// Copyright 2015 The etcd Authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package raft import ( "bytes" "fmt" "strings" pb "go.etcd.io/etcd/raft/raftpb" ) func (st StateType) MarshalJSON() ([]byte, error) { return []byte(fmt.Sprintf("%q", st.String())), nil } func min(a, b uint64) uint64 { if a > b { return b } return a } func max(a, b uint64) uint64 { if a > b { return a } return b } func IsLocalMsg(msgt pb.MessageType) bool { return msgt == pb.MsgHup || msgt == pb.MsgBeat || msgt == pb.MsgUnreachable || msgt == pb.MsgSnapStatus || msgt == pb.MsgCheckQuorum } func IsResponseMsg(msgt pb.MessageType) bool { return msgt == pb.MsgAppResp || msgt == pb.MsgVoteResp || msgt == pb.MsgHeartbeatResp || msgt == pb.MsgUnreachable || msgt == pb.MsgPreVoteResp } // voteResponseType maps vote and prevote message types to their corresponding responses. func voteRespMsgType(msgt pb.MessageType) pb.MessageType { switch msgt { case pb.MsgVote: return pb.MsgVoteResp case pb.MsgPreVote: return pb.MsgPreVoteResp default: panic(fmt.Sprintf("not a vote message: %s", msgt)) } } func DescribeHardState(hs pb.HardState) string { var buf strings.Builder fmt.Fprintf(&buf, "Term:%d", hs.Term) if hs.Vote != 0 { fmt.Fprintf(&buf, " Vote:%d", hs.Vote) } fmt.Fprintf(&buf, " Commit:%d", hs.Commit) return buf.String() } func DescribeSoftState(ss SoftState) string { return fmt.Sprintf("Lead:%d State:%s", ss.Lead, ss.RaftState) } func DescribeConfState(state pb.ConfState) string { return fmt.Sprintf( "Voters:%v VotersOutgoing:%v Learners:%v LearnersNext:%v AutoLeave:%v", state.Voters, state.VotersOutgoing, state.Learners, state.LearnersNext, state.AutoLeave, ) } func DescribeSnapshot(snap pb.Snapshot) string { m := snap.Metadata return fmt.Sprintf("Index:%d Term:%d ConfState:%s", m.Index, m.Term, DescribeConfState(m.ConfState)) } func DescribeReady(rd Ready, f EntryFormatter) string { var buf strings.Builder if rd.SoftState != nil { fmt.Fprint(&buf, DescribeSoftState(*rd.SoftState)) buf.WriteByte('\n') } if !IsEmptyHardState(rd.HardState) { fmt.Fprintf(&buf, "HardState %s", DescribeHardState(rd.HardState)) buf.WriteByte('\n') } if len(rd.ReadStates) > 0 { fmt.Fprintf(&buf, "ReadStates %v\n", rd.ReadStates) } if len(rd.Entries) > 0 { buf.WriteString("Entries:\n") fmt.Fprint(&buf, DescribeEntries(rd.Entries, f)) } if !IsEmptySnap(rd.Snapshot) { fmt.Fprintf(&buf, "Snapshot %s\n", DescribeSnapshot(rd.Snapshot)) } if len(rd.CommittedEntries) > 0 { buf.WriteString("CommittedEntries:\n") fmt.Fprint(&buf, DescribeEntries(rd.CommittedEntries, f)) } if len(rd.Messages) > 0 { buf.WriteString("Messages:\n") for _, msg := range rd.Messages { fmt.Fprint(&buf, DescribeMessage(msg, f)) buf.WriteByte('\n') } } if buf.Len() > 0 { return fmt.Sprintf("Ready MustSync=%t:\n%s", rd.MustSync, buf.String()) } return "" } // EntryFormatter can be implemented by the application to provide human-readable formatting // of entry data. Nil is a valid EntryFormatter and will use a default format. type EntryFormatter func([]byte) string // DescribeMessage returns a concise human-readable description of a // Message for debugging. func DescribeMessage(m pb.Message, f EntryFormatter) string { var buf bytes.Buffer fmt.Fprintf(&buf, "%x->%x %v Term:%d Log:%d/%d", m.From, m.To, m.Type, m.Term, m.LogTerm, m.Index) if m.Reject { fmt.Fprintf(&buf, " Rejected (Hint: %d)", m.RejectHint) } if m.Commit != 0 { fmt.Fprintf(&buf, " Commit:%d", m.Commit) } if len(m.Entries) > 0 { fmt.Fprintf(&buf, " Entries:[") for i, e := range m.Entries { if i != 0 { buf.WriteString(", ") } buf.WriteString(DescribeEntry(e, f)) } fmt.Fprintf(&buf, "]") } if !IsEmptySnap(m.Snapshot) { fmt.Fprintf(&buf, " Snapshot: %s", DescribeSnapshot(m.Snapshot)) } return buf.String() } // PayloadSize is the size of the payload of this Entry. Notably, it does not // depend on its Index or Term. func PayloadSize(e pb.Entry) int { return len(e.Data) } // DescribeEntry returns a concise human-readable description of an // Entry for debugging. func DescribeEntry(e pb.Entry, f EntryFormatter) string { if f == nil { f = func(data []byte) string { return fmt.Sprintf("%q", data) } } formatConfChange := func(cc pb.ConfChangeI) string { // TODO(tbg): give the EntryFormatter a type argument so that it gets // a chance to expose the Context. return pb.ConfChangesToString(cc.AsV2().Changes) } var formatted string switch e.Type { case pb.EntryNormal: formatted = f(e.Data) case pb.EntryConfChange: var cc pb.ConfChange if err := cc.Unmarshal(e.Data); err != nil { formatted = err.Error() } else { formatted = formatConfChange(cc) } case pb.EntryConfChangeV2: var cc pb.ConfChangeV2 if err := cc.Unmarshal(e.Data); err != nil { formatted = err.Error() } else { formatted = formatConfChange(cc) } } if formatted != "" { formatted = " " + formatted } return fmt.Sprintf("%d/%d %s%s", e.Term, e.Index, e.Type, formatted) } // DescribeEntries calls DescribeEntry for each Entry, adding a newline to // each. func DescribeEntries(ents []pb.Entry, f EntryFormatter) string { var buf bytes.Buffer for _, e := range ents { _, _ = buf.WriteString(DescribeEntry(e, f) + "\n") } return buf.String() } func limitSize(ents []pb.Entry, maxSize uint64) []pb.Entry { if len(ents) == 0 { return ents } size := ents[0].Size() var limit int for limit = 1; limit < len(ents); limit++ { size += ents[limit].Size() if uint64(size) > maxSize { break } } return ents[:limit] } func assertConfStatesEquivalent(l Logger, cs1, cs2 pb.ConfState) { err := cs1.Equivalent(cs2) if err == nil { return } l.Panic(err) }