etcd/etcdserver/etcdserverpb/rpc.proto

274 lines
8.5 KiB
Protocol Buffer
Raw Normal View History

2015-06-30 04:59:24 +03:00
syntax = "proto3";
package etcdserverpb;
import "gogoproto/gogo.proto";
import "etcd/storage/storagepb/kv.proto";
2015-06-30 04:59:24 +03:00
2015-08-14 21:45:07 +03:00
option (gogoproto.marshaler_all) = true;
option (gogoproto.unmarshaler_all) = true;
service KV {
2015-06-30 04:59:24 +03:00
// Range gets the keys in the range from the store.
rpc Range(RangeRequest) returns (RangeResponse) {}
// Put puts the given key into the store.
2015-09-04 00:45:54 +03:00
// A put request increases the revision of the store,
2015-06-30 04:59:24 +03:00
// and generates one event in the event history.
rpc Put(PutRequest) returns (PutResponse) {}
// Delete deletes the given range from the store.
2015-09-04 00:45:54 +03:00
// A delete request increase the revision of the store,
2015-06-30 04:59:24 +03:00
// and generates one event in the event history.
rpc DeleteRange(DeleteRangeRequest) returns (DeleteRangeResponse) {}
2015-07-24 18:16:27 +03:00
// Txn processes all the requests in one transaction.
2015-09-04 00:45:54 +03:00
// A txn request increases the revision of the store,
// and generates events with the same revision in the event history.
2015-12-29 22:49:00 +03:00
// It is not allowed to modify the same key several times within one txn.
2015-07-24 18:16:27 +03:00
rpc Txn(TxnRequest) returns (TxnResponse) {}
2015-06-30 04:59:24 +03:00
// Compact compacts the event history in etcd. User should compact the
// event history periodically, or it will grow infinitely.
rpc Compact(CompactionRequest) returns (CompactionResponse) {}
}
service Watch {
2015-11-04 01:21:24 +03:00
// Watch watches the events happening or happened. Both input and output
// are stream. One watch rpc can watch for multiple keys or prefixs and
// get a stream of events. The whole events history can be watched unless
// compacted.
rpc Watch(stream WatchRequest) returns (stream WatchResponse) {}
}
2015-12-29 22:49:00 +03:00
service Lease {
// LeaseCreate creates a lease. A lease has a TTL. The lease will expire if the
// server does not receive a keepAlive within TTL from the lease holder.
// All keys attached to the lease will be expired and deleted if the lease expires.
// The key expiration generates an event in event history.
rpc LeaseCreate(LeaseCreateRequest) returns (LeaseCreateResponse) {}
// LeaseRevoke revokes a lease. All the key attached to the lease will be expired and deleted.
rpc LeaseRevoke(LeaseRevokeRequest) returns (LeaseRevokeResponse) {}
// KeepAlive keeps the lease alive.
rpc LeaseKeepAlive(stream LeaseKeepAliveRequest) returns (stream LeaseKeepAliveResponse) {}
// TODO(xiangli) List all existing Leases?
// TODO(xiangli) Get details information (expirations, leased keys, etc.) of a lease?
}
2015-06-30 04:59:24 +03:00
message ResponseHeader {
uint64 cluster_id = 1;
uint64 member_id = 2;
2015-09-04 00:45:54 +03:00
// revision of the store when the request was applied.
int64 revision = 3;
2015-06-30 04:59:24 +03:00
// term of raft when the request was applied.
uint64 raft_term = 4;
2015-06-30 04:59:24 +03:00
}
message RangeRequest {
// if the range_end is not given, the request returns the key.
bytes key = 1;
// if the range_end is given, it gets the keys in range [key, range_end).
bytes range_end = 2;
// limit the number of keys returned.
int64 limit = 3;
// range over the store at the given revision.
// if revision is less or equal to zero, range over the newest store.
// if the revision has been compacted, ErrCompaction will be returned in
// response.
int64 revision = 4;
2015-06-30 04:59:24 +03:00
}
message RangeResponse {
ResponseHeader header = 1;
repeated storagepb.KeyValue kvs = 2;
// more indicates if there are more keys to return in the requested range.
bool more = 3;
2015-06-30 04:59:24 +03:00
}
message PutRequest {
bytes key = 1;
bytes value = 2;
int64 lease = 3;
2015-06-30 04:59:24 +03:00
}
message PutResponse {
ResponseHeader header = 1;
}
message DeleteRangeRequest {
// if the range_end is not given, the request deletes the key.
bytes key = 1;
// if the range_end is given, it deletes the keys in range [key, range_end).
bytes range_end = 2;
}
message DeleteRangeResponse {
ResponseHeader header = 1;
}
message RequestUnion {
oneof request {
RangeRequest request_range = 1;
PutRequest request_put = 2;
DeleteRangeRequest request_delete_range = 3;
}
}
message ResponseUnion {
oneof response {
2015-08-14 21:45:07 +03:00
RangeResponse response_range = 1;
2015-06-30 04:59:24 +03:00
PutResponse response_put = 2;
DeleteRangeResponse response_delete_range = 3;
}
}
message Compare {
2015-08-14 21:45:07 +03:00
enum CompareResult {
2015-06-30 04:59:24 +03:00
EQUAL = 0;
GREATER = 1;
LESS = 2;
}
2015-08-14 21:45:07 +03:00
enum CompareTarget {
VERSION = 0;
CREATE = 1;
MOD = 2;
VALUE= 3;
}
CompareResult result = 1;
CompareTarget target = 2;
2015-06-30 04:59:24 +03:00
// key path
2015-08-14 21:45:07 +03:00
bytes key = 3;
oneof target_union {
2015-06-30 04:59:24 +03:00
// version of the given key
2015-08-14 21:45:07 +03:00
int64 version = 4;
2015-09-04 00:45:54 +03:00
// create revision of the given key
int64 create_revision = 5;
// last modified revision of the given key
int64 mod_revision = 6;
2015-06-30 04:59:24 +03:00
// value of the given key
2015-08-14 21:45:07 +03:00
bytes value = 7;
2015-06-30 04:59:24 +03:00
}
}
// If the comparisons succeed, then the success requests will be processed in order,
// and the response will contain their respective responses in order.
// If the comparisons fail, then the failure requests will be processed in order,
// and the response will contain their respective responses in order.
2015-06-30 04:59:24 +03:00
// From google paxosdb paper:
// Our implementation hinges around a powerful primitive which we call MultiOp. All other database
// operations except for iteration are implemented as a single call to MultiOp. A MultiOp is applied atomically
// and consists of three components:
// 1. A list of tests called guard. Each test in guard checks a single entry in the database. It may check
// for the absence or presence of a value, or compare with a given value. Two different tests in the guard
// may apply to the same or different entries in the database. All tests in the guard are applied and
// MultiOp returns the results. If all tests are true, MultiOp executes t op (see item 2 below), otherwise
// it executes f op (see item 3 below).
// 2. A list of database operations called t op. Each operation in the list is either an insert, delete, or
// lookup operation, and applies to a single database entry. Two different operations in the list may apply
// to the same or different entries in the database. These operations are executed
// if guard evaluates to
// true.
// 3. A list of database operations called f op. Like t op, but executed if guard evaluates to false.
2015-07-24 18:16:27 +03:00
message TxnRequest {
2015-06-30 04:59:24 +03:00
repeated Compare compare = 1;
repeated RequestUnion success = 2;
repeated RequestUnion failure = 3;
}
2015-07-24 18:16:27 +03:00
message TxnResponse {
2015-06-30 04:59:24 +03:00
ResponseHeader header = 1;
bool succeeded = 2;
repeated ResponseUnion responses = 3;
}
2015-09-04 00:45:54 +03:00
// Compaction compacts the kv store upto the given revision (including).
// It removes the old versions of a key. It keeps the newest version of
2015-09-04 00:45:54 +03:00
// the key even if its latest modification revision is smaller than the given
// revision.
2015-06-30 04:59:24 +03:00
message CompactionRequest {
2015-09-04 00:45:54 +03:00
int64 revision = 1;
2015-06-30 04:59:24 +03:00
}
message CompactionResponse {
ResponseHeader header = 1;
}
2015-11-04 01:21:24 +03:00
message WatchRequest {
oneof request_union {
WatchCreateRequest create_request = 1;
WatchCancelRequest cancel_request = 2;
}
}
message WatchCreateRequest {
2015-11-04 01:21:24 +03:00
// the key to be watched
bytes key = 1;
// the prefix to be watched.
bytes prefix = 2;
// start_revision is an optional revision (including) to watch from. No start_revision is "now".
int64 start_revision = 3;
// TODO: support Range watch?
}
message WatchCancelRequest {
int64 watch_id = 1;
2015-11-04 01:21:24 +03:00
}
message WatchResponse {
ResponseHeader header = 1;
// watch_id is the ID of the watching the response sent to.
int64 watch_id = 2;
// If the response is for a create watch request, created is set to true.
// Client should record the watch_id and prepare for receiving events for
// that watching from the same stream.
// All events sent to the created watching will attach with the same watch_id.
bool created = 3;
// If the response is for a cancel watch request, cancel is set to true.
// No further events will be sent to the canceled watching.
bool canceled = 4;
// If a watching tries to watch at a compacted index, compacted will be set to true.
//
// This happens when creating a watching at a compacted revision or the watching cannot
// catch up with the progress of the KV.
//
// Client should treat the watching as canceled and should not try to create any
// watching with same start_revision again.
bool compacted = 5;
repeated storagepb.Event events = 11;
2015-11-04 01:21:24 +03:00
}
message LeaseCreateRequest {
// advisory ttl in seconds
int64 ttl = 1;
}
message LeaseCreateResponse {
ResponseHeader header = 1;
int64 lease_id = 2;
// server decided ttl in second
int64 ttl = 3;
string error = 4;
}
message LeaseRevokeRequest {
int64 lease_id = 1;
}
message LeaseRevokeResponse {
ResponseHeader header = 1;
}
message LeaseKeepAliveRequest {
int64 lease_id = 1;
}
message LeaseKeepAliveResponse {
ResponseHeader header = 1;
int64 lease_id = 2;
int64 ttl = 3;
}