// Copyright 2015 The etcd Authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package raft import ( "errors" pb "github.com/coreos/etcd/raft/raftpb" "golang.org/x/net/context" ) type SnapshotStatus int const ( SnapshotFinish SnapshotStatus = 1 SnapshotFailure SnapshotStatus = 2 ) var ( emptyState = pb.HardState{} // ErrStopped is returned by methods on Nodes that have been stopped. ErrStopped = errors.New("raft: stopped") ) // SoftState provides state that is useful for logging and debugging. // The state is volatile and does not need to be persisted to the WAL. type SoftState struct { Lead uint64 // must use atomic operations to access; keep 64-bit aligned. RaftState StateType } func (a *SoftState) equal(b *SoftState) bool { return a.Lead == b.Lead && a.RaftState == b.RaftState } // Ready encapsulates the entries and messages that are ready to read, // be saved to stable storage, committed or sent to other peers. // All fields in Ready are read-only. type Ready struct { // The current volatile state of a Node. // SoftState will be nil if there is no update. // It is not required to consume or store SoftState. *SoftState // The current state of a Node to be saved to stable storage BEFORE // Messages are sent. // HardState will be equal to empty state if there is no update. pb.HardState // ReadState can be used for node to serve linearizable read requests locally // when its applied index is greater than the index in ReadState. // Note that the readState will be returned when raft receives msgReadIndex. // The returned is only valid for the request that requested to read. ReadState // Entries specifies entries to be saved to stable storage BEFORE // Messages are sent. Entries []pb.Entry // Snapshot specifies the snapshot to be saved to stable storage. Snapshot pb.Snapshot // CommittedEntries specifies entries to be committed to a // store/state-machine. These have previously been committed to stable // store. CommittedEntries []pb.Entry // Messages specifies outbound messages to be sent AFTER Entries are // committed to stable storage. // If it contains a MsgSnap message, the application MUST report back to raft // when the snapshot has been received or has failed by calling ReportSnapshot. Messages []pb.Message } func isHardStateEqual(a, b pb.HardState) bool { return a.Term == b.Term && a.Vote == b.Vote && a.Commit == b.Commit } // IsEmptyHardState returns true if the given HardState is empty. func IsEmptyHardState(st pb.HardState) bool { return isHardStateEqual(st, emptyState) } // IsEmptySnap returns true if the given Snapshot is empty. func IsEmptySnap(sp pb.Snapshot) bool { return sp.Metadata.Index == 0 } func (rd Ready) containsUpdates() bool { return rd.SoftState != nil || !IsEmptyHardState(rd.HardState) || !IsEmptySnap(rd.Snapshot) || len(rd.Entries) > 0 || len(rd.CommittedEntries) > 0 || len(rd.Messages) > 0 || rd.Index != None } // Node represents a node in a raft cluster. type Node interface { // Tick increments the internal logical clock for the Node by a single tick. Election // timeouts and heartbeat timeouts are in units of ticks. Tick() // Campaign causes the Node to transition to candidate state and start campaigning to become leader. Campaign(ctx context.Context) error // Propose proposes that data be appended to the log. Propose(ctx context.Context, data []byte) error // ProposeConfChange proposes config change. // At most one ConfChange can be in the process of going through consensus. // Application needs to call ApplyConfChange when applying EntryConfChange type entry. ProposeConfChange(ctx context.Context, cc pb.ConfChange) error // Step advances the state machine using the given message. ctx.Err() will be returned, if any. Step(ctx context.Context, msg pb.Message) error // Ready returns a channel that returns the current point-in-time state. // Users of the Node must call Advance after retrieving the state returned by Ready. // // NOTE: No committed entries from the next Ready may be applied until all committed entries // and snapshots from the previous one have finished. Ready() <-chan Ready // Advance notifies the Node that the application has saved progress up to the last Ready. // It prepares the node to return the next available Ready. // // The application should generally call Advance after it applies the entries in last Ready. // // However, as an optimization, the application may call Advance while it is applying the // commands. For example. when the last Ready contains a snapshot, the application might take // a long time to apply the snapshot data. To continue receiving Ready without blocking raft // progress, it can call Advance before finishing applying the last ready. To make this optimization // work safely, when the application receives a Ready with softState.RaftState equal to Candidate // it MUST apply all pending configuration changes if there is any. // // Here is a simple solution that waiting for ALL pending entries to get applied. // ``` // ... // rd := <-n.Ready() // go apply(rd.CommittedEntries) // optimization to apply asynchronously in FIFO order. // if rd.SoftState.RaftState == StateCandidate { // waitAllApplied() // } // n.Advance() // ... //``` Advance() // ApplyConfChange applies config change to the local node. // Returns an opaque ConfState protobuf which must be recorded // in snapshots. Will never return nil; it returns a pointer only // to match MemoryStorage.Compact. ApplyConfChange(cc pb.ConfChange) *pb.ConfState // ReadIndex request a read state. The read state will be set in the ready. // Read state has a read index. Once the application advances further than the read // index, any linearizable read requests issued before the read request can be // processed safely. The read state will have the same rctx attached. // // Note: the current implementation depends on the leader lease. If the clock drift is unbounded, // leader might keep the lease longer than it should (clock can move backward/pause without any bound). // ReadIndex is not safe in that case. // TODO: add clock drift bound into raft configuration. ReadIndex(ctx context.Context, rctx []byte) error // Status returns the current status of the raft state machine. Status() Status // ReportUnreachable reports the given node is not reachable for the last send. ReportUnreachable(id uint64) // ReportSnapshot reports the status of the sent snapshot. ReportSnapshot(id uint64, status SnapshotStatus) // Stop performs any necessary termination of the Node. Stop() } type Peer struct { ID uint64 Context []byte } // StartNode returns a new Node given configuration and a list of raft peers. // It appends a ConfChangeAddNode entry for each given peer to the initial log. func StartNode(c *Config, peers []Peer) Node { r := newRaft(c) // become the follower at term 1 and apply initial configuration // entries of term 1 r.becomeFollower(1, None) for _, peer := range peers { cc := pb.ConfChange{Type: pb.ConfChangeAddNode, NodeID: peer.ID, Context: peer.Context} d, err := cc.Marshal() if err != nil { panic("unexpected marshal error") } e := pb.Entry{Type: pb.EntryConfChange, Term: 1, Index: r.raftLog.lastIndex() + 1, Data: d} r.raftLog.append(e) } // Mark these initial entries as committed. // TODO(bdarnell): These entries are still unstable; do we need to preserve // the invariant that committed < unstable? r.raftLog.committed = r.raftLog.lastIndex() // Now apply them, mainly so that the application can call Campaign // immediately after StartNode in tests. Note that these nodes will // be added to raft twice: here and when the application's Ready // loop calls ApplyConfChange. The calls to addNode must come after // all calls to raftLog.append so progress.next is set after these // bootstrapping entries (it is an error if we try to append these // entries since they have already been committed). // We do not set raftLog.applied so the application will be able // to observe all conf changes via Ready.CommittedEntries. for _, peer := range peers { r.addNode(peer.ID) } n := newNode() n.logger = c.Logger go n.run(r) return &n } // RestartNode is similar to StartNode but does not take a list of peers. // The current membership of the cluster will be restored from the Storage. // If the caller has an existing state machine, pass in the last log index that // has been applied to it; otherwise use zero. func RestartNode(c *Config) Node { r := newRaft(c) n := newNode() n.logger = c.Logger go n.run(r) return &n } // node is the canonical implementation of the Node interface type node struct { propc chan pb.Message recvc chan pb.Message confc chan pb.ConfChange confstatec chan pb.ConfState readyc chan Ready advancec chan struct{} tickc chan struct{} done chan struct{} stop chan struct{} status chan chan Status logger Logger } func newNode() node { return node{ propc: make(chan pb.Message), recvc: make(chan pb.Message), confc: make(chan pb.ConfChange), confstatec: make(chan pb.ConfState), readyc: make(chan Ready), advancec: make(chan struct{}), // make tickc a buffered chan, so raft node can buffer some ticks when the node // is busy processing raft messages. Raft node will resume process buffered // ticks when it becomes idle. tickc: make(chan struct{}, 128), done: make(chan struct{}), stop: make(chan struct{}), status: make(chan chan Status), } } func (n *node) Stop() { select { case n.stop <- struct{}{}: // Not already stopped, so trigger it case <-n.done: // Node has already been stopped - no need to do anything return } // Block until the stop has been acknowledged by run() <-n.done } func (n *node) run(r *raft) { var propc chan pb.Message var readyc chan Ready var advancec chan struct{} var prevLastUnstablei, prevLastUnstablet uint64 var havePrevLastUnstablei bool var prevSnapi uint64 var rd Ready lead := None prevSoftSt := r.softState() prevHardSt := emptyState for { if advancec != nil { readyc = nil } else { rd = newReady(r, prevSoftSt, prevHardSt) if rd.containsUpdates() { readyc = n.readyc } else { readyc = nil } } if lead != r.lead { if r.hasLeader() { if lead == None { r.logger.Infof("raft.node: %x elected leader %x at term %d", r.id, r.lead, r.Term) } else { r.logger.Infof("raft.node: %x changed leader from %x to %x at term %d", r.id, lead, r.lead, r.Term) } propc = n.propc } else { r.logger.Infof("raft.node: %x lost leader %x at term %d", r.id, lead, r.Term) propc = nil } lead = r.lead } select { // TODO: maybe buffer the config propose if there exists one (the way // described in raft dissertation) // Currently it is dropped in Step silently. case m := <-propc: m.From = r.id r.Step(m) case m := <-n.recvc: // filter out response message from unknown From. if _, ok := r.prs[m.From]; ok || !IsResponseMsg(m.Type) { r.Step(m) // raft never returns an error } case cc := <-n.confc: if cc.NodeID == None { r.resetPendingConf() select { case n.confstatec <- pb.ConfState{Nodes: r.nodes()}: case <-n.done: } break } switch cc.Type { case pb.ConfChangeAddNode: r.addNode(cc.NodeID) case pb.ConfChangeRemoveNode: // block incoming proposal when local node is // removed if cc.NodeID == r.id { propc = nil } r.removeNode(cc.NodeID) case pb.ConfChangeUpdateNode: r.resetPendingConf() default: panic("unexpected conf type") } select { case n.confstatec <- pb.ConfState{Nodes: r.nodes()}: case <-n.done: } case <-n.tickc: r.tick() case readyc <- rd: if rd.SoftState != nil { prevSoftSt = rd.SoftState } if len(rd.Entries) > 0 { prevLastUnstablei = rd.Entries[len(rd.Entries)-1].Index prevLastUnstablet = rd.Entries[len(rd.Entries)-1].Term havePrevLastUnstablei = true } if !IsEmptyHardState(rd.HardState) { prevHardSt = rd.HardState } if !IsEmptySnap(rd.Snapshot) { prevSnapi = rd.Snapshot.Metadata.Index } r.msgs = nil r.readState.Index = None r.readState.RequestCtx = nil advancec = n.advancec case <-advancec: if prevHardSt.Commit != 0 { r.raftLog.appliedTo(prevHardSt.Commit) } if havePrevLastUnstablei { r.raftLog.stableTo(prevLastUnstablei, prevLastUnstablet) havePrevLastUnstablei = false } r.raftLog.stableSnapTo(prevSnapi) advancec = nil case c := <-n.status: c <- getStatus(r) case <-n.stop: close(n.done) return } } } // Tick increments the internal logical clock for this Node. Election timeouts // and heartbeat timeouts are in units of ticks. func (n *node) Tick() { select { case n.tickc <- struct{}{}: case <-n.done: default: n.logger.Warningf("A tick missed to fire. Node blocks too long!") } } func (n *node) Campaign(ctx context.Context) error { return n.step(ctx, pb.Message{Type: pb.MsgHup}) } func (n *node) Propose(ctx context.Context, data []byte) error { return n.step(ctx, pb.Message{Type: pb.MsgProp, Entries: []pb.Entry{{Data: data}}}) } func (n *node) Step(ctx context.Context, m pb.Message) error { // ignore unexpected local messages receiving over network if IsLocalMsg(m.Type) { // TODO: return an error? return nil } return n.step(ctx, m) } func (n *node) ProposeConfChange(ctx context.Context, cc pb.ConfChange) error { data, err := cc.Marshal() if err != nil { return err } return n.Step(ctx, pb.Message{Type: pb.MsgProp, Entries: []pb.Entry{{Type: pb.EntryConfChange, Data: data}}}) } // Step advances the state machine using msgs. The ctx.Err() will be returned, // if any. func (n *node) step(ctx context.Context, m pb.Message) error { ch := n.recvc if m.Type == pb.MsgProp { ch = n.propc } select { case ch <- m: return nil case <-ctx.Done(): return ctx.Err() case <-n.done: return ErrStopped } } func (n *node) Ready() <-chan Ready { return n.readyc } func (n *node) Advance() { select { case n.advancec <- struct{}{}: case <-n.done: } } func (n *node) ApplyConfChange(cc pb.ConfChange) *pb.ConfState { var cs pb.ConfState select { case n.confc <- cc: case <-n.done: } select { case cs = <-n.confstatec: case <-n.done: } return &cs } func (n *node) Status() Status { c := make(chan Status) n.status <- c return <-c } func (n *node) ReportUnreachable(id uint64) { select { case n.recvc <- pb.Message{Type: pb.MsgUnreachable, From: id}: case <-n.done: } } func (n *node) ReportSnapshot(id uint64, status SnapshotStatus) { rej := status == SnapshotFailure select { case n.recvc <- pb.Message{Type: pb.MsgSnapStatus, From: id, Reject: rej}: case <-n.done: } } func (n *node) ReadIndex(ctx context.Context, rctx []byte) error { return n.step(ctx, pb.Message{Type: pb.MsgReadIndex, Entries: []pb.Entry{{Data: rctx}}}) } func newReady(r *raft, prevSoftSt *SoftState, prevHardSt pb.HardState) Ready { rd := Ready{ Entries: r.raftLog.unstableEntries(), CommittedEntries: r.raftLog.nextEnts(), Messages: r.msgs, } if softSt := r.softState(); !softSt.equal(prevSoftSt) { rd.SoftState = softSt } if hardSt := r.hardState(); !isHardStateEqual(hardSt, prevHardSt) { rd.HardState = hardSt } if r.raftLog.unstable.snapshot != nil { rd.Snapshot = *r.raftLog.unstable.snapshot } if r.readState.Index != None { c := make([]byte, len(r.readState.RequestCtx)) copy(c, r.readState.RequestCtx) rd.Index = r.readState.Index rd.RequestCtx = c } return rd }