compactor: simplify interval logic on periodic compactor

Signed-off-by: Gyuho Lee <gyuhox@gmail.com>
release-3.3
Gyuho Lee 2018-03-23 11:34:05 -07:00
parent d70a218b19
commit ce7b86b65a
2 changed files with 138 additions and 103 deletions

View File

@ -61,81 +61,85 @@ func newPeriodic(clock clockwork.Clock, h time.Duration, rg RevGetter, c Compact
return t
}
func (t *Periodic) Run() {
fetchInterval := t.getFetchInterval()
retryInterval := t.getRetryInterval()
retentions := int(t.period/fetchInterval) + 1 // number of revs to keep for t.period
notify := make(chan struct{}, 1)
/*
Compaction period 1-hour:
1. compute compaction period, which is 1-hour
2. record revisions for every 1/10 of 1-hour (6-minute)
3. keep recording revisions with no compaction for first 1-hour
4. do compact with revs[0]
- success? contiue on for-loop and move sliding window; revs = revs[1:]
- failure? update revs, and retry after 1/10 of 1-hour (6-minute)
Compaction period 24-hour:
1. compute compaction period, which is 1-hour
2. record revisions for every 1/10 of 1-hour (6-minute)
3. keep recording revisions with no compaction for first 24-hour
4. do compact with revs[0]
- success? contiue on for-loop and move sliding window; revs = revs[1:]
- failure? update revs, and retry after 1/10 of 1-hour (6-minute)
Compaction period 59-min:
1. compute compaction period, which is 59-min
2. record revisions for every 1/10 of 59-min (5.9-min)
3. keep recording revisions with no compaction for first 59-min
4. do compact with revs[0]
- success? contiue on for-loop and move sliding window; revs = revs[1:]
- failure? update revs, and retry after 1/10 of 59-min (5.9-min)
Compaction period 5-sec:
1. compute compaction period, which is 5-sec
2. record revisions for every 1/10 of 5-sec (0.5-sec)
3. keep recording revisions with no compaction for first 5-sec
4. do compact with revs[0]
- success? contiue on for-loop and move sliding window; revs = revs[1:]
- failure? update revs, and retry after 1/10 of 5-sec (0.5-sec)
*/
// Run runs periodic compactor.
func (t *Periodic) Run() {
compactInterval := t.getCompactInterval()
retryInterval := t.getRetryInterval()
retentions := t.getRetentions()
// periodically updates t.revs and notify to the other goroutine
go func() {
lastSuccess := t.clock.Now()
baseInterval := t.period
for {
rev := t.rg.Rev()
t.mu.Lock()
t.revs = append(t.revs, rev)
t.revs = append(t.revs, t.rg.Rev())
if len(t.revs) > retentions {
t.revs = t.revs[1:] // t.revs[0] is always the rev at t.period ago
}
t.mu.Unlock()
select {
case notify <- struct{}{}:
default:
// compaction can take time more than interval
}
select {
case <-t.ctx.Done():
return
case <-t.clock.After(fetchInterval):
}
}
}()
// run compaction triggered by the other goroutine thorough the notify channel
// or internal periodic retry
go func() {
var lastCompactedRev int64
for {
select {
case <-t.ctx.Done():
return
case <-notify:
// from the other goroutine
case <-t.clock.After(retryInterval):
// for retry
// when t.rev is not updated, this event will be ignored later,
// so we don't need to think about race with <-notify.
t.mu.Lock()
p := t.paused
t.mu.Unlock()
if p {
continue
}
}
t.mu.Lock()
p := t.paused
if t.clock.Now().Sub(lastSuccess) < baseInterval {
continue
}
// wait up to initial given period
if baseInterval == t.period {
baseInterval = compactInterval
}
rev := t.revs[0]
len := len(t.revs)
t.mu.Unlock()
if p {
continue
}
// it's too early to start working
if len != retentions {
continue
}
// if t.revs is not updated, we can ignore the event.
// it's not the first time to try comapction in this interval.
if rev == lastCompactedRev {
continue
}
plog.Noticef("Starting auto-compaction at revision %d (retention: %v)", rev, t.period)
_, err := t.c.Compact(t.ctx, &pb.CompactionRequest{Revision: rev})
if err == nil || err == mvcc.ErrCompacted {
lastSuccess = t.clock.Now()
plog.Noticef("Finished auto-compaction at revision %d", rev)
lastCompactedRev = rev
} else {
plog.Noticef("Failed auto-compaction at revision %d (%v)", rev, err)
plog.Noticef("Retry after %s", retryInterval)
plog.Noticef("Retry after %v", retryInterval)
}
}
}()
@ -145,7 +149,7 @@ func (t *Periodic) Run() {
// (e.g. --auto-compaction-mode 'periodic' --auto-compaction-retention='10m', then compact every 10-minute)
// if given compaction period x is >1-hour, compact every hour.
// (e.g. --auto-compaction-mode 'periodic' --auto-compaction-retention='2h', then compact every 1-hour)
func (t *Periodic) getFetchInterval() time.Duration {
func (t *Periodic) getCompactInterval() time.Duration {
itv := t.period
if itv > time.Hour {
itv = time.Hour
@ -153,35 +157,33 @@ func (t *Periodic) getFetchInterval() time.Duration {
return itv
}
func (t *Periodic) getRetentions() int {
return int(t.period/t.getRetryInterval()) + 1
}
const retryDivisor = 10
func (t *Periodic) getRetryInterval() time.Duration {
itv := t.period / retryDivisor
// we don't want to too aggressive retries
// and also jump between 6-minute through 60-minute
if itv < (6 * time.Minute) { // t.period is less than hour
// if t.period is less than 6-minute,
// retry interval is t.period.
// if we divide byretryDivisor, it's too aggressive
if t.period < 6*time.Minute {
itv = t.period
} else {
itv = 6 * time.Minute
}
itv := t.period
if itv > time.Hour {
itv = time.Hour
}
return itv
return itv / retryDivisor
}
// Stop stops periodic compactor.
func (t *Periodic) Stop() {
t.cancel()
}
// Pause pauses periodic compactor.
func (t *Periodic) Pause() {
t.mu.Lock()
defer t.mu.Unlock()
t.paused = true
}
// Resume resumes periodic compactor.
func (t *Periodic) Resume() {
t.mu.Lock()
defer t.mu.Unlock()

View File

@ -36,22 +36,40 @@ func TestPeriodicHourly(t *testing.T) {
tb.Run()
defer tb.Stop()
// simulate 5 hours
for i := 0; i < 5; i++ {
initialIntervals, intervalsPerPeriod := tb.getRetentions(), 10
// compaction doesn't happen til 2 hours elapse
for i := 0; i < initialIntervals; i++ {
rg.Wait(1)
fc.Advance(time.Hour)
// compaction doesn't happen til 2 hours elapses.
if i < retentionHours {
continue
fc.Advance(tb.getRetryInterval())
}
// very first compaction
a, err := compactable.Wait(1)
if err != nil {
t.Fatal(err)
}
expectedRevision := int64(1)
if !reflect.DeepEqual(a[0].Params[0], &pb.CompactionRequest{Revision: expectedRevision}) {
t.Errorf("compact request = %v, want %v", a[0].Params[0], &pb.CompactionRequest{Revision: expectedRevision})
}
// simulate 3 hours
// now compactor kicks in, every hour
for i := 0; i < 3; i++ {
// advance one hour, one revision for each interval
for j := 0; j < intervalsPerPeriod; j++ {
rg.Wait(1)
fc.Advance(tb.getRetryInterval())
}
// after 2 hours, compaction happens at every interval.
// at i = 3, t.revs = [1(2h-ago,T=0h), 2(1h-ago,T=1h), 3(now,T=2h)] (len=3) (rev starts from 1)
a, err := compactable.Wait(1)
a, err = compactable.Wait(1)
if err != nil {
t.Fatal(err)
}
expectedRevision := int64(i - 1)
expectedRevision = int64((i + 1) * 10)
if !reflect.DeepEqual(a[0].Params[0], &pb.CompactionRequest{Revision: expectedRevision}) {
t.Errorf("compact request = %v, want %v", a[0].Params[0], &pb.CompactionRequest{Revision: expectedRevision})
}
@ -59,7 +77,7 @@ func TestPeriodicHourly(t *testing.T) {
}
func TestPeriodicMinutes(t *testing.T) {
retentionMinutes := 23
retentionMinutes := 5
retentionDuration := time.Duration(retentionMinutes) * time.Minute
fc := clockwork.NewFakeClock()
@ -70,25 +88,41 @@ func TestPeriodicMinutes(t *testing.T) {
tb.Run()
defer tb.Stop()
// simulate 115 (23 * 5) minutes
for i := 0; i < 5; i++ {
rg.Wait(1)
fc.Advance(retentionDuration)
initialIntervals, intervalsPerPeriod := tb.getRetentions(), 10
// notting happens at T=0
if i == 0 {
continue
// compaction doesn't happen til 5 minutes elapse
for i := 0; i < initialIntervals; i++ {
rg.Wait(1)
fc.Advance(tb.getRetryInterval())
}
// very first compaction
a, err := compactable.Wait(1)
if err != nil {
t.Fatal(err)
}
expectedRevision := int64(1)
if !reflect.DeepEqual(a[0].Params[0], &pb.CompactionRequest{Revision: expectedRevision}) {
t.Errorf("compact request = %v, want %v", a[0].Params[0], &pb.CompactionRequest{Revision: expectedRevision})
}
// compaction happens at every interval
for i := 0; i < 5; i++ {
// advance 5-minute, one revision for each interval
for j := 0; j < intervalsPerPeriod; j++ {
rg.Wait(1)
fc.Advance(tb.getRetryInterval())
}
// from T=23m (i=1), compaction happens at every interval
a, err := compactable.Wait(1)
if err != nil {
t.Fatal(err)
}
expectedRevision := int64(i)
expectedRevision = int64((i + 1) * 10)
if !reflect.DeepEqual(a[0].Params[0], &pb.CompactionRequest{Revision: expectedRevision}) {
t.Errorf("compact request = %v, want %v", a[0].Params[0], &pb.CompactionRequest{Revision: expectedRevision})
}
}
}
@ -102,18 +136,14 @@ func TestPeriodicPause(t *testing.T) {
tb.Run()
tb.Pause()
n := tb.getRetentions()
// tb will collect 3 hours of revisions but not compact since paused
// T=0
rg.Wait(1) // t.revs = [1]
fc.Advance(time.Hour)
// T=1h
rg.Wait(1) // t.revs = [1, 2]
fc.Advance(time.Hour)
// T=2h
rg.Wait(1) // t.revs = [2, 3]
fc.Advance(time.Hour)
// T=3h
rg.Wait(1) // t.revs = [3, 4]
for i := 0; i < n*3; i++ {
rg.Wait(1)
fc.Advance(tb.getRetryInterval())
}
// t.revs = [21 22 23 24 25 26 27 28 29 30]
select {
case a := <-compactable.Chan():
@ -123,16 +153,19 @@ func TestPeriodicPause(t *testing.T) {
// tb resumes to being blocked on the clock
tb.Resume()
rg.Wait(1)
// unblock clock, will kick off a compaction at T=3h6m by retry
fc.Advance(time.Minute * 6)
fc.Advance(tb.getRetryInterval())
// T=3h6m
a, err := compactable.Wait(1)
if err != nil {
t.Fatal(err)
}
// compact the revision from T=3h
wreq := &pb.CompactionRequest{Revision: int64(3)}
// compact the revision from hour 2:06
wreq := &pb.CompactionRequest{Revision: int64(1 + 2*n + 1)}
if !reflect.DeepEqual(a[0].Params[0], wreq) {
t.Errorf("compact request = %v, want %v", a[0].Params[0], wreq.Revision)
}