etcd/raft/multinode.go

488 lines
13 KiB
Go

package raft
import (
"github.com/coreos/etcd/Godeps/_workspace/src/golang.org/x/net/context"
pb "github.com/coreos/etcd/raft/raftpb"
)
// MultiNode represents a node that is participating in multiple consensus groups.
// A MultiNode is more efficient than a collection of Nodes.
// The methods of this interface correspond to the methods of Node and are described
// more fully there.
type MultiNode interface {
// CreateGroup adds a new group to the MultiNode. The application must call CreateGroup
// on each particpating node with the same group ID; it may create groups on demand as it
// receives messages. If the given storage contains existing log entries the list of peers
// may be empty.
CreateGroup(group uint64, peers []Peer, storage Storage) error
// RemoveGroup removes a group from the MultiNode.
RemoveGroup(group uint64) error
// Tick advances the internal logical clock by a single tick.
Tick()
// Campaign causes this MultiNode to transition to candidate state in the given group.
Campaign(ctx context.Context, group uint64) error
// Propose proposes that data be appended to the given group's log.
Propose(ctx context.Context, group uint64, data []byte) error
// ProposeConfChange proposes a config change.
ProposeConfChange(ctx context.Context, group uint64, cc pb.ConfChange) error
// ApplyConfChange applies a config change to the local node.
ApplyConfChange(group uint64, cc pb.ConfChange) *pb.ConfState
// Step advances the state machine using the given message.
Step(ctx context.Context, group uint64, msg pb.Message) error
// Ready returns a channel that returns the current point-in-time state of any ready
// groups. Only groups with something to report will appear in the map.
Ready() <-chan map[uint64]Ready
// Advance notifies the node that the application has applied and saved progress in the
// last Ready results. It must be called with the last value returned from the Ready()
// channel.
Advance(map[uint64]Ready)
// Status returns the current status of the given group.
Status(group uint64) Status
// Report reports the given node is not reachable for the last send.
ReportUnreachable(id, groupID uint64)
// ReportSnapshot reports the stutus of the sent snapshot.
ReportSnapshot(id, groupID uint64, status SnapshotStatus)
// Stop performs any necessary termination of the MultiNode.
Stop()
}
// StartMultiNode creates a MultiNode and starts its background goroutine.
// The id identifies this node and will be used as its node ID in all groups.
// The election and heartbeat timers are in units of ticks.
func StartMultiNode(id uint64, election, heartbeat int) MultiNode {
mn := newMultiNode(id, election, heartbeat)
go mn.run()
return &mn
}
// TODO(bdarnell): add group ID to the underlying protos?
type multiMessage struct {
group uint64
msg pb.Message
}
type multiConfChange struct {
group uint64
msg pb.ConfChange
ch chan pb.ConfState
}
type multiStatus struct {
group uint64
ch chan Status
}
type groupCreation struct {
id uint64
peers []Peer
storage Storage
// TODO(bdarnell): do we really need the done channel here? It's
// unlike the rest of this package, but we need the group creation
// to be complete before any Propose or other calls.
done chan struct{}
}
type groupRemoval struct {
id uint64
// TODO(bdarnell): see comment on groupCreation.done
done chan struct{}
}
type multiNode struct {
id uint64
election int
heartbeat int
groupc chan groupCreation
rmgroupc chan groupRemoval
propc chan multiMessage
recvc chan multiMessage
confc chan multiConfChange
readyc chan map[uint64]Ready
advancec chan map[uint64]Ready
tickc chan struct{}
stop chan struct{}
done chan struct{}
status chan multiStatus
}
func newMultiNode(id uint64, election, heartbeat int) multiNode {
return multiNode{
id: id,
election: election,
heartbeat: heartbeat,
groupc: make(chan groupCreation),
rmgroupc: make(chan groupRemoval),
propc: make(chan multiMessage),
recvc: make(chan multiMessage),
confc: make(chan multiConfChange),
readyc: make(chan map[uint64]Ready),
advancec: make(chan map[uint64]Ready),
tickc: make(chan struct{}),
stop: make(chan struct{}),
done: make(chan struct{}),
status: make(chan multiStatus),
}
}
type groupState struct {
id uint64
raft *raft
prevSoftSt *SoftState
prevHardSt pb.HardState
prevSnapi uint64
}
func (g *groupState) newReady() Ready {
return newReady(g.raft, g.prevSoftSt, g.prevHardSt)
}
func (g *groupState) commitReady(rd Ready) {
if rd.SoftState != nil {
g.prevSoftSt = rd.SoftState
}
if !IsEmptyHardState(rd.HardState) {
g.prevHardSt = rd.HardState
}
if g.prevHardSt.Commit != 0 {
// In most cases, prevHardSt and rd.HardState will be the same
// because when there are new entries to apply we just sent a
// HardState with an updated Commit value. However, on initial
// startup the two are different because we don't send a HardState
// until something changes, but we do send any un-applied but
// committed entries (and previously-committed entries may be
// incorporated into the snapshot, even if rd.CommittedEntries is
// empty). Therefore we mark all committed entries as applied
// whether they were included in rd.HardState or not.
g.raft.raftLog.appliedTo(g.prevHardSt.Commit)
}
if len(rd.Entries) > 0 {
e := rd.Entries[len(rd.Entries)-1]
g.raft.raftLog.stableTo(e.Index, e.Term)
}
if !IsEmptySnap(rd.Snapshot) {
g.prevSnapi = rd.Snapshot.Metadata.Index
g.raft.raftLog.stableSnapTo(g.prevSnapi)
}
}
func (mn *multiNode) run() {
groups := map[uint64]*groupState{}
rds := map[uint64]Ready{}
var advancec chan map[uint64]Ready
for {
// Only select readyc if we have something to report and we are not
// currently waiting for an advance.
readyc := mn.readyc
if len(rds) == 0 || advancec != nil {
readyc = nil
}
// group points to the group that was touched on this iteration (if any)
var group *groupState
select {
case gc := <-mn.groupc:
// TODO(bdarnell): pass applied through gc and into newRaft. Or get rid of it?
// TODO(bdarnell): make maxSizePerMsg(InflightMsgs) configurable
c := &Config{
ID: mn.id,
ElectionTick: mn.election,
HeartbeatTick: mn.heartbeat,
Storage: gc.storage,
MaxSizePerMsg: noLimit,
MaxInflightMsgs: 256,
}
r := newRaft(c)
group = &groupState{
id: gc.id,
raft: r,
}
groups[gc.id] = group
lastIndex, err := gc.storage.LastIndex()
if err != nil {
panic(err) // TODO(bdarnell)
}
// If the log is empty, this is a new group (like StartNode); otherwise it's
// restoring an existing group (like RestartNode).
// TODO(bdarnell): rethink group initialization and whether the application needs
// to be able to tell us when it expects the group to exist.
if lastIndex == 0 {
r.becomeFollower(1, None)
ents := make([]pb.Entry, len(gc.peers))
for i, peer := range gc.peers {
cc := pb.ConfChange{Type: pb.ConfChangeAddNode, NodeID: peer.ID, Context: peer.Context}
data, err := cc.Marshal()
if err != nil {
panic("unexpected marshal error")
}
ents[i] = pb.Entry{Type: pb.EntryConfChange, Term: 1, Index: uint64(i + 1), Data: data}
}
r.raftLog.append(ents...)
r.raftLog.committed = uint64(len(ents))
for _, peer := range gc.peers {
r.addNode(peer.ID)
}
}
// Set the initial hard and soft states after performing all initialization.
group.prevSoftSt = r.softState()
group.prevHardSt = r.HardState
close(gc.done)
case gr := <-mn.rmgroupc:
delete(groups, gr.id)
delete(rds, gr.id)
close(gr.done)
case mm := <-mn.propc:
// TODO(bdarnell): single-node impl doesn't read from propc unless the group
// has a leader; we can't do that since we have one propc for many groups.
// We'll have to buffer somewhere on a group-by-group basis, or just let
// raft.Step drop any such proposals on the floor.
mm.msg.From = mn.id
group = groups[mm.group]
group.raft.Step(mm.msg)
case mm := <-mn.recvc:
group = groups[mm.group]
if _, ok := group.raft.prs[mm.msg.From]; ok || !IsResponseMsg(mm.msg) {
group.raft.Step(mm.msg)
}
case mcc := <-mn.confc:
group = groups[mcc.group]
if mcc.msg.NodeID == None {
group.raft.resetPendingConf()
select {
case mcc.ch <- pb.ConfState{Nodes: group.raft.nodes()}:
case <-mn.done:
}
break
}
switch mcc.msg.Type {
case pb.ConfChangeAddNode:
group.raft.addNode(mcc.msg.NodeID)
case pb.ConfChangeRemoveNode:
group.raft.removeNode(mcc.msg.NodeID)
case pb.ConfChangeUpdateNode:
group.raft.resetPendingConf()
default:
panic("unexpected conf type")
}
select {
case mcc.ch <- pb.ConfState{Nodes: group.raft.nodes()}:
case <-mn.done:
}
case <-mn.tickc:
// TODO(bdarnell): instead of calling every group on every tick,
// we should have a priority queue of groups based on their next
// time-based event.
for _, g := range groups {
g.raft.tick()
rd := g.newReady()
if rd.containsUpdates() {
rds[g.id] = rd
}
}
case readyc <- rds:
// Clear outgoing messages as soon as we've passed them to the application.
for g := range rds {
groups[g].raft.msgs = nil
}
rds = map[uint64]Ready{}
advancec = mn.advancec
case advs := <-advancec:
for groupID, rd := range advs {
group, ok := groups[groupID]
if !ok {
continue
}
group.commitReady(rd)
// We've been accumulating new entries in rds which may now be obsolete.
// Drop the old Ready object and create a new one if needed.
delete(rds, groupID)
newRd := group.newReady()
if newRd.containsUpdates() {
rds[groupID] = newRd
}
}
advancec = nil
case ms := <-mn.status:
ms.ch <- getStatus(groups[ms.group].raft)
case <-mn.stop:
close(mn.done)
return
}
if group != nil {
rd := group.newReady()
if rd.containsUpdates() {
rds[group.id] = rd
}
}
}
}
func (mn *multiNode) CreateGroup(id uint64, peers []Peer, storage Storage) error {
gc := groupCreation{
id: id,
peers: peers,
storage: storage,
done: make(chan struct{}),
}
mn.groupc <- gc
select {
case <-gc.done:
return nil
case <-mn.done:
return ErrStopped
}
}
func (mn *multiNode) RemoveGroup(id uint64) error {
gr := groupRemoval{
id: id,
done: make(chan struct{}),
}
mn.rmgroupc <- gr
select {
case <-gr.done:
return nil
case <-mn.done:
return ErrStopped
}
}
func (mn *multiNode) Stop() {
select {
case mn.stop <- struct{}{}:
case <-mn.done:
}
<-mn.done
}
func (mn *multiNode) Tick() {
select {
case mn.tickc <- struct{}{}:
case <-mn.done:
}
}
func (mn *multiNode) Campaign(ctx context.Context, group uint64) error {
return mn.step(ctx, multiMessage{group,
pb.Message{
Type: pb.MsgHup,
},
})
}
func (mn *multiNode) Propose(ctx context.Context, group uint64, data []byte) error {
return mn.step(ctx, multiMessage{group,
pb.Message{
Type: pb.MsgProp,
Entries: []pb.Entry{
{Data: data},
},
}})
}
func (mn *multiNode) ProposeConfChange(ctx context.Context, group uint64, cc pb.ConfChange) error {
data, err := cc.Marshal()
if err != nil {
return err
}
return mn.Step(ctx, group,
pb.Message{
Type: pb.MsgProp,
Entries: []pb.Entry{
{Type: pb.EntryConfChange, Data: data},
},
})
}
func (mn *multiNode) step(ctx context.Context, m multiMessage) error {
ch := mn.recvc
if m.msg.Type == pb.MsgProp {
ch = mn.propc
}
select {
case ch <- m:
return nil
case <-ctx.Done():
return ctx.Err()
case <-mn.done:
return ErrStopped
}
}
func (mn *multiNode) ApplyConfChange(group uint64, cc pb.ConfChange) *pb.ConfState {
mcc := multiConfChange{group, cc, make(chan pb.ConfState)}
select {
case mn.confc <- mcc:
case <-mn.done:
}
select {
case cs := <-mcc.ch:
return &cs
case <-mn.done:
// Per comments on Node.ApplyConfChange, this method should never return nil.
return &pb.ConfState{}
}
}
func (mn *multiNode) Step(ctx context.Context, group uint64, m pb.Message) error {
// ignore unexpected local messages receiving over network
if IsLocalMsg(m) {
// TODO: return an error?
return nil
}
return mn.step(ctx, multiMessage{group, m})
}
func (mn *multiNode) Ready() <-chan map[uint64]Ready {
return mn.readyc
}
func (mn *multiNode) Advance(rds map[uint64]Ready) {
select {
case mn.advancec <- rds:
case <-mn.done:
}
}
func (mn *multiNode) Status(group uint64) Status {
ms := multiStatus{
group: group,
ch: make(chan Status),
}
mn.status <- ms
return <-ms.ch
}
func (mn *multiNode) ReportUnreachable(id, groupID uint64) {
select {
case mn.recvc <- multiMessage{
group: groupID,
msg: pb.Message{Type: pb.MsgUnreachable, From: id},
}:
case <-mn.done:
}
}
func (mn *multiNode) ReportSnapshot(id, groupID uint64, status SnapshotStatus) {
rej := status == SnapshotFailure
select {
case mn.recvc <- multiMessage{
group: groupID,
msg: pb.Message{Type: pb.MsgSnapStatus, From: id, Reject: rej},
}:
case <-mn.done:
}
}