etcd/server/storage/backend/backend.go

662 lines
18 KiB
Go

// Copyright 2015 The etcd Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package backend
import (
"fmt"
"hash/crc32"
"io"
"os"
"path/filepath"
"sync"
"sync/atomic"
"time"
humanize "github.com/dustin/go-humanize"
"go.uber.org/zap"
bolt "go.etcd.io/bbolt"
)
var (
defaultBatchLimit = 10000
defaultBatchInterval = 100 * time.Millisecond
defragLimit = 10000
// initialMmapSize is the initial size of the mmapped region. Setting this larger than
// the potential max db size can prevent writer from blocking reader.
// This only works for linux.
initialMmapSize = uint64(10 * 1024 * 1024 * 1024)
// minSnapshotWarningTimeout is the minimum threshold to trigger a long running snapshot warning.
minSnapshotWarningTimeout = 30 * time.Second
)
type Backend interface {
// ReadTx returns a read transaction. It is replaced by ConcurrentReadTx in the main data path, see #10523.
ReadTx() ReadTx
BatchTx() BatchTx
// ConcurrentReadTx returns a non-blocking read transaction.
ConcurrentReadTx() ReadTx
Snapshot() Snapshot
Hash(ignores func(bucketName, keyName []byte) bool) (uint32, error)
// Size returns the current size of the backend physically allocated.
// The backend can hold DB space that is not utilized at the moment,
// since it can conduct pre-allocation or spare unused space for recycling.
// Use SizeInUse() instead for the actual DB size.
Size() int64
// SizeInUse returns the current size of the backend logically in use.
// Since the backend can manage free space in a non-byte unit such as
// number of pages, the returned value can be not exactly accurate in bytes.
SizeInUse() int64
// OpenReadTxN returns the number of currently open read transactions in the backend.
OpenReadTxN() int64
Defrag() error
ForceCommit()
Close() error
// SetTxPostLockInsideApplyHook sets a txPostLockInsideApplyHook.
SetTxPostLockInsideApplyHook(func())
}
type Snapshot interface {
// Size gets the size of the snapshot.
Size() int64
// WriteTo writes the snapshot into the given writer.
WriteTo(w io.Writer) (n int64, err error)
// Close closes the snapshot.
Close() error
}
type txReadBufferCache struct {
mu sync.Mutex
buf *txReadBuffer
bufVersion uint64
}
type backend struct {
// size and commits are used with atomic operations so they must be
// 64-bit aligned, otherwise 32-bit tests will crash
// size is the number of bytes allocated in the backend
size int64
// sizeInUse is the number of bytes actually used in the backend
sizeInUse int64
// commits counts number of commits since start
commits int64
// openReadTxN is the number of currently open read transactions in the backend
openReadTxN int64
// mlock prevents backend database file to be swapped
mlock bool
mu sync.RWMutex
bopts *bolt.Options
db *bolt.DB
batchInterval time.Duration
batchLimit int
batchTx *batchTxBuffered
readTx *readTx
// txReadBufferCache mirrors "txReadBuffer" within "readTx" -- readTx.baseReadTx.buf.
// When creating "concurrentReadTx":
// - if the cache is up-to-date, "readTx.baseReadTx.buf" copy can be skipped
// - if the cache is empty or outdated, "readTx.baseReadTx.buf" copy is required
txReadBufferCache txReadBufferCache
stopc chan struct{}
donec chan struct{}
hooks Hooks
// txPostLockInsideApplyHook is called each time right after locking the tx.
txPostLockInsideApplyHook func()
lg *zap.Logger
}
type BackendConfig struct {
// Path is the file path to the backend file.
Path string
// BatchInterval is the maximum time before flushing the BatchTx.
BatchInterval time.Duration
// BatchLimit is the maximum puts before flushing the BatchTx.
BatchLimit int
// BackendFreelistType is the backend boltdb's freelist type.
BackendFreelistType bolt.FreelistType
// MmapSize is the number of bytes to mmap for the backend.
MmapSize uint64
// Logger logs backend-side operations.
Logger *zap.Logger
// UnsafeNoFsync disables all uses of fsync.
UnsafeNoFsync bool `json:"unsafe-no-fsync"`
// Mlock prevents backend database file to be swapped
Mlock bool
// Hooks are getting executed during lifecycle of Backend's transactions.
Hooks Hooks
}
func DefaultBackendConfig(lg *zap.Logger) BackendConfig {
return BackendConfig{
BatchInterval: defaultBatchInterval,
BatchLimit: defaultBatchLimit,
MmapSize: initialMmapSize,
Logger: lg,
}
}
func New(bcfg BackendConfig) Backend {
return newBackend(bcfg)
}
func NewDefaultBackend(lg *zap.Logger, path string) Backend {
bcfg := DefaultBackendConfig(lg)
bcfg.Path = path
return newBackend(bcfg)
}
func newBackend(bcfg BackendConfig) *backend {
bopts := &bolt.Options{}
if boltOpenOptions != nil {
*bopts = *boltOpenOptions
}
bopts.InitialMmapSize = bcfg.mmapSize()
bopts.FreelistType = bcfg.BackendFreelistType
bopts.NoSync = bcfg.UnsafeNoFsync
bopts.NoGrowSync = bcfg.UnsafeNoFsync
bopts.Mlock = bcfg.Mlock
db, err := bolt.Open(bcfg.Path, 0600, bopts)
if err != nil {
bcfg.Logger.Panic("failed to open database", zap.String("path", bcfg.Path), zap.Error(err))
}
// In future, may want to make buffering optional for low-concurrency systems
// or dynamically swap between buffered/non-buffered depending on workload.
b := &backend{
bopts: bopts,
db: db,
batchInterval: bcfg.BatchInterval,
batchLimit: bcfg.BatchLimit,
mlock: bcfg.Mlock,
readTx: &readTx{
baseReadTx: baseReadTx{
buf: txReadBuffer{
txBuffer: txBuffer{make(map[BucketID]*bucketBuffer)},
bufVersion: 0,
},
buckets: make(map[BucketID]*bolt.Bucket),
txWg: new(sync.WaitGroup),
txMu: new(sync.RWMutex),
},
},
txReadBufferCache: txReadBufferCache{
mu: sync.Mutex{},
bufVersion: 0,
buf: nil,
},
stopc: make(chan struct{}),
donec: make(chan struct{}),
lg: bcfg.Logger,
}
b.batchTx = newBatchTxBuffered(b)
// We set it after newBatchTxBuffered to skip the 'empty' commit.
b.hooks = bcfg.Hooks
go b.run()
return b
}
// BatchTx returns the current batch tx in coalescer. The tx can be used for read and
// write operations. The write result can be retrieved within the same tx immediately.
// The write result is isolated with other txs until the current one get committed.
func (b *backend) BatchTx() BatchTx {
return b.batchTx
}
func (b *backend) SetTxPostLockInsideApplyHook(hook func()) {
// It needs to lock the batchTx, because the periodic commit
// may be accessing the txPostLockInsideApplyHook at the moment.
b.batchTx.lock()
defer b.batchTx.Unlock()
b.txPostLockInsideApplyHook = hook
}
func (b *backend) ReadTx() ReadTx { return b.readTx }
// ConcurrentReadTx creates and returns a new ReadTx, which:
// A) creates and keeps a copy of backend.readTx.txReadBuffer,
// B) references the boltdb read Tx (and its bucket cache) of current batch interval.
func (b *backend) ConcurrentReadTx() ReadTx {
b.readTx.RLock()
defer b.readTx.RUnlock()
// prevent boltdb read Tx from been rolled back until store read Tx is done. Needs to be called when holding readTx.RLock().
b.readTx.txWg.Add(1)
// TODO: might want to copy the read buffer lazily - create copy when A) end of a write transaction B) end of a batch interval.
// inspect/update cache recency iff there's no ongoing update to the cache
// this falls through if there's no cache update
// by this line, "ConcurrentReadTx" code path is already protected against concurrent "writeback" operations
// which requires write lock to update "readTx.baseReadTx.buf".
// Which means setting "buf *txReadBuffer" with "readTx.buf.unsafeCopy()" is guaranteed to be up-to-date,
// whereas "txReadBufferCache.buf" may be stale from concurrent "writeback" operations.
// We only update "txReadBufferCache.buf" if we know "buf *txReadBuffer" is up-to-date.
// The update to "txReadBufferCache.buf" will benefit the following "ConcurrentReadTx" creation
// by avoiding copying "readTx.baseReadTx.buf".
b.txReadBufferCache.mu.Lock()
curCache := b.txReadBufferCache.buf
curCacheVer := b.txReadBufferCache.bufVersion
curBufVer := b.readTx.buf.bufVersion
isEmptyCache := curCache == nil
isStaleCache := curCacheVer != curBufVer
var buf *txReadBuffer
switch {
case isEmptyCache:
// perform safe copy of buffer while holding "b.txReadBufferCache.mu.Lock"
// this is only supposed to run once so there won't be much overhead
curBuf := b.readTx.buf.unsafeCopy()
buf = &curBuf
case isStaleCache:
// to maximize the concurrency, try unsafe copy of buffer
// release the lock while copying buffer -- cache may become stale again and
// get overwritten by someone else.
// therefore, we need to check the readTx buffer version again
b.txReadBufferCache.mu.Unlock()
curBuf := b.readTx.buf.unsafeCopy()
b.txReadBufferCache.mu.Lock()
buf = &curBuf
default:
// neither empty nor stale cache, just use the current buffer
buf = curCache
}
// txReadBufferCache.bufVersion can be modified when we doing an unsafeCopy()
// as a result, curCacheVer could be no longer the same as
// txReadBufferCache.bufVersion
// if !isEmptyCache && curCacheVer != b.txReadBufferCache.bufVersion
// then the cache became stale while copying "readTx.baseReadTx.buf".
// It is safe to not update "txReadBufferCache.buf", because the next following
// "ConcurrentReadTx" creation will trigger a new "readTx.baseReadTx.buf" copy
// and "buf" is still used for the current "concurrentReadTx.baseReadTx.buf".
if isEmptyCache || curCacheVer == b.txReadBufferCache.bufVersion {
// continue if the cache is never set or no one has modified the cache
b.txReadBufferCache.buf = buf
b.txReadBufferCache.bufVersion = curBufVer
}
b.txReadBufferCache.mu.Unlock()
// concurrentReadTx is not supposed to write to its txReadBuffer
return &concurrentReadTx{
baseReadTx: baseReadTx{
buf: *buf,
txMu: b.readTx.txMu,
tx: b.readTx.tx,
buckets: b.readTx.buckets,
txWg: b.readTx.txWg,
},
}
}
// ForceCommit forces the current batching tx to commit.
func (b *backend) ForceCommit() {
b.batchTx.Commit()
}
func (b *backend) Snapshot() Snapshot {
b.batchTx.Commit()
b.mu.RLock()
defer b.mu.RUnlock()
tx, err := b.db.Begin(false)
if err != nil {
b.lg.Fatal("failed to begin tx", zap.Error(err))
}
stopc, donec := make(chan struct{}), make(chan struct{})
dbBytes := tx.Size()
go func() {
defer close(donec)
// sendRateBytes is based on transferring snapshot data over a 1 gigabit/s connection
// assuming a min tcp throughput of 100MB/s.
var sendRateBytes int64 = 100 * 1024 * 1024
warningTimeout := time.Duration(int64((float64(dbBytes) / float64(sendRateBytes)) * float64(time.Second)))
if warningTimeout < minSnapshotWarningTimeout {
warningTimeout = minSnapshotWarningTimeout
}
start := time.Now()
ticker := time.NewTicker(warningTimeout)
defer ticker.Stop()
for {
select {
case <-ticker.C:
b.lg.Warn(
"snapshotting taking too long to transfer",
zap.Duration("taking", time.Since(start)),
zap.Int64("bytes", dbBytes),
zap.String("size", humanize.Bytes(uint64(dbBytes))),
)
case <-stopc:
snapshotTransferSec.Observe(time.Since(start).Seconds())
return
}
}
}()
return &snapshot{tx, stopc, donec}
}
func (b *backend) Hash(ignores func(bucketName, keyName []byte) bool) (uint32, error) {
h := crc32.New(crc32.MakeTable(crc32.Castagnoli))
b.mu.RLock()
defer b.mu.RUnlock()
err := b.db.View(func(tx *bolt.Tx) error {
c := tx.Cursor()
for next, _ := c.First(); next != nil; next, _ = c.Next() {
b := tx.Bucket(next)
if b == nil {
return fmt.Errorf("cannot get hash of bucket %s", string(next))
}
h.Write(next)
b.ForEach(func(k, v []byte) error {
if ignores != nil && !ignores(next, k) {
h.Write(k)
h.Write(v)
}
return nil
})
}
return nil
})
if err != nil {
return 0, err
}
return h.Sum32(), nil
}
func (b *backend) Size() int64 {
return atomic.LoadInt64(&b.size)
}
func (b *backend) SizeInUse() int64 {
return atomic.LoadInt64(&b.sizeInUse)
}
func (b *backend) run() {
defer close(b.donec)
t := time.NewTimer(b.batchInterval)
defer t.Stop()
for {
select {
case <-t.C:
case <-b.stopc:
b.batchTx.CommitAndStop()
return
}
if b.batchTx.safePending() != 0 {
b.batchTx.Commit()
}
t.Reset(b.batchInterval)
}
}
func (b *backend) Close() error {
close(b.stopc)
<-b.donec
b.mu.Lock()
defer b.mu.Unlock()
return b.db.Close()
}
// Commits returns total number of commits since start
func (b *backend) Commits() int64 {
return atomic.LoadInt64(&b.commits)
}
func (b *backend) Defrag() error {
return b.defrag()
}
func (b *backend) defrag() error {
now := time.Now()
isDefragActive.Set(1)
defer isDefragActive.Set(0)
// TODO: make this non-blocking?
// lock batchTx to ensure nobody is using previous tx, and then
// close previous ongoing tx.
b.batchTx.LockOutsideApply()
defer b.batchTx.Unlock()
// lock database after lock tx to avoid deadlock.
b.mu.Lock()
defer b.mu.Unlock()
// block concurrent read requests while resetting tx
b.readTx.Lock()
defer b.readTx.Unlock()
b.batchTx.unsafeCommit(true)
b.batchTx.tx = nil
// Create a temporary file to ensure we start with a clean slate.
// Snapshotter.cleanupSnapdir cleans up any of these that are found during startup.
dir := filepath.Dir(b.db.Path())
temp, err := os.CreateTemp(dir, "db.tmp.*")
if err != nil {
return err
}
options := bolt.Options{}
if boltOpenOptions != nil {
options = *boltOpenOptions
}
options.OpenFile = func(_ string, _ int, _ os.FileMode) (file *os.File, err error) {
return temp, nil
}
// Don't load tmp db into memory regardless of opening options
options.Mlock = false
tdbp := temp.Name()
tmpdb, err := bolt.Open(tdbp, 0600, &options)
if err != nil {
return err
}
dbp := b.db.Path()
size1, sizeInUse1 := b.Size(), b.SizeInUse()
if b.lg != nil {
b.lg.Info(
"defragmenting",
zap.String("path", dbp),
zap.Int64("current-db-size-bytes", size1),
zap.String("current-db-size", humanize.Bytes(uint64(size1))),
zap.Int64("current-db-size-in-use-bytes", sizeInUse1),
zap.String("current-db-size-in-use", humanize.Bytes(uint64(sizeInUse1))),
)
}
// gofail: var defragBeforeCopy struct{}
err = defragdb(b.db, tmpdb, defragLimit)
if err != nil {
tmpdb.Close()
if rmErr := os.RemoveAll(tmpdb.Path()); rmErr != nil {
b.lg.Error("failed to remove db.tmp after defragmentation completed", zap.Error(rmErr))
}
return err
}
err = b.db.Close()
if err != nil {
b.lg.Fatal("failed to close database", zap.Error(err))
}
err = tmpdb.Close()
if err != nil {
b.lg.Fatal("failed to close tmp database", zap.Error(err))
}
// gofail: var defragBeforeRename struct{}
err = os.Rename(tdbp, dbp)
if err != nil {
b.lg.Fatal("failed to rename tmp database", zap.Error(err))
}
b.db, err = bolt.Open(dbp, 0600, b.bopts)
if err != nil {
b.lg.Fatal("failed to open database", zap.String("path", dbp), zap.Error(err))
}
b.batchTx.tx = b.unsafeBegin(true)
b.readTx.reset()
b.readTx.tx = b.unsafeBegin(false)
size := b.readTx.tx.Size()
db := b.readTx.tx.DB()
atomic.StoreInt64(&b.size, size)
atomic.StoreInt64(&b.sizeInUse, size-(int64(db.Stats().FreePageN)*int64(db.Info().PageSize)))
took := time.Since(now)
defragSec.Observe(took.Seconds())
size2, sizeInUse2 := b.Size(), b.SizeInUse()
if b.lg != nil {
b.lg.Info(
"finished defragmenting directory",
zap.String("path", dbp),
zap.Int64("current-db-size-bytes-diff", size2-size1),
zap.Int64("current-db-size-bytes", size2),
zap.String("current-db-size", humanize.Bytes(uint64(size2))),
zap.Int64("current-db-size-in-use-bytes-diff", sizeInUse2-sizeInUse1),
zap.Int64("current-db-size-in-use-bytes", sizeInUse2),
zap.String("current-db-size-in-use", humanize.Bytes(uint64(sizeInUse2))),
zap.Duration("took", took),
)
}
return nil
}
func defragdb(odb, tmpdb *bolt.DB, limit int) error {
// open a tx on tmpdb for writes
tmptx, err := tmpdb.Begin(true)
if err != nil {
return err
}
defer func() {
if err != nil {
tmptx.Rollback()
}
}()
// open a tx on old db for read
tx, err := odb.Begin(false)
if err != nil {
return err
}
defer tx.Rollback()
c := tx.Cursor()
count := 0
for next, _ := c.First(); next != nil; next, _ = c.Next() {
b := tx.Bucket(next)
if b == nil {
return fmt.Errorf("backend: cannot defrag bucket %s", string(next))
}
tmpb, berr := tmptx.CreateBucketIfNotExists(next)
if berr != nil {
return berr
}
tmpb.FillPercent = 0.9 // for bucket2seq write in for each
if err = b.ForEach(func(k, v []byte) error {
count++
if count > limit {
err = tmptx.Commit()
if err != nil {
return err
}
tmptx, err = tmpdb.Begin(true)
if err != nil {
return err
}
tmpb = tmptx.Bucket(next)
tmpb.FillPercent = 0.9 // for bucket2seq write in for each
count = 0
}
return tmpb.Put(k, v)
}); err != nil {
return err
}
}
return tmptx.Commit()
}
func (b *backend) begin(write bool) *bolt.Tx {
b.mu.RLock()
tx := b.unsafeBegin(write)
b.mu.RUnlock()
size := tx.Size()
db := tx.DB()
stats := db.Stats()
atomic.StoreInt64(&b.size, size)
atomic.StoreInt64(&b.sizeInUse, size-(int64(stats.FreePageN)*int64(db.Info().PageSize)))
atomic.StoreInt64(&b.openReadTxN, int64(stats.OpenTxN))
return tx
}
func (b *backend) unsafeBegin(write bool) *bolt.Tx {
// gofail: var beforeStartDBTxn struct{}
tx, err := b.db.Begin(write)
// gofail: var afterStartDBTxn struct{}
if err != nil {
b.lg.Fatal("failed to begin tx", zap.Error(err))
}
return tx
}
func (b *backend) OpenReadTxN() int64 {
return atomic.LoadInt64(&b.openReadTxN)
}
type snapshot struct {
*bolt.Tx
stopc chan struct{}
donec chan struct{}
}
func (s *snapshot) Close() error {
close(s.stopc)
<-s.donec
return s.Tx.Rollback()
}