// Copyright 2015 The etcd Authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package lease import ( "encoding/binary" "errors" "math" "sort" "sync" "time" "github.com/coreos/etcd/lease/leasepb" "github.com/coreos/etcd/mvcc/backend" ) // NoLease is a special LeaseID representing the absence of a lease. const NoLease = LeaseID(0) // MaxLeaseTTL is the maximum lease TTL value const MaxLeaseTTL = 9000000000 var ( forever = time.Time{} leaseBucketName = []byte("lease") // maximum number of leases to revoke per second; configurable for tests leaseRevokeRate = 1000 ErrNotPrimary = errors.New("not a primary lessor") ErrLeaseNotFound = errors.New("lease not found") ErrLeaseExists = errors.New("lease already exists") ErrLeaseTTLTooLarge = errors.New("too large lease TTL") ) // TxnDelete is a TxnWrite that only permits deletes. Defined here // to avoid circular dependency with mvcc. type TxnDelete interface { DeleteRange(key, end []byte) (n, rev int64) End() } // RangeDeleter is a TxnDelete constructor. type RangeDeleter func() TxnDelete type LeaseID int64 // Lessor owns leases. It can grant, revoke, renew and modify leases for lessee. type Lessor interface { // SetRangeDeleter lets the lessor create TxnDeletes to the store. // Lessor deletes the items in the revoked or expired lease by creating // new TxnDeletes. SetRangeDeleter(rd RangeDeleter) // Grant grants a lease that expires at least after TTL seconds. Grant(id LeaseID, ttl int64) (*Lease, error) // Revoke revokes a lease with given ID. The item attached to the // given lease will be removed. If the ID does not exist, an error // will be returned. Revoke(id LeaseID) error // Attach attaches given leaseItem to the lease with given LeaseID. // If the lease does not exist, an error will be returned. Attach(id LeaseID, items []LeaseItem) error // GetLease returns LeaseID for given item. // If no lease found, NoLease value will be returned. GetLease(item LeaseItem) LeaseID // Detach detaches given leaseItem from the lease with given LeaseID. // If the lease does not exist, an error will be returned. Detach(id LeaseID, items []LeaseItem) error // Promote promotes the lessor to be the primary lessor. Primary lessor manages // the expiration and renew of leases. // Newly promoted lessor renew the TTL of all lease to extend + previous TTL. Promote(extend time.Duration) // Demote demotes the lessor from being the primary lessor. Demote() // Renew renews a lease with given ID. It returns the renewed TTL. If the ID does not exist, // an error will be returned. Renew(id LeaseID) (int64, error) // Lookup gives the lease at a given lease id, if any Lookup(id LeaseID) *Lease // Leases lists all leases. Leases() []*Lease // ExpiredLeasesC returns a chan that is used to receive expired leases. ExpiredLeasesC() <-chan []*Lease // Recover recovers the lessor state from the given backend and RangeDeleter. Recover(b backend.Backend, rd RangeDeleter) // Stop stops the lessor for managing leases. The behavior of calling Stop multiple // times is undefined. Stop() } // lessor implements Lessor interface. // TODO: use clockwork for testability. type lessor struct { mu sync.RWMutex // demotec is set when the lessor is the primary. // demotec will be closed if the lessor is demoted. demotec chan struct{} // TODO: probably this should be a heap with a secondary // id index. // Now it is O(N) to loop over the leases to find expired ones. // We want to make Grant, Revoke, and findExpiredLeases all O(logN) and // Renew O(1). // findExpiredLeases and Renew should be the most frequent operations. leaseMap map[LeaseID]*Lease itemMap map[LeaseItem]LeaseID // When a lease expires, the lessor will delete the // leased range (or key) by the RangeDeleter. rd RangeDeleter // backend to persist leases. We only persist lease ID and expiry for now. // The leased items can be recovered by iterating all the keys in kv. b backend.Backend // minLeaseTTL is the minimum lease TTL that can be granted for a lease. Any // requests for shorter TTLs are extended to the minimum TTL. minLeaseTTL int64 expiredC chan []*Lease // stopC is a channel whose closure indicates that the lessor should be stopped. stopC chan struct{} // doneC is a channel whose closure indicates that the lessor is stopped. doneC chan struct{} } func NewLessor(b backend.Backend, minLeaseTTL int64) Lessor { return newLessor(b, minLeaseTTL) } func newLessor(b backend.Backend, minLeaseTTL int64) *lessor { l := &lessor{ leaseMap: make(map[LeaseID]*Lease), itemMap: make(map[LeaseItem]LeaseID), b: b, minLeaseTTL: minLeaseTTL, // expiredC is a small buffered chan to avoid unnecessary blocking. expiredC: make(chan []*Lease, 16), stopC: make(chan struct{}), doneC: make(chan struct{}), } l.initAndRecover() go l.runLoop() return l } // isPrimary indicates if this lessor is the primary lessor. The primary // lessor manages lease expiration and renew. // // in etcd, raft leader is the primary. Thus there might be two primary // leaders at the same time (raft allows concurrent leader but with different term) // for at most a leader election timeout. // The old primary leader cannot affect the correctness since its proposal has a // smaller term and will not be committed. // // TODO: raft follower do not forward lease management proposals. There might be a // very small window (within second normally which depends on go scheduling) that // a raft follow is the primary between the raft leader demotion and lessor demotion. // Usually this should not be a problem. Lease should not be that sensitive to timing. func (le *lessor) isPrimary() bool { return le.demotec != nil } func (le *lessor) SetRangeDeleter(rd RangeDeleter) { le.mu.Lock() defer le.mu.Unlock() le.rd = rd } func (le *lessor) Grant(id LeaseID, ttl int64) (*Lease, error) { if id == NoLease { return nil, ErrLeaseNotFound } if ttl > MaxLeaseTTL { return nil, ErrLeaseTTLTooLarge } // TODO: when lessor is under high load, it should give out lease // with longer TTL to reduce renew load. l := &Lease{ ID: id, ttl: ttl, itemSet: make(map[LeaseItem]struct{}), revokec: make(chan struct{}), } le.mu.Lock() defer le.mu.Unlock() if _, ok := le.leaseMap[id]; ok { return nil, ErrLeaseExists } if l.ttl < le.minLeaseTTL { l.ttl = le.minLeaseTTL } if le.isPrimary() { l.refresh(0) } else { l.forever() } le.leaseMap[id] = l l.persistTo(le.b) return l, nil } func (le *lessor) Revoke(id LeaseID) error { le.mu.Lock() l := le.leaseMap[id] if l == nil { le.mu.Unlock() return ErrLeaseNotFound } defer close(l.revokec) // unlock before doing external work le.mu.Unlock() if le.rd == nil { return nil } txn := le.rd() // sort keys so deletes are in same order among all members, // otherwise the backened hashes will be different keys := l.Keys() sort.StringSlice(keys).Sort() for _, key := range keys { txn.DeleteRange([]byte(key), nil) } le.mu.Lock() defer le.mu.Unlock() delete(le.leaseMap, l.ID) // lease deletion needs to be in the same backend transaction with the // kv deletion. Or we might end up with not executing the revoke or not // deleting the keys if etcdserver fails in between. le.b.BatchTx().UnsafeDelete(leaseBucketName, int64ToBytes(int64(l.ID))) txn.End() return nil } // Renew renews an existing lease. If the given lease does not exist or // has expired, an error will be returned. func (le *lessor) Renew(id LeaseID) (int64, error) { le.mu.Lock() unlock := func() { le.mu.Unlock() } defer func() { unlock() }() if !le.isPrimary() { // forward renew request to primary instead of returning error. return -1, ErrNotPrimary } demotec := le.demotec l := le.leaseMap[id] if l == nil { return -1, ErrLeaseNotFound } if l.expired() { le.mu.Unlock() unlock = func() {} select { // A expired lease might be pending for revoking or going through // quorum to be revoked. To be accurate, renew request must wait for the // deletion to complete. case <-l.revokec: return -1, ErrLeaseNotFound // The expired lease might fail to be revoked if the primary changes. // The caller will retry on ErrNotPrimary. case <-demotec: return -1, ErrNotPrimary case <-le.stopC: return -1, ErrNotPrimary } } l.refresh(0) return l.ttl, nil } func (le *lessor) Lookup(id LeaseID) *Lease { le.mu.RLock() defer le.mu.RUnlock() return le.leaseMap[id] } func (le *lessor) unsafeLeases() []*Lease { leases := make([]*Lease, 0, len(le.leaseMap)) for _, l := range le.leaseMap { leases = append(leases, l) } sort.Sort(leasesByExpiry(leases)) return leases } func (le *lessor) Leases() []*Lease { le.mu.RLock() ls := le.unsafeLeases() le.mu.RUnlock() return ls } func (le *lessor) Promote(extend time.Duration) { le.mu.Lock() defer le.mu.Unlock() le.demotec = make(chan struct{}) // refresh the expiries of all leases. for _, l := range le.leaseMap { l.refresh(extend) } if len(le.leaseMap) < leaseRevokeRate { // no possibility of lease pile-up return } // adjust expiries in case of overlap leases := le.unsafeLeases() baseWindow := leases[0].Remaining() nextWindow := baseWindow + time.Second expires := 0 // have fewer expires than the total revoke rate so piled up leases // don't consume the entire revoke limit targetExpiresPerSecond := (3 * leaseRevokeRate) / 4 for _, l := range leases { remaining := l.Remaining() if remaining > nextWindow { baseWindow = remaining nextWindow = baseWindow + time.Second expires = 1 continue } expires++ if expires <= targetExpiresPerSecond { continue } rateDelay := float64(time.Second) * (float64(expires) / float64(targetExpiresPerSecond)) // If leases are extended by n seconds, leases n seconds ahead of the // base window should be extended by only one second. rateDelay -= float64(remaining - baseWindow) delay := time.Duration(rateDelay) nextWindow = baseWindow + delay l.refresh(delay + extend) } } type leasesByExpiry []*Lease func (le leasesByExpiry) Len() int { return len(le) } func (le leasesByExpiry) Less(i, j int) bool { return le[i].Remaining() < le[j].Remaining() } func (le leasesByExpiry) Swap(i, j int) { le[i], le[j] = le[j], le[i] } func (le *lessor) Demote() { le.mu.Lock() defer le.mu.Unlock() // set the expiries of all leases to forever for _, l := range le.leaseMap { l.forever() } if le.demotec != nil { close(le.demotec) le.demotec = nil } } // Attach attaches items to the lease with given ID. When the lease // expires, the attached items will be automatically removed. // If the given lease does not exist, an error will be returned. func (le *lessor) Attach(id LeaseID, items []LeaseItem) error { le.mu.Lock() defer le.mu.Unlock() l := le.leaseMap[id] if l == nil { return ErrLeaseNotFound } l.mu.Lock() for _, it := range items { l.itemSet[it] = struct{}{} le.itemMap[it] = id } l.mu.Unlock() return nil } func (le *lessor) GetLease(item LeaseItem) LeaseID { le.mu.RLock() id := le.itemMap[item] le.mu.RUnlock() return id } // Detach detaches items from the lease with given ID. // If the given lease does not exist, an error will be returned. func (le *lessor) Detach(id LeaseID, items []LeaseItem) error { le.mu.Lock() defer le.mu.Unlock() l := le.leaseMap[id] if l == nil { return ErrLeaseNotFound } l.mu.Lock() for _, it := range items { delete(l.itemSet, it) delete(le.itemMap, it) } l.mu.Unlock() return nil } func (le *lessor) Recover(b backend.Backend, rd RangeDeleter) { le.mu.Lock() defer le.mu.Unlock() le.b = b le.rd = rd le.leaseMap = make(map[LeaseID]*Lease) le.itemMap = make(map[LeaseItem]LeaseID) le.initAndRecover() } func (le *lessor) ExpiredLeasesC() <-chan []*Lease { return le.expiredC } func (le *lessor) Stop() { close(le.stopC) <-le.doneC } func (le *lessor) runLoop() { defer close(le.doneC) for { var ls []*Lease // rate limit revokeLimit := leaseRevokeRate / 2 le.mu.RLock() if le.isPrimary() { ls = le.findExpiredLeases(revokeLimit) } le.mu.RUnlock() if len(ls) != 0 { select { case <-le.stopC: return case le.expiredC <- ls: default: // the receiver of expiredC is probably busy handling // other stuff // let's try this next time after 500ms } } select { case <-time.After(500 * time.Millisecond): case <-le.stopC: return } } } // findExpiredLeases loops leases in the leaseMap until reaching expired limit // and returns the expired leases that needed to be revoked. func (le *lessor) findExpiredLeases(limit int) []*Lease { leases := make([]*Lease, 0, 16) for _, l := range le.leaseMap { // TODO: probably should change to <= 100-500 millisecond to // make up committing latency. if l.expired() { leases = append(leases, l) // reach expired limit if len(leases) == limit { break } } } return leases } func (le *lessor) initAndRecover() { tx := le.b.BatchTx() tx.Lock() tx.UnsafeCreateBucket(leaseBucketName) _, vs := tx.UnsafeRange(leaseBucketName, int64ToBytes(0), int64ToBytes(math.MaxInt64), 0) // TODO: copy vs and do decoding outside tx lock if lock contention becomes an issue. for i := range vs { var lpb leasepb.Lease err := lpb.Unmarshal(vs[i]) if err != nil { tx.Unlock() panic("failed to unmarshal lease proto item") } ID := LeaseID(lpb.ID) if lpb.TTL < le.minLeaseTTL { lpb.TTL = le.minLeaseTTL } le.leaseMap[ID] = &Lease{ ID: ID, ttl: lpb.TTL, // itemSet will be filled in when recover key-value pairs // set expiry to forever, refresh when promoted itemSet: make(map[LeaseItem]struct{}), expiry: forever, revokec: make(chan struct{}), } } tx.Unlock() le.b.ForceCommit() } type Lease struct { ID LeaseID ttl int64 // time to live in seconds // expiryMu protects concurrent accesses to expiry expiryMu sync.RWMutex // expiry is time when lease should expire. no expiration when expiry.IsZero() is true expiry time.Time // mu protects concurrent accesses to itemSet mu sync.RWMutex itemSet map[LeaseItem]struct{} revokec chan struct{} } func (l *Lease) expired() bool { return l.Remaining() <= 0 } func (l *Lease) persistTo(b backend.Backend) { key := int64ToBytes(int64(l.ID)) lpb := leasepb.Lease{ID: int64(l.ID), TTL: int64(l.ttl)} val, err := lpb.Marshal() if err != nil { panic("failed to marshal lease proto item") } b.BatchTx().Lock() b.BatchTx().UnsafePut(leaseBucketName, key, val) b.BatchTx().Unlock() } // TTL returns the TTL of the Lease. func (l *Lease) TTL() int64 { return l.ttl } // refresh refreshes the expiry of the lease. func (l *Lease) refresh(extend time.Duration) { newExpiry := time.Now().Add(extend + time.Duration(l.ttl)*time.Second) l.expiryMu.Lock() defer l.expiryMu.Unlock() l.expiry = newExpiry } // forever sets the expiry of lease to be forever. func (l *Lease) forever() { l.expiryMu.Lock() defer l.expiryMu.Unlock() l.expiry = forever } // Keys returns all the keys attached to the lease. func (l *Lease) Keys() []string { l.mu.RLock() keys := make([]string, 0, len(l.itemSet)) for k := range l.itemSet { keys = append(keys, k.Key) } l.mu.RUnlock() return keys } // Remaining returns the remaining time of the lease. func (l *Lease) Remaining() time.Duration { l.expiryMu.RLock() defer l.expiryMu.RUnlock() if l.expiry.IsZero() { return time.Duration(math.MaxInt64) } return time.Until(l.expiry) } type LeaseItem struct { Key string } func int64ToBytes(n int64) []byte { bytes := make([]byte, 8) binary.BigEndian.PutUint64(bytes, uint64(n)) return bytes } // FakeLessor is a fake implementation of Lessor interface. // Used for testing only. type FakeLessor struct{} func (fl *FakeLessor) SetRangeDeleter(dr RangeDeleter) {} func (fl *FakeLessor) Grant(id LeaseID, ttl int64) (*Lease, error) { return nil, nil } func (fl *FakeLessor) Revoke(id LeaseID) error { return nil } func (fl *FakeLessor) Attach(id LeaseID, items []LeaseItem) error { return nil } func (fl *FakeLessor) GetLease(item LeaseItem) LeaseID { return 0 } func (fl *FakeLessor) Detach(id LeaseID, items []LeaseItem) error { return nil } func (fl *FakeLessor) Promote(extend time.Duration) {} func (fl *FakeLessor) Demote() {} func (fl *FakeLessor) Renew(id LeaseID) (int64, error) { return 10, nil } func (fl *FakeLessor) Lookup(id LeaseID) *Lease { return nil } func (fl *FakeLessor) Leases() []*Lease { return nil } func (fl *FakeLessor) ExpiredLeasesC() <-chan []*Lease { return nil } func (fl *FakeLessor) Recover(b backend.Backend, rd RangeDeleter) {} func (fl *FakeLessor) Stop() {}