure in %s() at %s line %d: " \
"\"%s\"\n", \
__FUNCTION__, __FILE__, __LINE__, # assert); \
* ((char *) 0) = 0; \
} } while (0)
/* The handle_t type represents a single atomic update being performed
* by some process. All filesystem modifications made by the process go
* through this handle. Recursive operations (such as quota operations)
* are gathered into a single update.
*
* The buffer credits field is used to account for journaled buffers
* being modified by the running process. To ensure that there is
* enough log space for all outstanding operations, we need to limit the
* number of outstanding buffers possible at any time. When the
* operation completes, any buffer credits not used are credited back to
* the transaction, so that at all times we know how many buffers the
* outstanding updates on a transaction might possibly touch. */
struct handle_s
{
/* Which compound transaction is this update a part of? */
transaction_t * h_transaction;
/* Number of remaining buffers we are allowed to dirty: */
int h_buffer_credits;
/* Reference count on this handle */
int h_ref;
/* Flags */
unsigned int h_sync : 1; /* sync-on-close */
};
/* The transaction_t type is the guts of the journaling mechanism. It
* tracks a compound transaction through its various states:
*
* RUNNING: accepting new updates
* LOCKED: Updates still running but we don't accept new ones
* RUNDOWN: Updates are tidying up but have finished requesting
* new buffers to modify (state not used for now)
* FLUSH: All updates complete, but we are still writing to disk
* COMMIT: All data on disk, writing commit record
* FINISHED: We still have to keep the transaction for checkpointing.
*
* The transaction keeps track of all of the buffers modified by a
* running transaction, and all of the buffers committed but not yet
* flushed to home for finished transactions.
*/
struct transaction_s
{
/* Pointer to the journal for this transaction. */
journal_t * t_journal;
/* Sequence number for this transaction */
tid_t t_tid;
/* Transaction's current state */
enum {
T_RUNNING,
T_LOCKED,
T_RUNDOWN,
T_FLUSH,
T_COMMIT,
T_FINISHED
} t_state;
/* Where in the log does this transaction's commit start? */
unsigned long t_log_start;
/* Doubly-linked circular list of all inodes owned by this
transaction */
struct inode * t_ilist;
/* Number of buffers on the t_buffers list */
int t_nr_buffers;
/* Doubly-linked circular list of all buffers reserved but not
yet modified by this transaction */
struct buffer_head * t_reserved_list;
/* Doubly-linked circular list of all metadata buffers owned by this
transaction */
struct buffer_head * t_buffers;
/* Doubly-linked circular list of all data buffers still to be
flushed before this transaction can be committed */
struct buffer_head * t_datalist;
/* Doubly-linked circular list of all forget buffers (superceded
buffers which we can un-checkpoint once this transaction
commits) */
struct buffer_head * t_forget;
/* Doubly-linked circular list of all buffers still to be
flushed before this transaction can be checkpointed */
struct buffer_head * t_checkpoint_list;
/* Doubly-linked circular list of temporary buffers currently
undergoing IO in the log */
struct buffer_head * t_iobuf_list;
/* Doubly-linked circular list of metadata buffers being
shadowed by log IO. The IO buffers on the iobuf list and the
shadow buffers on this list match each other one for one at
all times. */
struct buffer_head * t_shadow_list;
/* Doubly-linked circular list of control buffers being written
to the log. */
struct buffer_head * t_log_list;
/* Number of outstanding updates running on this transaction */
int t_updates;
/* Number of buffers reserved for use by all handles in this
* transaction handle but not yet modified. */
int t_outstanding_credits;
/* Wait queue to wait for updates to complete */
struct wait_queue * t_wait;
/* Forward and backward links for the circular list of all
* transactions awaiting checkpoint */
transaction_t *t_cpnext, *t_cpprev;
/* When will the transaction expire (become due for commit), in
* jiffies ? */
unsigned long t_expires;
};
#endif /* __KERNEL__ */
/* The journal_t maintains all of the journaling state information for a
* single filesystem. It is linked to from the fs superblock structure.
*
* We use the journal_t to keep track of all outstanding transaction
* activity on the filesystem, and to manage the state of the log
* writing process. */
struct journal_s
{
/* General journaling state flags */
unsigned long j_flags;
/* The superblock buffer */
struct buffer_head * j_sb_buffer;
journal_superblock_t * j_superblock;
#ifdef __KERNEL__
/* Transactions: The current running transaction... */
transaction_t * j_running_transaction;
/* ... the transaction we are pushing to disk ... */
transaction_t * j_committing_transaction;
/* ... and a linked circular list of all transactions waiting
* for checkpointing. */
transaction_t * j_checkpoint_transactions;
/* Wait queue for locking of the journal structure. */
struct wait_queue * j_wait_lock;
/* Wait queue for waiting for a locked transaction to start
committing */
struct wait_queue * j_wait_transaction_locked;
/* Wait queue for waiting for checkpointing to complete */
struct wait_queue * j_wait_logspace;
/* Wait queue for waiting for commit to complete */
struct wait_queue * j_wait_done_commit;
/* Wait queue to trigger checkpointing */
struct wait_queue * j_wait_checkpoint;
/* Wait queue to trigger commit */
struct wait_queue * j_wait_commit;
/* Semaphore for locking against concurrent checkpoints */
struct semaphore j_checkpoint_sem;
/* Journal running state: */
/* The lock flag is *NEVER* touched from interrupts. */
unsigned int j_locked : 1;
/* Pointer to the current commit thread for this journal */
struct task_struct * j_task;
/* The timer used to wakeup the commit thread: */
struct timer_list * j_commit_timer;
int j_commit_timer_active;
#endif
/* Journal head: identifies the first unused block in the journal. */
unsigned long j_head;
/* Journal tail: identifies the oldest still-used block in the
* journal. */
unsigned long j_tail;
/* Journal free: how many free blocks are there in the journal? */
unsigned long j_free;
/* Journal start and end: the block numbers of the first usable
* block and one beyond the last usable block in the journal. */
unsigned long j_first, j_last;
/* Device, blocksize and starting block offset for the location
* where we store the journal. */
kdev_t j_dev;
int j_blocksize;
unsigned int j_blk_offset;
/* Total maximum capacity of the journal region on disk. */
unsigned int j_maxlen;
/* Optional inode where we store the journal. If present, all
* journal block numbers are mapped into this inode via
* bmap(). */
struct inode * j_inode;
/* Sequence number of the oldest transaction in the log */
tid_t j_tail_sequence;
/* Sequence number of the next transaction to grant */
tid_t j_transaction_sequence;
/* Sequence number of the most recently committed transaction */
tid_t j_commit_sequence;
/* Sequence number of the most recent transaction wanting commit */
tid_t j_commit_request;
/* Journal uuid: identifies the object (filesystem, LVM volume
* etc) backed by this journal. This will eventually be
* replaced by an array of uuids, allowing us to index multiple
* devices within a single journal and to perform atomic updates
* across them. */
__u8 j_uuid[16];
/* Maximum number of metadata buffers to allow in a single
* compound commit transaction */
int j_max_transaction_buffers;
/* What is the maximum transaction lifetime before we begin a
* commit? */
unsigned long j_commit_interval;
};
#ifdef __KERNEL__
/*
* Journal flag definitions
*/
#define JFS_UNMOUNT 1 /* Journal thread is being destroyed */
#define JFS_SYNC 2 /* Perform synchronous transaction commits */
/*
* Journaling internal variables/parameters
*/
extern int journal_flush_nr_buffers;
/*
* Function declarations for the journaling transaction and buffer
* management
*/
/* Filing buffers */
extern void journal_unfile_buffer(struct buffer_head *);
extern void journal_refile_buffer(struct buffer_head *);
extern void journal_file_buffer(struct buffer_head *, transaction_t *, int);
extern void journal_clean_data_list(transaction_t *transaction);
/* Log buffer allocation */
extern struct buffer_head * journal_get_descriptor_buffer(journal_t *);
extern unsigned long journal_next_log_block(journal_t *);
/* Commit management */
extern void journal_commit_transaction(journal_t *);
/* Checkpoint list management */
extern void journal_remove_checkpoint(struct buffer_head *);
extern void journal_insert_checkpoint(struct buffer_head *, transaction_t *);
/* Buffer IO */
extern int
journal_write_metadata_buffer(transaction_t *transaction,
struct buffer_head *bh_in,
struct buffer_head **bh_out,
int blocknr);
/* Create and destroy transactions */
extern transaction_t * get_transaction (journal_t *);
extern void put_transaction (transaction_t *);
/* Notify state transitions (called by the log writer thread): */
extern int set_transaction_state (transaction_t *, int);
/*
* Transaction locking
*
* We need to lock the journal during transaction state changes so that
* nobody ever tries to take a handle on the running transaction while
* we are in the middle of moving it to the commit phase.
*
* Note that the locking is completely interrupt unsafe. We never touch
* journal structures from interrupts.
*/
static inline void __wait_on_journal (journal_t * journal)
{
while (journal->j_locked)
sleep_on (&journal->j_wait_lock);
}
/* Journal locking. In 2.2, we assume that the kernel lock is already
* held. */
static inline void lock_journal (journal_t * journal)
{
if (journal->j_locked)
__wait_on_journal(journal);
journal->j_locked = 1;
}
static inline int try_lock_journal (journal_t * journal)
{
if (journal->j_locked)
return 1;
journal->j_locked = 1;
return 0;
}
static inline void unlock_journal (journal_t * journal)
{
J_ASSERT (journal->j_locked);
journal->j_locked = 0;
wake_up(&journal->j_wait_lock);
}
/* This function is gross, but unfortunately we need it as long as
* existing filesystems want to guard against races by testing
* bh->b_count. @@@ Remove this? We no longer abuse b_count so badly!
*/
static inline int journal_is_buffer_shared(struct buffer_head *bh)
{
int count = bh->b_count;
J_ASSERT (count >= 1);
return (count > 1);
}
/* Debugging code only: */
#define jfs_ENOSYS() \
do { \
printk (KERN_ERR "JFS unimplemented function " __FUNCTION__); \
current->state = TASK_UNINTERRUPTIBLE; \
schedule(); \
} while (1)
/* The log thread user interface:
*
* Request space in the current transaction, and force transaction commit
* transitions on demand.
*/
extern int log_space_left (journal_t *); /* Called with journal locked */
extern void log_start_commit (journal_t *, transaction_t *);
extern void log_wait_commit (journal_t *, tid_t);
extern int log_do_checkpoint (journal_t *, int);
extern void log_wait_for_space(journal_t *, int nblocks);
extern void journal_drop_transaction(journal_t *, transaction_t *);
/* The journaling code user interface:
*
* Create and destroy handles
* Register buffer modifications against the current transaction.
*/
extern handle_t *journal_start (journal_t *, int nblocks);
extern int journal_restart (handle_t *, int nblocks);
extern int journal_extend (handle_t *, int nblocks);
extern int journal_get_write_access (handle_t *, struct buffer_head *);
extern int journal_get_create_access (handle_t *, struct buffer_head *);
extern int journal_get_undo_access (handle_t *, struct buffer_head *);
extern int journal_dirty_data (handle_t *, struct buffer_head *);
extern int journal_dirty_metadata (handle_t *, struct buffer_head *);
extern void journal_release_buffer (handle_t *, struct buffer_head *);
extern void journal_forget (handle_t *, struct buffer_head *);
extern void journal_sync_buffer (struct buffer_head *);
extern int journal_stop (handle_t *);
extern int journal_flush (journal_t *);
extern journal_t * journal_init_dev (kdev_t, int start, int len, int bsize);
extern journal_t * journal_init_inode (struct inode *);
extern int journal_create (journal_t *);
extern int journal_load (journal_t *);
extern void journal_release (journal_t *);
extern void journal_update_superblock (journal_t *, int);
#endif /* __KERNEL__ */
extern int journal_recover (journal_t *);
#endif /* _LINUX_JFS_H */

54
e2fsck/jfs_compat.h Normal file
View File

@ -0,0 +1,54 @@
#ifndef _JFS_COMPAT_H
#define _JFS_COMPAT_H
#include "e2fsck.h"
#include <errno.h>
#define printk printf
#define KERN_ERR ""
#define KERN_DEBUG ""
#define READ 0
#define WRITE 1
typedef int tid_t;
typedef e2fsck_t kdev_t;
typedef struct journal_s journal_t;
struct buffer_head {
char b_data[8192];
e2fsck_t b_ctx;
io_channel b_io;
int b_size;
blk_t b_blocknr;
int b_dirty;
int b_uptodate;
int b_err;
};
struct inode {
e2fsck_t i_ctx;
ino_t i_ino;
struct ext2_inode i_ext2;
};
int bmap(struct inode *inode, int block);
struct buffer_head *getblk(e2fsck_t ctx, blk_t blocknr, int blocksize);
void ll_rw_block(int rw, int dummy, struct buffer_head *bh);
void mark_buffer_dirty(struct buffer_head *bh, int dummy);
void brelse(struct buffer_head *bh);
int buffer_uptodate(struct buffer_head *bh);
void wait_on_buffer(struct buffer_head *bh);
#define fsync_dev(dev) do {} while(0)
#define buffer_req(bh) 1
#define do_readahead(journal, start) do {} while(0)
#define J_ASSERT(assert) \
do { if (!(assert)) { \
printf ("Assertion failure in %s() at %s line %d: " \
"\"%s\"\n", \
__FUNCTION__, __FILE__, __LINE__, # assert); \
exit(FSCK_ERROR); \
} } while (0)
#endif /* _JFS_COMPAT_H */

View File

@ -1,72 +1,646 @@
/*
* journal.c --- code for handling the "ext3" journal
*
* Copyright (C) 2000 Andreas Dilger
* Copyright (C) 2000 Theodore Ts'o
*
* Parts of the code are based on fs/jfs/journal.c by Stephen C. Tweedie
* Copyright (C) 1999 Red Hat Software
*
* This file may be redistributed under the terms of the
* GNU General Public License version 2 or at your discretion
* any later version.
*/
#include <errno.h>
#ifdef HAVE_SYS_MOUNT_H
#include <sys/mount.h>
#define MNT_FL (MS_MGC_VAL | MS_RDONLY)
#endif
#ifdef HAVE_SYS_STAT_H
#include <sys/stat.h>
#endif
#include "e2fsck.h"
#include "jfs.h"
#include "problem.h"
#include "uuid/uuid.h"
/*
* This is a list of directories to try. The first element may get
* replaced by a mktemp'ed generated temp directory if possible.
*/
static char *dirlist[] = { "/mnt", "/tmp", "/root", "/boot", 0 };
#ifdef JFS_DEBUG
static int bh_count = 0;
int jfs_enable_debug = 2;
#endif
int bmap(struct inode *inode, int block)
{
int retval;
blk_t phys;
retval = ext2fs_bmap(inode->i_ctx->fs, inode->i_ino, &inode->i_ext2,
NULL, 0, block, &phys);
if (retval)
com_err(inode->i_ctx->device_name, retval,
_("bmap journal inode %ld, block %d\n"),
inode->i_ino, block);
return phys;
}
struct buffer_head *getblk(e2fsck_t ctx, blk_t blocknr, int blocksize)
{
struct buffer_head *bh;
bh = e2fsck_allocate_memory(ctx, sizeof(*bh), "block buffer");
if (!bh)
return NULL;
jfs_debug(4, "getblk for block %lu (%d bytes)(total %d)\n",
blocknr, blocksize, ++bh_count);
bh->b_ctx = ctx;
bh->b_size = blocksize;
bh->b_blocknr = blocknr;
return bh;
}
void ll_rw_block(int rw, int dummy, struct buffer_head *bh)
{
int retval;
if (rw == READ && !bh->b_uptodate) {
jfs_debug(3, "reading block %lu/%p\n", bh->b_blocknr, bh);
retval = io_channel_read_blk(bh->b_ctx->fs->io, bh->b_blocknr,
1, bh->b_data);
if (retval) {
com_err(bh->b_ctx->device_name, retval,
"while reading block %ld\n", bh->b_blocknr);
bh->b_err = retval;
return;
}
bh->b_uptodate = 1;
} else if (rw == WRITE && bh->b_dirty) {
jfs_debug(3, "writing block %lu/%p\n", bh->b_blocknr, bh);
retval = io_channel_write_blk(bh->b_ctx->fs->io, bh->b_blocknr,
1, bh->b_data);
if (retval) {
com_err(bh->b_ctx->device_name, retval,
"while writing block %ld\n", bh->b_blocknr);
bh->b_err = retval;
return;
}
bh->b_dirty = 0;
bh->b_uptodate = 1;
} else
jfs_debug(3, "no-op %s for block %lu\n",
rw == READ ? "read" : "write", bh->b_blocknr);
}
void mark_buffer_dirty(struct buffer_head *bh, int dummy)
{
bh->b_dirty = dummy | 1; /* use dummy to avoid unused variable */
}
void brelse(struct buffer_head *bh)
{
if (bh->b_dirty)
ll_rw_block(WRITE, 1, bh);
jfs_debug(3, "freeing block %lu/%p (total %d)\n",
bh->b_blocknr, bh, --bh_count);
ext2fs_free_mem((void **) &bh);
}
int buffer_uptodate(struct buffer_head *bh)
{
return bh->b_uptodate;
}
void wait_on_buffer(struct buffer_head *bh)
{
if (!bh->b_uptodate)
ll_rw_block(READ, 1, bh);
}
static void e2fsck_clear_recover(e2fsck_t ctx, int error)
{
struct ext2fs_sb *s = (struct ext2fs_sb *)ctx->fs->super;
s->s_feature_incompat &= ~EXT3_FEATURE_INCOMPAT_RECOVER;
/* if we had an error doing journal recovery, we need a full fsck */
if (error)
s->s_state &= ~EXT2_VALID_FS;
ext2fs_mark_super_dirty(ctx->fs);
}
static int e2fsck_journal_init_inode(e2fsck_t ctx, struct ext2fs_sb *s,
ino_t journal_inum, journal_t **journal)
{
struct inode *inode;
const char *cmdname = ctx->program_name;
struct buffer_head *bh;
blk_t start;
int retval;
jfs_debug(1, "Using journal inode %lu\n", journal_inum);
*journal = e2fsck_allocate_memory(ctx, sizeof(journal_t), "journal");
if (!*journal) {
return EXT2_ET_NO_MEMORY;
}
inode = e2fsck_allocate_memory(ctx, sizeof(*inode), "journal inode");
if (!inode) {
retval = EXT2_ET_NO_MEMORY;
goto exit_journal;
}
inode->i_ctx = ctx;
inode->i_ino = journal_inum;
retval = ext2fs_read_inode(ctx->fs, journal_inum, &inode->i_ext2);
if (retval)
goto exit_inode;
(*journal)->j_dev = ctx;
(*journal)->j_inode = inode;
(*journal)->j_blocksize = ctx->fs->blocksize;
(*journal)->j_maxlen = inode->i_ext2.i_size / (*journal)->j_blocksize;
if (!inode->i_ext2.i_links_count ||
!LINUX_S_ISREG(inode->i_ext2.i_mode) ||
(*journal)->j_maxlen < JFS_MIN_JOURNAL_BLOCKS ||
(start = bmap(inode, 0)) == 0) {
retval = EXT2_ET_BAD_INODE_NUM;
goto exit_inode;
}
bh = getblk(ctx, start, (*journal)->j_blocksize);
if (!bh) {
retval = EXT2_ET_NO_MEMORY;
goto exit_inode;
}
(*journal)->j_sb_buffer = bh;
(*journal)->j_superblock = (journal_superblock_t *)bh->b_data;
return 0;
exit_inode:
ext2fs_free_mem((void **)&inode);
exit_journal:
ext2fs_free_mem((void **)journal);
return retval;
}
static int e2fsck_get_journal(e2fsck_t ctx, journal_t **journal)
{
char uuid_str[40];
struct problem_context pctx;
struct ext2fs_sb *s = (struct ext2fs_sb *)ctx->fs->super;
int recover = s->s_feature_incompat & EXT3_FEATURE_INCOMPAT_RECOVER;
clear_problem_context(&pctx);
if (s->s_feature_compat & EXT3_FEATURE_COMPAT_HAS_JOURNAL) {
if (s->s_journal_dev) {
pctx.num = s->s_journal_dev;
/* this problem aborts on -y, -p, unsupported on -n */
if (!fix_problem(ctx, PR_0_JOURNAL_UNSUPP_DEV, &pctx))
return EXT2_ET_UNSUPP_FEATURE;
s->s_journal_dev = 0;
s->s_state &= ~EXT2_VALID_FS;
ext2fs_mark_super_dirty(ctx->fs);
}
if (!uuid_is_null(s->s_journal_uuid)) {
uuid_unparse(s->s_journal_uuid, uuid_str);
pctx.str = uuid_str;
/* this problem aborts on -y, -p, unsupported on -n */
if (!fix_problem(ctx, PR_0_JOURNAL_UNSUPP_UUID, &pctx))
return EXT2_ET_UNSUPP_FEATURE;
uuid_clear(s->s_journal_uuid);
s->s_state &= ~EXT2_VALID_FS;
ext2fs_mark_super_dirty(ctx->fs);
}
if (!s->s_journal_inum)
return EXT2_ET_BAD_INODE_NUM;
}
if (s->s_journal_dev) {
pctx.num = s->s_journal_dev;
if (!fix_problem(ctx, PR_0_JOURNAL_BAD_DEV, &pctx))
return EXT2_ET_UNSUPP_FEATURE;
s->s_journal_dev = 0;
s->s_state &= ~EXT2_VALID_FS;
ext2fs_mark_super_dirty(ctx->fs);
}
if (!uuid_is_null(s->s_journal_uuid)) {
uuid_unparse(s->s_journal_uuid, uuid_str);
pctx.str = uuid_str;
if (!fix_problem(ctx, PR_0_JOURNAL_BAD_UUID, &pctx))
return EXT2_ET_UNSUPP_FEATURE;
uuid_clear(s->s_journal_uuid);
s->s_state &= ~EXT2_VALID_FS;
ext2fs_mark_super_dirty(ctx->fs);
}
return e2fsck_journal_init_inode(ctx, s, s->s_journal_inum, journal);
}
static int e2fsck_journal_fix_bad_inode(e2fsck_t ctx,
struct problem_context *pctx)
{
struct ext2fs_sb *s = (struct ext2fs_sb *)ctx->fs->super;
int recover = s->s_feature_incompat & EXT3_FEATURE_INCOMPAT_RECOVER;
int has_journal = s->s_feature_compat & EXT3_FEATURE_COMPAT_HAS_JOURNAL;
if (has_journal || s->s_journal_inum) {
/* The journal inode is bogus, remove and force full fsck */
if (fix_problem(ctx, PR_0_JOURNAL_BAD_INODE, pctx)) {
struct ext2fs_sb *s =(struct ext2fs_sb *)ctx->fs->super;
if (has_journal && s->s_journal_inum)
printf("*** ext3 journal has been deleted - "
"filesystem is now ext2 only ***\n\n");
s->s_feature_compat &= ~EXT3_FEATURE_COMPAT_HAS_JOURNAL;
s->s_journal_inum = 0;
e2fsck_clear_recover(ctx, 1);
return 0;
}
return EXT2_ET_BAD_INODE_NUM;
} else if (recover) {
if (fix_problem(ctx, PR_0_JOURNAL_RECOVER_SET, pctx)) {
e2fsck_clear_recover(ctx, 1);
return 0;
}
return EXT2_ET_UNSUPP_FEATURE;
}
return 0;
}
static int e2fsck_journal_fix_unsupported_super(e2fsck_t ctx,
struct problem_context *pctx)
{
struct ext2fs_sb *s = (struct ext2fs_sb *)ctx->fs->super;
/* Unsupported journal superblock - first choice is abort.
* Declining that gives the option to reset the superblock.
*
* Otherwise we get the chance to delete the journal, and
* failing that we abort because we can't handle this.
*/
if (s->s_feature_compat & EXT3_FEATURE_COMPAT_HAS_JOURNAL &&
fix_problem(ctx, PR_0_JOURNAL_UNSUPP_SUPER, pctx))
return EXT2_ET_CORRUPT_SUPERBLOCK;
if (e2fsck_journal_fix_bad_inode(ctx, pctx))
return EXT2_ET_UNSUPP_FEATURE;
return 0;
}
static int e2fsck_journal_load(journal_t *journal)
{
e2fsck_t ctx = journal->j_dev;
journal_superblock_t *jsb;
struct buffer_head *jbh = journal->j_sb_buffer;
struct problem_context pctx;
clear_problem_context(&pctx);
ll_rw_block(READ, 1, jbh);
if (jbh->b_err) {
com_err(ctx->device_name, jbh->b_err,
_("reading journal superblock\n"));
return jbh->b_err;
}
jsb = journal->j_superblock;
/* If we don't even have JFS_MAGIC, we probably have a wrong inode */
if (jsb->s_header.h_magic != htonl(JFS_MAGIC_NUMBER))
return e2fsck_journal_fix_bad_inode(ctx, &pctx);
if (jsb->s_header.h_blocktype != htonl(JFS_SUPERBLOCK) ||
jsb->s_blocksize != htonl(journal->j_blocksize)) {
com_err(ctx->device_name, EXT2_ET_CORRUPT_SUPERBLOCK,
_("%s: no valid journal superblock found\n"));
return EXT2_ET_CORRUPT_SUPERBLOCK;
}
if (jsb->s_header.h_blocktype != htonl(JFS_SUPERBLOCK)) {
pctx.num = ntohl(jsb->s_header.h_blocktype);
return e2fsck_journal_fix_unsupported_super(ctx, &pctx);
}
if (ntohl(jsb->s_maxlen) < journal->j_maxlen)
journal->j_maxlen = ntohl(jsb->s_maxlen);
else if (ntohl(jsb->s_maxlen) > journal->j_maxlen) {
com_err(ctx->device_name, EXT2_ET_CORRUPT_SUPERBLOCK,
_("%s: journal too short\n"));
return EXT2_ET_CORRUPT_SUPERBLOCK;
}
journal->j_tail_sequence = ntohl(jsb->s_sequence);
journal->j_tail = ntohl(jsb->s_start);
journal->j_first = ntohl(jsb->s_first);
journal->j_last = ntohl(jsb->s_maxlen);
return 0;
}
void e2fsck_journal_reset_super(e2fsck_t ctx, journal_superblock_t *jsb,
blk_t size)
{
jsb->s_header.h_magic = htonl(JFS_MAGIC_NUMBER);
jsb->s_header.h_blocktype = htonl(JFS_SUPERBLOCK);
jsb->s_blocksize = htonl(ctx->fs->blocksize);
jsb->s_maxlen = htonl(size);
jsb->s_first = 1;
jsb->s_sequence = htonl(1);
}
static int e2fsck_journal_fix_corrupt_super(e2fsck_t ctx, journal_t *journal,
struct problem_context *pctx)
{
struct ext2fs_sb *s = (struct ext2fs_sb *)ctx->fs->super;
int recover = s->s_feature_incompat & EXT3_FEATURE_INCOMPAT_RECOVER;
pctx->num = journal->j_inode->i_ino;
if (s->s_feature_compat & EXT3_FEATURE_COMPAT_HAS_JOURNAL) {
if (fix_problem(ctx, PR_0_JOURNAL_BAD_SUPER, pctx)) {
journal_superblock_t *jsb = journal->j_superblock;
e2fsck_journal_reset_super(ctx, jsb, journal->j_maxlen);
journal->j_transaction_sequence = 1;
e2fsck_clear_recover(ctx, recover);
return 0;
}
return EXT2_ET_CORRUPT_SUPERBLOCK;
} else if (e2fsck_journal_fix_bad_inode(ctx, pctx))
return EXT2_ET_CORRUPT_SUPERBLOCK;
return 0;
}
static void e2fsck_journal_release(e2fsck_t ctx, journal_t *journal, int reset)
{
journal_superblock_t *jsb;
if (!(ctx->options & E2F_OPT_READONLY)) {
jsb = journal->j_superblock;
jsb->s_sequence = htonl(journal->j_transaction_sequence);
if (reset)
jsb->s_start = 0; /* this marks the journal as empty */
mark_buffer_dirty(journal->j_sb_buffer, 1);
}
brelse(journal->j_sb_buffer);
if (journal->j_inode)
free(journal->j_inode);
ext2fs_free_mem((void **)&journal);
}
int e2fsck_check_ext3_journal(e2fsck_t ctx)
{
struct ext2fs_sb *s = (struct ext2fs_sb *)ctx->fs->super;
journal_t *journal;
int recover = s->s_feature_incompat & EXT3_FEATURE_INCOMPAT_RECOVER;
struct problem_context pctx;
int reset = 0;
int retval;
/* If we don't have any journal features, don't do anything more */
if (!(s->s_feature_compat & EXT3_FEATURE_COMPAT_HAS_JOURNAL) &&
!recover && s->s_journal_inum == 0 && s->s_journal_dev == 0 &&
uuid_is_null(s->s_journal_uuid))
return 0;
clear_problem_context(&pctx);
pctx.num = s->s_journal_inum;
retval = e2fsck_get_journal(ctx, &journal);
if (retval) {
if (retval == EXT2_ET_BAD_INODE_NUM)
return e2fsck_journal_fix_bad_inode(ctx, &pctx);
return retval;
}
retval = e2fsck_journal_load(journal);
if (retval) {
if (retval == EXT2_ET_CORRUPT_SUPERBLOCK)
return e2fsck_journal_fix_corrupt_super(ctx, journal,
&pctx);
return retval;
}
/*
* We want to make the flags consistent here. We will not leave with
* needs_recovery set but has_journal clear. We can't get in a loop
* with -y, -n, or -p, only if a user isn't making up their mind.
*/
no_has_journal:
if (!(s->s_feature_compat & EXT3_FEATURE_COMPAT_HAS_JOURNAL)) {
recover = s->s_feature_incompat & EXT3_FEATURE_INCOMPAT_RECOVER;
pctx.str = "inode";
if (fix_problem(ctx, PR_0_JOURNAL_HAS_JOURNAL, &pctx)) {
if (recover &&
!fix_problem(ctx, PR_0_JOURNAL_RECOVER_SET, &pctx))
goto no_has_journal;
s->s_journal_inum = 0;
e2fsck_clear_recover(ctx, recover);
} else if (!(ctx->options & E2F_OPT_READONLY)) {
s->s_feature_compat |= EXT3_FEATURE_COMPAT_HAS_JOURNAL;
ext2fs_mark_super_dirty(ctx->fs);
}
}
if (s->s_feature_compat & EXT3_FEATURE_COMPAT_HAS_JOURNAL &&
!(s->s_feature_incompat & EXT3_FEATURE_INCOMPAT_RECOVER) &&
journal->j_superblock->s_start != 0) {
if (fix_problem(ctx, PR_0_JOURNAL_RESET_JOURNAL, &pctx))
reset = 1;
/* I refuse to enable recovery for journal */
}
e2fsck_journal_release(ctx, journal, reset);
return retval;
}
static int e2fsck_recover_ext3_journal(e2fsck_t ctx)
{
ext2_filsys fs = ctx->fs;
io_manager io_ptr = fs->io->manager;
int blocksize = fs->blocksize;
journal_t *journal;
int retval;
retval = e2fsck_get_journal(ctx, &journal);
if (retval)
goto exit;
retval = e2fsck_journal_load(journal);
if (retval)
goto exit;
retval = -journal_recover(journal);
e2fsck_journal_release(ctx, journal, 1);
if (retval)
goto exit;
/* Reload the filesystem context to get up-to-date data from disk
* because journal recovery will change the filesystem under us.
*/
ext2fs_close(fs);
retval = ext2fs_open(ctx->device_name, EXT2_FLAG_RW,
ctx->superblock, blocksize, io_ptr, &fs);
if (retval) {
com_err(ctx->program_name, retval,
_("while trying to re-open %s"),
ctx->device_name);
exit(FSCK_ERROR);
}
ctx->fs = fs;
fs->priv_data = ctx;
/* FIXME - In the future we will clean up the ophans here.
* For now, we need to force a full fsck to clean them up.
* We shouldn't have this problem in normal circumstances
* as the kernel recovery code should save us.
*/
if (fs->super->s_last_orphan)
fs->super->s_state &= ~EXT2_VALID_FS;
else
jfs_debug(1, "no orphan inodes to clean up\n");
exit:
e2fsck_clear_recover(ctx, retval);
ext2fs_close(ctx->fs);
return retval;
}
#define TEMPLATE "/tmp/ext3.XXXXXX"
/*
* This function attempts to mount and unmount an ext3 filesystem,
* which is a cheap way to force the kernel to run the journal and
* handle the recovery for us.
* handle the recovery for us. If that fails, we need to recover
* the journal ourselves manually.
*/
int e2fsck_run_ext3_journal(const char *device)
int e2fsck_run_ext3_journal(e2fsck_t ctx)
{
int ret = 0;
char **cpp, *dir;
char template[] = "/tmp/ext3.XXXXXX";
#ifdef __linux__
ext2_filsys fs = ctx->fs;
char *dirlist[] = {"/mnt","/lost+found","/tmp","/root","/boot",0};
int retval = 0;
int count = 0;
char template[] = TEMPLATE;
struct stat buf;
char *tmpdir;
if (ctx->options & E2F_OPT_READONLY) {
printf("%s: won't do journal recovery while read-only\n",
ctx->device_name);
return EXT2_ET_FILE_RO;
}
/* For now, non-root users and loop devices can't use kernel recovery */
if (geteuid()||stat(ctx->device_name, &buf)||!S_ISBLK(buf.st_mode))
goto manual_recover;
printf(_("%s: trying for ext3 kernel journal recovery\n"),
ctx->device_name);
/*
* First try to make a temporary directory. This may fail if
* the root partition is still mounted read-only.
*/
newtemp:
tmpdir = mktemp(template);
if (tmpdir) {
ret = mkdir(template, 0700);
if (ret)
tmpdir = 0;
}
if (tmpdir) {
ret = mount(device, tmpdir, "ext3", 0xC0ED, NULL);
if (ret) {
ret = errno;
rmdir(tmpdir);
return (ret);
jfs_debug(2, "trying %s as ext3 temp mount point\n", tmpdir);
retval = mkdir(template, 0700);
if (retval) {
if (errno == EROFS) {
tmpdir = NULL;
template[0] = '\0';
} else if (errno == EEXIST && count++ < 10) {
strcpy(template, TEMPLATE);
goto newtemp;
} else
goto manual_recover;
}
} else {
}
/*
* OK, creating a temporary directory didn't work.
* Let's try a list of possible temporary mountpoints.
*/
if (!tmpdir) {
dev_t rootdev;
char **cpp, *dir;
if (stat("/", &buf))
goto manual_recover;
rootdev = buf.st_dev;
/*
* OK, creating a temporary directory didn't work.
* Let's try a list of possible temporary mountpoints.
* Check that dir is on the same device as root (no other
* filesystem is mounted there), and it's a directory.
*/
for (cpp = dirlist; dir = *cpp; cpp++) {
ret = mount(device, dir, "ext3", 0xC0ED, NULL);
if (ret == 0)
for (cpp = dirlist; (dir = *cpp); cpp++)
if (stat(dir, &buf) == 0 && buf.st_dev == rootdev &&
S_ISDIR(buf.st_mode)) {
tmpdir = dir;
break;
}
if (!dir)
return errno;
}
}
/*
* Now that it mounted cleanly, the filesystem will have been
* recovered, so we can now unmount it.
*/
ret = umount(device);
if (ret)
return errno;
/*
* Remove the temporary directory, if it was created.
*/
if (tmpdir)
rmdir(tmpdir);
return 0;
}
if (tmpdir) {
io_manager io_ptr = fs->io->manager;
int blocksize = fs->blocksize;
jfs_debug(2, "using %s for ext3 mount\n", tmpdir);
ext2fs_close(fs);
/* FIXME - need to handle loop devices here */
retval = mount(ctx->device_name, tmpdir, "ext3", MNT_FL, NULL);
if (retval) {
com_err(ctx->program_name, errno,
"when mounting %s", ctx->device_name);
if (template[0])
rmdir(tmpdir);
retval = ext2fs_open(ctx->device_name, EXT2_FLAG_RW,
ctx->superblock, blocksize, io_ptr,
&fs);
if (retval) {
com_err(ctx->program_name, retval,
_("while trying to re-open %s"),
ctx->device_name);
exit(FSCK_ERROR);
}
fs->priv_data = ctx;
ctx->fs = fs;
goto manual_recover;
}
/*
* Now that it mounted cleanly, the filesystem will have been
* recovered, so we can now unmount it.
*/
retval = umount(tmpdir);
if (retval)
return errno;
/*
* Remove the temporary directory, if it was created.
*/
if (template[0])
rmdir(tmpdir);
return 0;
}
manual_recover:
#endif /* __linux__ */
return e2fsck_recover_ext3_journal(ctx);
}

View File

@ -44,6 +44,7 @@
* the containing directory.
* %s <str> miscellaneous string
* %S backup superblock
* %X <num> hexadecimal format
*
* The following '@' expansions are supported:
*
@ -378,6 +379,13 @@ static _INLINE_ void expand_percent_expression(ext2_filsys fs, char ch,
case 's':
printf("%s", ctx->str);
break;
case 'X':
#ifdef EXT2_NO_64_TYPE
printf("0x%x", ctx->num);
#else
printf("0x%llx", ctx->num);
#endif
break;
default:
no_context:
printf("%%%c", ch);

View File

@ -172,7 +172,62 @@ static const struct e2fsck_problem problem_table[] = {
{ PR_0_HURD_CLEAR_FILETYPE,
N_("The Hurd does not support the filetype feature.\n"),
PROMPT_CLEAR, 0 },
PROMPT_CLEAR, 0 },
/* Journal inode is invalid */
{ PR_0_JOURNAL_BAD_INODE,
N_("@S has a bad ext3 journal (@i %N).\n"),
PROMPT_CLEAR, PR_PREEN_OK },
/* Superblock has a journal device (which we can't handle yet) */
{ PR_0_JOURNAL_UNSUPP_DEV,
N_("@S has external ext3 journal device (unsupported).\n"),
PROMPT_ABORT, PR_NO_OK | PR_AFTER_CODE, PR_0_JOURNAL_BAD_DEV },
/* Superblock has a bad journal device */
{ PR_0_JOURNAL_BAD_DEV,
N_("@S has a bad ext3 journal (device %X).\n"),
PROMPT_CLEAR, PR_PREEN_OK },
/* Superblock has a journal UUID (which we can't handle yet) */
{ PR_0_JOURNAL_UNSUPP_UUID,
N_("@S has an ext3 journal UUID (unsupported).\n"),
PROMPT_ABORT, PR_NO_OK | PR_AFTER_CODE, PR_0_JOURNAL_BAD_UUID },
/* Superblock has a bad journal UUID */
{ PR_0_JOURNAL_BAD_UUID,
N_("@S has a bad ext3 journal (UUID %s).\n"),
PROMPT_CLEAR, PR_PREEN_OK },
/* Journal has an unknown superblock type */
{ PR_0_JOURNAL_UNSUPP_SUPER,
N_("Ext3 journal @S is unknown type %N (unsupported).\n"),
PROMPT_ABORT, PR_NO_OK | PR_AFTER_CODE, PR_0_JOURNAL_BAD_SUPER },
/* Journal superblock is corrupt */
{ PR_0_JOURNAL_BAD_SUPER,
N_("Ext3 journal @S is corrupt.\n"),
PROMPT_FIX, PR_PREEN_OK },
/* Superblock flag should be cleared */
{ PR_0_JOURNAL_HAS_JOURNAL,
N_("@S doesn't have has_journal flag, but has ext3 journal %s.\n"),
PROMPT_DELETE, PR_PREEN_OK },
/* Superblock flag is incorrect */
{ PR_0_JOURNAL_RECOVER_SET,
N_("@S has ext3 needs_recovery flag set, but no journal.\n"),
PROMPT_CLEAR, PR_PREEN_OK },
/* Journal should be reset */
{ PR_0_JOURNAL_RESET_JOURNAL,
N_("*** WARNING *** leaving data in the journal may be DANGEROUS.\n"),
PROMPT_NONE, PR_PREEN_NOMSG|PR_AFTER_CODE, PR_0_JOURNAL_RESET_PROMPT},
/* Journal should be reset */
{ PR_0_JOURNAL_RESET_PROMPT,
N_("ext3 recovery flag clear, but journal has data.\n"),
PROMPT_CLEAR, PR_PREEN_OK|PR_PREEN_NOMSG },
/* Pass 1 errors */
@ -1168,11 +1223,11 @@ int fix_problem(e2fsck_t ctx, problem_t code, struct problem_context *pctx)
}
if (ptr->flags & PR_AFTER_CODE)
(void) fix_problem(ctx, ptr->second_code, pctx);
if ((ptr->prompt == PROMPT_ABORT) && answer)
fatal_error(ctx, 0);
if (ptr->flags & PR_AFTER_CODE)
answer = fix_problem(ctx, ptr->second_code, pctx);
return answer;
}

View File

@ -93,7 +93,40 @@ struct problem_context {
/* The Hurd does not support the filetype feature */
#define PR_0_HURD_CLEAR_FILETYPE 0x00000E
/* Journal inode is invalid */
#define PR_0_JOURNAL_BAD_INODE 0x00000F
/* Superblock has a journal device (which we can't handle yet) */
#define PR_0_JOURNAL_UNSUPP_DEV 0x000010
/* Superblock has a bad journal device */
#define PR_0_JOURNAL_BAD_DEV 0x000011
/* Superblock has a journal UUID (which we can't handle yet) */
#define PR_0_JOURNAL_UNSUPP_UUID 0x000012
/* Superblock has a bad journal UUID */
#define PR_0_JOURNAL_BAD_UUID 0x000013
/* Journal has an unknown superblock type */
#define PR_0_JOURNAL_UNSUPP_SUPER 0x000014
/* Journal superblock is corrupt */
#define PR_0_JOURNAL_BAD_SUPER 0x000015
/* Journal superblock is corrupt */
#define PR_0_JOURNAL_HAS_JOURNAL 0x000016
/* Superblock has recovery flag set but no journal */
#define PR_0_JOURNAL_RECOVER_SET 0x000017
/* Warning message about leaving data in the journal */
#define PR_0_JOURNAL_RESET_JOURNAL 0x000018
/* Superblock recovery flag clear - journal needs to be reset */
#define PR_0_JOURNAL_RESET_PROMPT 0x000019
/*
* Pass 1 errors
*/

428
e2fsck/recovery.c Normal file
View File

@ -0,0 +1,428 @@
/*
* linux/fs/recovery.c
*
* Written by Stephen C. Tweedie <sct@redhat.com>, 1999
*
* Copyright 1999 Red Hat Software --- All Rights Reserved
*
* This file is part of the Linux kernel and is made available under
* the terms of the GNU General Public License, version 2, or at your
* option, any later version, incorporated herein by reference.
*
* Journal recovery routines for the generic filesystem journaling code;
* part of the ext2fs journaling system.
*/
#ifndef __KERNEL__
#include "jfs.h"
#else
#include <linux/sched.h>
#include <linux/fs.h>
#include <linux/jfs.h>
#include <linux/errno.h>
#include <linux/malloc.h>
#include <linux/locks.h>
#include <linux/buffer.h>
/* Release readahead buffers after use */
static void brelse_array(struct buffer_head *b[], int n)
{
while (--n >= 0)
brelse (b[n]);
}
/*
* When reading from the journal, we are going through the block device
* layer directly and so there is no readahead being done for us. We
* need to implement any readahead ourselves if we want it to happen at
* all. Recovery is basically one long sequential read, so make sure we
* do the IO in reasonably large chunks.
*
* This is not so critical that we need to be enormously clever about
* the readahead size, though. 128K is a purely arbitrary, good-enough
* fixed value.
*/
static int do_readahead(journal_t *journal, unsigned int start)
{
int err;
unsigned int max, nbufs, next, blocknr;
struct buffer_head *bh;
#define MAXBUF 8
struct buffer_head * bufs[MAXBUF];
/* Do up to 128K of readahead */
max = start + (128 * 1024 / journal->j_blocksize);
if (max > journal->j_maxlen)
max = journal->j_maxlen;
/* Do the readahead itself. We'll submit MAXBUF buffer_heads at
* a time to the block device IO layer. */
nbufs = 0;
for (next = start; next < max; next++) {
blocknr = next;
if (journal->j_inode)
blocknr = bmap(journal->j_inode, next);
if (!blocknr) {
printk (KERN_ERR "JFS: bad block at offset %u\n",
next);
err = -EIO;
goto failed;
}
bh = getblk(journal->j_dev, blocknr, journal->j_blocksize);
if (!bh) {
printk(KERN_ERR "JFS: readahead getblk failed\n");
err = -ENOMEM;
goto failed;
}
if (!buffer_uptodate(bh) && !buffer_locked(bh)) {
bufs[nbufs++] = bh;
if (nbufs == MAXBUF) {
ll_rw_block(READ, nbufs, bufs);
brelse_array(bufs, nbufs);
nbufs = 0;
}
} else
brelse(bh);
}
if (nbufs)
ll_rw_block(READ, nbufs, bufs);
err = 0;
failed:
if (nbufs)
brelse_array(bufs, nbufs);
return err;
}
#endif
/*
* Read a block from the journal
*/
static int jread(struct buffer_head **bhp, journal_t *journal,
unsigned int offset)
{
unsigned int blocknr;
struct buffer_head *bh;
*bhp = NULL;
if (offset >= journal->j_maxlen)
return -EINVAL;
blocknr = offset;
if (journal->j_inode)
blocknr = bmap(journal->j_inode, offset);
if (!blocknr) {
printk (KERN_ERR "JFS: bad block at offset %u\n",
offset);
return -EIO;
}
bh = getblk(journal->j_dev, blocknr, journal->j_blocksize);
if (!bh)
return -ENOMEM;
if (!buffer_uptodate(bh)) {
/* If this is a brand new buffer, start readahead.
Otherwise, we assume we are already reading it. */
if (!buffer_req(bh))
do_readahead(journal, offset);
wait_on_buffer(bh);
}
if (!buffer_uptodate(bh)) {
printk (KERN_ERR "JFS: Failed to read block at offset %u\n",
offset);
brelse(bh);
return -EIO;
}
*bhp = bh;
return 0;
}
/*
* Count the number of in-use tags in a journal descriptor block.
*/
int count_tags(struct buffer_head *bh, int size)
{
char * tagp;
journal_block_tag_t * tag;
int nr = 0;
tagp = &bh->b_data[sizeof(journal_header_t)];
while ((tagp - bh->b_data + sizeof(journal_block_tag_t)) <= size) {
tag = (journal_block_tag_t *) tagp;
nr++;
tagp += sizeof(journal_block_tag_t);
if (!(tag->t_flags & htonl(JFS_FLAG_SAME_UUID)))
tagp += 16;
if (tag->t_flags & htonl(JFS_FLAG_LAST_TAG))
break;
}
return nr;
}
/* Make sure we wrap around the log correctly! */
#define wrap(journal, var) \
do { \
if (var >= (journal)->j_last) \
var -= ((journal)->j_last - (journal)->j_first); \
} while (0)
/*
* journal_recover
*
* The primary function for recovering the log contents when mounting a
* journaled device.
*/
int journal_recover(journal_t *journal)
{
unsigned int first_commit_ID, next_commit_ID;
unsigned long next_log_block;
unsigned long transaction_start;
int err, success = 0;
journal_superblock_t * jsb;
journal_header_t * tmp;
struct buffer_head * bh;
/* Precompute the maximum metadata descriptors in a descriptor block */
int MAX_BLOCKS_PER_DESC;
MAX_BLOCKS_PER_DESC = ((journal->j_blocksize-sizeof(journal_header_t))
/ sizeof(journal_block_tag_t));
/*
* First thing is to establish what we expect to find in the log
* (in terms of transaction IDs), and where (in terms of log
* block offsets): query the superblock.
*/
jsb = journal->j_superblock;
next_commit_ID = ntohl(jsb->s_sequence);
next_log_block = ntohl(jsb->s_start);
first_commit_ID = next_commit_ID;
/*
* The journal superblock's s_start field (the current log head)
* is always zero if, and only if, the journal was cleanly
* unmounted.
*/
if (!jsb->s_start) {
jfs_debug(1, "No recovery required, last transaction %d\n",
ntohl(jsb->s_sequence));
journal->j_transaction_sequence = ++next_commit_ID;
return 0;
}
jfs_debug(1, "Starting recovery\n");
/*
* Now we walk through the log, transaction by transaction,
* making sure that each transaction has a commit block in the
* expected place. Each complete transaction gets replayed back
* into the main filesystem.
*/
while (1) {
jfs_debug(2, "Looking for commit ID %u at %lu/%lu\n",
next_commit_ID, next_log_block, journal->j_last);
transaction_start = next_log_block;
while (next_log_block < journal->j_last) {
/* Skip over each chunk of the transaction
* looking either the next descriptor block or
* the final commit record. */
jfs_debug(3, "JFS: checking block %ld\n",
next_log_block);
err = jread(&bh, journal, next_log_block);
if (err)
goto failed;
/* What kind of buffer is it?
*
* If it is a descriptor block, work out the
* expected location of the next and skip to it.
*
* If it is the right commit block, end the
* search and start recovering the transaction.
*
* Any non-control block, or an unexpected
* control block is interpreted as old data from
* a previous wrap of the log: stop recovery at
* this point.
*/
tmp = (journal_header_t *) bh->b_data;
if (tmp->h_magic == htonl(JFS_MAGIC_NUMBER)) {
int blocktype = ntohl(tmp->h_blocktype);
jfs_debug(3, "Found magic %d\n", blocktype);
if (blocktype == JFS_DESCRIPTOR_BLOCK) {
/* Work out where the next descriptor
* should be. */
next_log_block++;
next_log_block += count_tags(bh, journal->j_blocksize);
wrap(journal, next_log_block);
brelse(bh);
continue;
} else if (blocktype == JFS_COMMIT_BLOCK) {
unsigned int sequence = tmp->h_sequence;
brelse(bh);
if (sequence == htonl(next_commit_ID))
goto commit;
jfs_debug(2, "found sequence %d, "
"expected %d.\n",
ntohl(sequence),
next_commit_ID);
goto finished;
}
}
/* We didn't recognise it? OK, we've gone off
* the tail of the log in that case. */
brelse(bh);
break;
}
goto finished;
commit:
jfs_debug(2, "Found transaction %d\n", next_commit_ID);
/* OK, we have a transaction to commit. Rewind to the
* start of it, gather up all of the buffers in each
* transaction segment, and replay the segments one by
* one. */
next_log_block = transaction_start;
while (1) {
int flags;
char * tagp;
journal_block_tag_t * tag;
struct buffer_head * obh;
struct buffer_head * nbh;
err = jread(&bh, journal, next_log_block++);
wrap(journal, next_log_block);
if (err)
goto failed;
tmp = (journal_header_t *) bh->b_data;
/* should never happen - we just checked above - AED */
J_ASSERT(tmp->h_magic == htonl(JFS_MAGIC_NUMBER));
/* If it is the commit block, then we are all done! */
if (tmp->h_blocktype == htonl(JFS_COMMIT_BLOCK)) {
brelse(bh);
break;
}
/* A descriptor block: we can now write all of
* the data blocks. Yay, useful work is finally
* getting done here! */
tagp = &bh->b_data[sizeof(journal_header_t)];
while ((tagp - bh->b_data +sizeof(journal_block_tag_t))
<= journal->j_blocksize) {
tag = (journal_block_tag_t *) tagp;
flags = ntohl(tag->t_flags);
err = jread(&obh, journal, next_log_block++);
wrap(journal, next_log_block);
if (err) {
/* Recover what we can, but
* report failure at the end. */
success = err;
printk (KERN_ERR
"JFS: IO error recovering "
"block %ld in log\n",
next_log_block-1);
} else {
/* can never happen if jread OK - AED */
J_ASSERT(obh != NULL);
/* And find a buffer for the new data
* being restored */
nbh = getblk(journal->j_dev,
ntohl(tag->t_blocknr),
journal->j_blocksize);
if (nbh == NULL) {
printk(KERN_ERR
"JFS: Out of memory "
"during recovery.\n");
err = -ENOMEM;
brelse(bh);
brelse(obh);
goto failed;
}
memcpy(nbh->b_data, obh->b_data,
journal->j_blocksize);
if (flags & JFS_FLAG_ESCAPE) {
* ((unsigned int *) bh->b_data) = htonl(JFS_MAGIC_NUMBER);
}
mark_buffer_dirty(nbh, 1);
/* ll_rw_block(WRITE, 1, &nbh); */
brelse(obh);
brelse(nbh);
}
tagp += sizeof(journal_block_tag_t);
if (!(flags & JFS_FLAG_SAME_UUID))
tagp += 16;
if (flags & JFS_FLAG_LAST_TAG)
break;
} /* end of tag loop */
brelse(bh);
} /* end of descriptor block loop */
/* We have now replayed that entire transaction: start
* looking for the next transaction. */
next_commit_ID++;
}
finished:
err = success;
fsync_dev(journal->j_dev);
failed:
/* Restart the log at the next transaction ID, thus invalidating
* any existing commit records in the log. */
jfs_debug(0, "JFS: recovery, exit status %d, "
"recovered transactions %u to %u\n",
err, first_commit_ID, next_commit_ID);
journal->j_transaction_sequence = ++next_commit_ID;
return err;
}

View File

@ -778,43 +778,11 @@ restart:
}
#endif
s = (struct ext2fs_sb *) fs->super;
/*
* Check to see if we need to do ext3-style recovery. If so,
* do it, and then restart the fsck.
* Set the device name, which is used whenever we print error
* or informational messages to the user.
*/
if (s->s_feature_incompat & EXT3_FEATURE_INCOMPAT_RECOVER) {
printf("%s: reading journal for ext3 filesystem...\n",
ctx->filesystem_name);
ext2fs_close(fs);
retval = e2fsck_run_ext3_journal(ctx->filesystem_name);
if (retval) {
com_err(ctx->program_name, retval,
": couldn't load ext3 journal for %s",
ctx->filesystem_name);
exit(FSCK_ERROR);
}
goto restart;
}
/*
* Check for compatibility with the feature sets. We need to
* be more stringent than ext2fs_open().
*/
if ((s->s_feature_compat & ~EXT2_LIB_FEATURE_COMPAT_SUPP) ||
(s->s_feature_incompat & ~EXT2_LIB_FEATURE_INCOMPAT_SUPP)) {
com_err(ctx->program_name, EXT2_ET_UNSUPP_FEATURE,
"(%s)", ctx->filesystem_name);
goto get_newer;
}
if (s->s_feature_ro_compat & ~EXT2_LIB_FEATURE_RO_COMPAT_SUPP) {
com_err(ctx->program_name, EXT2_ET_RO_UNSUPP_FEATURE,
"(%s)", ctx->filesystem_name);
goto get_newer;
}
#ifdef ENABLE_COMPRESSION
if (s->s_feature_incompat & EXT2_FEATURE_INCOMPAT_COMPRESSION)
com_err(ctx->program_name, 0,
_("Warning: compression support is experimental.\n"));
#endif
if (ctx->device_name == 0 &&
(s->s_volume_name[0] != 0)) {
char *cp = malloc(sizeof(s->s_volume_name)+1);
@ -827,6 +795,51 @@ restart:
}
if (ctx->device_name == 0)
ctx->device_name = ctx->filesystem_name;
/*
* Check to see if we need to do ext3-style recovery. If so,
* do it, and then restart the fsck.
*/
retval = e2fsck_check_ext3_journal(ctx);
if (retval) {
com_err(ctx->program_name, retval,
_("while checking ext3 journal for %s"),
ctx->device_name);
ext2fs_close(ctx->fs);
exit(FSCK_ERROR);
}
if (s->s_feature_incompat & EXT3_FEATURE_INCOMPAT_RECOVER) {
retval = e2fsck_run_ext3_journal(ctx);
if (retval) {
com_err(ctx->program_name, retval,
_("while recovering ext3 journal of %s"),
ctx->device_name);
exit(FSCK_ERROR);
}
goto restart;
}
/*
* Check for compatibility with the feature sets. We need to
* be more stringent than ext2fs_open().
*/
if ((s->s_feature_compat & ~EXT2_LIB_FEATURE_COMPAT_SUPP) ||
(s->s_feature_incompat & ~EXT2_LIB_FEATURE_INCOMPAT_SUPP)) {
com_err(ctx->program_name, EXT2_ET_UNSUPP_FEATURE,
"(%s)", ctx->device_name);
goto get_newer;
}
if (s->s_feature_ro_compat & ~EXT2_LIB_FEATURE_RO_COMPAT_SUPP) {
com_err(ctx->program_name, EXT2_ET_RO_UNSUPP_FEATURE,
"(%s)", ctx->device_name);
goto get_newer;
}
#ifdef ENABLE_COMPRESSION
if (s->s_feature_incompat & EXT2_FEATURE_INCOMPAT_COMPRESSION)
com_err(ctx->program_name, 0,
_("Warning: compression support is experimental.\n"));
#endif
/*
* If the user specified a specific superblock, presumably the