etcd/raft/node_test.go

1021 lines
27 KiB
Go

// Copyright 2015 The etcd Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package raft
import (
"bytes"
"context"
"fmt"
"math"
"reflect"
"strings"
"testing"
"time"
"go.etcd.io/etcd/pkg/v3/testutil"
"go.etcd.io/etcd/v3/raft/raftpb"
)
// readyWithTimeout selects from n.Ready() with a 1-second timeout. It
// panics on timeout, which is better than the indefinite wait that
// would occur if this channel were read without being wrapped in a
// select.
func readyWithTimeout(n Node) Ready {
select {
case rd := <-n.Ready():
return rd
case <-time.After(time.Second):
panic("timed out waiting for ready")
}
}
// TestNodeStep ensures that node.Step sends msgProp to propc chan
// and other kinds of messages to recvc chan.
func TestNodeStep(t *testing.T) {
for i, msgn := range raftpb.MessageType_name {
n := &node{
propc: make(chan msgWithResult, 1),
recvc: make(chan raftpb.Message, 1),
}
msgt := raftpb.MessageType(i)
n.Step(context.TODO(), raftpb.Message{Type: msgt})
// Proposal goes to proc chan. Others go to recvc chan.
if msgt == raftpb.MsgProp {
select {
case <-n.propc:
default:
t.Errorf("%d: cannot receive %s on propc chan", msgt, msgn)
}
} else {
if IsLocalMsg(msgt) {
select {
case <-n.recvc:
t.Errorf("%d: step should ignore %s", msgt, msgn)
default:
}
} else {
select {
case <-n.recvc:
default:
t.Errorf("%d: cannot receive %s on recvc chan", msgt, msgn)
}
}
}
}
}
// Cancel and Stop should unblock Step()
func TestNodeStepUnblock(t *testing.T) {
// a node without buffer to block step
n := &node{
propc: make(chan msgWithResult),
done: make(chan struct{}),
}
ctx, cancel := context.WithCancel(context.Background())
stopFunc := func() { close(n.done) }
tests := []struct {
unblock func()
werr error
}{
{stopFunc, ErrStopped},
{cancel, context.Canceled},
}
for i, tt := range tests {
errc := make(chan error, 1)
go func() {
err := n.Step(ctx, raftpb.Message{Type: raftpb.MsgProp})
errc <- err
}()
tt.unblock()
select {
case err := <-errc:
if err != tt.werr {
t.Errorf("#%d: err = %v, want %v", i, err, tt.werr)
}
//clean up side-effect
if ctx.Err() != nil {
ctx = context.TODO()
}
select {
case <-n.done:
n.done = make(chan struct{})
default:
}
case <-time.After(1 * time.Second):
t.Fatalf("#%d: failed to unblock step", i)
}
}
}
// TestNodePropose ensures that node.Propose sends the given proposal to the underlying raft.
func TestNodePropose(t *testing.T) {
msgs := []raftpb.Message{}
appendStep := func(r *raft, m raftpb.Message) error {
msgs = append(msgs, m)
return nil
}
s := NewMemoryStorage()
rn := newTestRawNode(1, []uint64{1}, 10, 1, s)
n := newNode(rn)
r := rn.raft
go n.run()
if err := n.Campaign(context.TODO()); err != nil {
t.Fatal(err)
}
for {
rd := <-n.Ready()
s.Append(rd.Entries)
// change the step function to appendStep until this raft becomes leader
if rd.SoftState.Lead == r.id {
r.step = appendStep
n.Advance()
break
}
n.Advance()
}
n.Propose(context.TODO(), []byte("somedata"))
n.Stop()
if len(msgs) != 1 {
t.Fatalf("len(msgs) = %d, want %d", len(msgs), 1)
}
if msgs[0].Type != raftpb.MsgProp {
t.Errorf("msg type = %d, want %d", msgs[0].Type, raftpb.MsgProp)
}
if !bytes.Equal(msgs[0].Entries[0].Data, []byte("somedata")) {
t.Errorf("data = %v, want %v", msgs[0].Entries[0].Data, []byte("somedata"))
}
}
// TestNodeReadIndex ensures that node.ReadIndex sends the MsgReadIndex message to the underlying raft.
// It also ensures that ReadState can be read out through ready chan.
func TestNodeReadIndex(t *testing.T) {
msgs := []raftpb.Message{}
appendStep := func(r *raft, m raftpb.Message) error {
msgs = append(msgs, m)
return nil
}
wrs := []ReadState{{Index: uint64(1), RequestCtx: []byte("somedata")}}
s := NewMemoryStorage()
rn := newTestRawNode(1, []uint64{1}, 10, 1, s)
n := newNode(rn)
r := rn.raft
r.readStates = wrs
go n.run()
n.Campaign(context.TODO())
for {
rd := <-n.Ready()
if !reflect.DeepEqual(rd.ReadStates, wrs) {
t.Errorf("ReadStates = %v, want %v", rd.ReadStates, wrs)
}
s.Append(rd.Entries)
if rd.SoftState.Lead == r.id {
n.Advance()
break
}
n.Advance()
}
r.step = appendStep
wrequestCtx := []byte("somedata2")
n.ReadIndex(context.TODO(), wrequestCtx)
n.Stop()
if len(msgs) != 1 {
t.Fatalf("len(msgs) = %d, want %d", len(msgs), 1)
}
if msgs[0].Type != raftpb.MsgReadIndex {
t.Errorf("msg type = %d, want %d", msgs[0].Type, raftpb.MsgReadIndex)
}
if !bytes.Equal(msgs[0].Entries[0].Data, wrequestCtx) {
t.Errorf("data = %v, want %v", msgs[0].Entries[0].Data, wrequestCtx)
}
}
// TestDisableProposalForwarding ensures that proposals are not forwarded to
// the leader when DisableProposalForwarding is true.
func TestDisableProposalForwarding(t *testing.T) {
r1 := newTestRaft(1, []uint64{1, 2, 3}, 10, 1, NewMemoryStorage())
r2 := newTestRaft(2, []uint64{1, 2, 3}, 10, 1, NewMemoryStorage())
cfg3 := newTestConfig(3, []uint64{1, 2, 3}, 10, 1, NewMemoryStorage())
cfg3.DisableProposalForwarding = true
r3 := newRaft(cfg3)
nt := newNetwork(r1, r2, r3)
// elect r1 as leader
nt.send(raftpb.Message{From: 1, To: 1, Type: raftpb.MsgHup})
var testEntries = []raftpb.Entry{{Data: []byte("testdata")}}
// send proposal to r2(follower) where DisableProposalForwarding is false
r2.Step(raftpb.Message{From: 2, To: 2, Type: raftpb.MsgProp, Entries: testEntries})
// verify r2(follower) does forward the proposal when DisableProposalForwarding is false
if len(r2.msgs) != 1 {
t.Fatalf("len(r2.msgs) expected 1, got %d", len(r2.msgs))
}
// send proposal to r3(follower) where DisableProposalForwarding is true
r3.Step(raftpb.Message{From: 3, To: 3, Type: raftpb.MsgProp, Entries: testEntries})
// verify r3(follower) does not forward the proposal when DisableProposalForwarding is true
if len(r3.msgs) != 0 {
t.Fatalf("len(r3.msgs) expected 0, got %d", len(r3.msgs))
}
}
// TestNodeReadIndexToOldLeader ensures that raftpb.MsgReadIndex to old leader
// gets forwarded to the new leader and 'send' method does not attach its term.
func TestNodeReadIndexToOldLeader(t *testing.T) {
r1 := newTestRaft(1, []uint64{1, 2, 3}, 10, 1, NewMemoryStorage())
r2 := newTestRaft(2, []uint64{1, 2, 3}, 10, 1, NewMemoryStorage())
r3 := newTestRaft(3, []uint64{1, 2, 3}, 10, 1, NewMemoryStorage())
nt := newNetwork(r1, r2, r3)
// elect r1 as leader
nt.send(raftpb.Message{From: 1, To: 1, Type: raftpb.MsgHup})
var testEntries = []raftpb.Entry{{Data: []byte("testdata")}}
// send readindex request to r2(follower)
r2.Step(raftpb.Message{From: 2, To: 2, Type: raftpb.MsgReadIndex, Entries: testEntries})
// verify r2(follower) forwards this message to r1(leader) with term not set
if len(r2.msgs) != 1 {
t.Fatalf("len(r2.msgs) expected 1, got %d", len(r2.msgs))
}
readIndxMsg1 := raftpb.Message{From: 2, To: 1, Type: raftpb.MsgReadIndex, Entries: testEntries}
if !reflect.DeepEqual(r2.msgs[0], readIndxMsg1) {
t.Fatalf("r2.msgs[0] expected %+v, got %+v", readIndxMsg1, r2.msgs[0])
}
// send readindex request to r3(follower)
r3.Step(raftpb.Message{From: 3, To: 3, Type: raftpb.MsgReadIndex, Entries: testEntries})
// verify r3(follower) forwards this message to r1(leader) with term not set as well.
if len(r3.msgs) != 1 {
t.Fatalf("len(r3.msgs) expected 1, got %d", len(r3.msgs))
}
readIndxMsg2 := raftpb.Message{From: 3, To: 1, Type: raftpb.MsgReadIndex, Entries: testEntries}
if !reflect.DeepEqual(r3.msgs[0], readIndxMsg2) {
t.Fatalf("r3.msgs[0] expected %+v, got %+v", readIndxMsg2, r3.msgs[0])
}
// now elect r3 as leader
nt.send(raftpb.Message{From: 3, To: 3, Type: raftpb.MsgHup})
// let r1 steps the two messages previously we got from r2, r3
r1.Step(readIndxMsg1)
r1.Step(readIndxMsg2)
// verify r1(follower) forwards these messages again to r3(new leader)
if len(r1.msgs) != 2 {
t.Fatalf("len(r1.msgs) expected 1, got %d", len(r1.msgs))
}
readIndxMsg3 := raftpb.Message{From: 2, To: 3, Type: raftpb.MsgReadIndex, Entries: testEntries}
if !reflect.DeepEqual(r1.msgs[0], readIndxMsg3) {
t.Fatalf("r1.msgs[0] expected %+v, got %+v", readIndxMsg3, r1.msgs[0])
}
readIndxMsg3 = raftpb.Message{From: 3, To: 3, Type: raftpb.MsgReadIndex, Entries: testEntries}
if !reflect.DeepEqual(r1.msgs[1], readIndxMsg3) {
t.Fatalf("r1.msgs[1] expected %+v, got %+v", readIndxMsg3, r1.msgs[1])
}
}
// TestNodeProposeConfig ensures that node.ProposeConfChange sends the given configuration proposal
// to the underlying raft.
func TestNodeProposeConfig(t *testing.T) {
msgs := []raftpb.Message{}
appendStep := func(r *raft, m raftpb.Message) error {
msgs = append(msgs, m)
return nil
}
s := NewMemoryStorage()
rn := newTestRawNode(1, []uint64{1}, 10, 1, s)
n := newNode(rn)
r := rn.raft
go n.run()
n.Campaign(context.TODO())
for {
rd := <-n.Ready()
s.Append(rd.Entries)
// change the step function to appendStep until this raft becomes leader
if rd.SoftState.Lead == r.id {
r.step = appendStep
n.Advance()
break
}
n.Advance()
}
cc := raftpb.ConfChange{Type: raftpb.ConfChangeAddNode, NodeID: 1}
ccdata, err := cc.Marshal()
if err != nil {
t.Fatal(err)
}
n.ProposeConfChange(context.TODO(), cc)
n.Stop()
if len(msgs) != 1 {
t.Fatalf("len(msgs) = %d, want %d", len(msgs), 1)
}
if msgs[0].Type != raftpb.MsgProp {
t.Errorf("msg type = %d, want %d", msgs[0].Type, raftpb.MsgProp)
}
if !bytes.Equal(msgs[0].Entries[0].Data, ccdata) {
t.Errorf("data = %v, want %v", msgs[0].Entries[0].Data, ccdata)
}
}
// TestNodeProposeAddDuplicateNode ensures that two proposes to add the same node should
// not affect the later propose to add new node.
func TestNodeProposeAddDuplicateNode(t *testing.T) {
s := NewMemoryStorage()
rn := newTestRawNode(1, []uint64{1}, 10, 1, s)
n := newNode(rn)
go n.run()
n.Campaign(context.TODO())
rdyEntries := make([]raftpb.Entry, 0)
ticker := time.NewTicker(time.Millisecond * 100)
defer ticker.Stop()
done := make(chan struct{})
stop := make(chan struct{})
applyConfChan := make(chan struct{})
go func() {
defer close(done)
for {
select {
case <-stop:
return
case <-ticker.C:
n.Tick()
case rd := <-n.Ready():
s.Append(rd.Entries)
applied := false
for _, e := range rd.Entries {
rdyEntries = append(rdyEntries, e)
switch e.Type {
case raftpb.EntryNormal:
case raftpb.EntryConfChange:
var cc raftpb.ConfChange
cc.Unmarshal(e.Data)
n.ApplyConfChange(cc)
applied = true
}
}
n.Advance()
if applied {
applyConfChan <- struct{}{}
}
}
}
}()
cc1 := raftpb.ConfChange{Type: raftpb.ConfChangeAddNode, NodeID: 1}
ccdata1, _ := cc1.Marshal()
n.ProposeConfChange(context.TODO(), cc1)
<-applyConfChan
// try add the same node again
n.ProposeConfChange(context.TODO(), cc1)
<-applyConfChan
// the new node join should be ok
cc2 := raftpb.ConfChange{Type: raftpb.ConfChangeAddNode, NodeID: 2}
ccdata2, _ := cc2.Marshal()
n.ProposeConfChange(context.TODO(), cc2)
<-applyConfChan
close(stop)
<-done
if len(rdyEntries) != 4 {
t.Errorf("len(entry) = %d, want %d, %v\n", len(rdyEntries), 4, rdyEntries)
}
if !bytes.Equal(rdyEntries[1].Data, ccdata1) {
t.Errorf("data = %v, want %v", rdyEntries[1].Data, ccdata1)
}
if !bytes.Equal(rdyEntries[3].Data, ccdata2) {
t.Errorf("data = %v, want %v", rdyEntries[3].Data, ccdata2)
}
n.Stop()
}
// TestBlockProposal ensures that node will block proposal when it does not
// know who is the current leader; node will accept proposal when it knows
// who is the current leader.
func TestBlockProposal(t *testing.T) {
rn := newTestRawNode(1, []uint64{1}, 10, 1, NewMemoryStorage())
n := newNode(rn)
go n.run()
defer n.Stop()
errc := make(chan error, 1)
go func() {
errc <- n.Propose(context.TODO(), []byte("somedata"))
}()
testutil.WaitSchedule()
select {
case err := <-errc:
t.Errorf("err = %v, want blocking", err)
default:
}
n.Campaign(context.TODO())
select {
case err := <-errc:
if err != nil {
t.Errorf("err = %v, want %v", err, nil)
}
case <-time.After(10 * time.Second):
t.Errorf("blocking proposal, want unblocking")
}
}
func TestNodeProposeWaitDropped(t *testing.T) {
msgs := []raftpb.Message{}
droppingMsg := []byte("test_dropping")
dropStep := func(r *raft, m raftpb.Message) error {
if m.Type == raftpb.MsgProp && strings.Contains(m.String(), string(droppingMsg)) {
t.Logf("dropping message: %v", m.String())
return ErrProposalDropped
}
msgs = append(msgs, m)
return nil
}
s := NewMemoryStorage()
rn := newTestRawNode(1, []uint64{1}, 10, 1, s)
n := newNode(rn)
r := rn.raft
go n.run()
n.Campaign(context.TODO())
for {
rd := <-n.Ready()
s.Append(rd.Entries)
// change the step function to dropStep until this raft becomes leader
if rd.SoftState.Lead == r.id {
r.step = dropStep
n.Advance()
break
}
n.Advance()
}
proposalTimeout := time.Millisecond * 100
ctx, cancel := context.WithTimeout(context.Background(), proposalTimeout)
// propose with cancel should be cancelled earyly if dropped
err := n.Propose(ctx, droppingMsg)
if err != ErrProposalDropped {
t.Errorf("should drop proposal : %v", err)
}
cancel()
n.Stop()
if len(msgs) != 0 {
t.Fatalf("len(msgs) = %d, want %d", len(msgs), 1)
}
}
// TestNodeTick ensures that node.Tick() will increase the
// elapsed of the underlying raft state machine.
func TestNodeTick(t *testing.T) {
s := NewMemoryStorage()
rn := newTestRawNode(1, []uint64{1}, 10, 1, s)
n := newNode(rn)
r := rn.raft
go n.run()
elapsed := r.electionElapsed
n.Tick()
for len(n.tickc) != 0 {
time.Sleep(100 * time.Millisecond)
}
n.Stop()
if r.electionElapsed != elapsed+1 {
t.Errorf("elapsed = %d, want %d", r.electionElapsed, elapsed+1)
}
}
// TestNodeStop ensures that node.Stop() blocks until the node has stopped
// processing, and that it is idempotent
func TestNodeStop(t *testing.T) {
rn := newTestRawNode(1, []uint64{1}, 10, 1, NewMemoryStorage())
n := newNode(rn)
donec := make(chan struct{})
go func() {
n.run()
close(donec)
}()
status := n.Status()
n.Stop()
select {
case <-donec:
case <-time.After(time.Second):
t.Fatalf("timed out waiting for node to stop!")
}
emptyStatus := Status{}
if reflect.DeepEqual(status, emptyStatus) {
t.Errorf("status = %v, want not empty", status)
}
// Further status should return be empty, the node is stopped.
status = n.Status()
if !reflect.DeepEqual(status, emptyStatus) {
t.Errorf("status = %v, want empty", status)
}
// Subsequent Stops should have no effect.
n.Stop()
}
func TestReadyContainUpdates(t *testing.T) {
tests := []struct {
rd Ready
wcontain bool
}{
{Ready{}, false},
{Ready{SoftState: &SoftState{Lead: 1}}, true},
{Ready{HardState: raftpb.HardState{Vote: 1}}, true},
{Ready{Entries: make([]raftpb.Entry, 1)}, true},
{Ready{CommittedEntries: make([]raftpb.Entry, 1)}, true},
{Ready{Messages: make([]raftpb.Message, 1)}, true},
{Ready{Snapshot: raftpb.Snapshot{Metadata: raftpb.SnapshotMetadata{Index: 1}}}, true},
}
for i, tt := range tests {
if g := tt.rd.containsUpdates(); g != tt.wcontain {
t.Errorf("#%d: containUpdates = %v, want %v", i, g, tt.wcontain)
}
}
}
// TestNodeStart ensures that a node can be started correctly. The node should
// start with correct configuration change entries, and can accept and commit
// proposals.
func TestNodeStart(t *testing.T) {
ctx, cancel := context.WithCancel(context.Background())
defer cancel()
cc := raftpb.ConfChange{Type: raftpb.ConfChangeAddNode, NodeID: 1}
ccdata, err := cc.Marshal()
if err != nil {
t.Fatalf("unexpected marshal error: %v", err)
}
wants := []Ready{
{
HardState: raftpb.HardState{Term: 1, Commit: 1, Vote: 0},
Entries: []raftpb.Entry{
{Type: raftpb.EntryConfChange, Term: 1, Index: 1, Data: ccdata},
},
CommittedEntries: []raftpb.Entry{
{Type: raftpb.EntryConfChange, Term: 1, Index: 1, Data: ccdata},
},
MustSync: true,
},
{
HardState: raftpb.HardState{Term: 2, Commit: 3, Vote: 1},
Entries: []raftpb.Entry{{Term: 2, Index: 3, Data: []byte("foo")}},
CommittedEntries: []raftpb.Entry{{Term: 2, Index: 3, Data: []byte("foo")}},
MustSync: true,
},
}
storage := NewMemoryStorage()
c := &Config{
ID: 1,
ElectionTick: 10,
HeartbeatTick: 1,
Storage: storage,
MaxSizePerMsg: noLimit,
MaxInflightMsgs: 256,
}
n := StartNode(c, []Peer{{ID: 1}})
defer n.Stop()
g := <-n.Ready()
if !reflect.DeepEqual(g, wants[0]) {
t.Fatalf("#%d: g = %+v,\n w %+v", 1, g, wants[0])
} else {
storage.Append(g.Entries)
n.Advance()
}
if err := n.Campaign(ctx); err != nil {
t.Fatal(err)
}
rd := <-n.Ready()
storage.Append(rd.Entries)
n.Advance()
n.Propose(ctx, []byte("foo"))
if g2 := <-n.Ready(); !reflect.DeepEqual(g2, wants[1]) {
t.Errorf("#%d: g = %+v,\n w %+v", 2, g2, wants[1])
} else {
storage.Append(g2.Entries)
n.Advance()
}
select {
case rd := <-n.Ready():
t.Errorf("unexpected Ready: %+v", rd)
case <-time.After(time.Millisecond):
}
}
func TestNodeRestart(t *testing.T) {
entries := []raftpb.Entry{
{Term: 1, Index: 1},
{Term: 1, Index: 2, Data: []byte("foo")},
}
st := raftpb.HardState{Term: 1, Commit: 1}
want := Ready{
// No HardState is emitted because there was no change.
HardState: raftpb.HardState{},
// commit up to index commit index in st
CommittedEntries: entries[:st.Commit],
// MustSync is false because no HardState or new entries are provided.
MustSync: false,
}
storage := NewMemoryStorage()
storage.SetHardState(st)
storage.Append(entries)
c := &Config{
ID: 1,
ElectionTick: 10,
HeartbeatTick: 1,
Storage: storage,
MaxSizePerMsg: noLimit,
MaxInflightMsgs: 256,
}
n := RestartNode(c)
defer n.Stop()
if g := <-n.Ready(); !reflect.DeepEqual(g, want) {
t.Errorf("g = %+v,\n w %+v", g, want)
}
n.Advance()
select {
case rd := <-n.Ready():
t.Errorf("unexpected Ready: %+v", rd)
case <-time.After(time.Millisecond):
}
}
func TestNodeRestartFromSnapshot(t *testing.T) {
snap := raftpb.Snapshot{
Metadata: raftpb.SnapshotMetadata{
ConfState: raftpb.ConfState{Voters: []uint64{1, 2}},
Index: 2,
Term: 1,
},
}
entries := []raftpb.Entry{
{Term: 1, Index: 3, Data: []byte("foo")},
}
st := raftpb.HardState{Term: 1, Commit: 3}
want := Ready{
// No HardState is emitted because nothing changed relative to what is
// already persisted.
HardState: raftpb.HardState{},
// commit up to index commit index in st
CommittedEntries: entries,
// MustSync is only true when there is a new HardState or new entries;
// neither is the case here.
MustSync: false,
}
s := NewMemoryStorage()
s.SetHardState(st)
s.ApplySnapshot(snap)
s.Append(entries)
c := &Config{
ID: 1,
ElectionTick: 10,
HeartbeatTick: 1,
Storage: s,
MaxSizePerMsg: noLimit,
MaxInflightMsgs: 256,
}
n := RestartNode(c)
defer n.Stop()
if g := <-n.Ready(); !reflect.DeepEqual(g, want) {
t.Errorf("g = %+v,\n w %+v", g, want)
} else {
n.Advance()
}
select {
case rd := <-n.Ready():
t.Errorf("unexpected Ready: %+v", rd)
case <-time.After(time.Millisecond):
}
}
func TestNodeAdvance(t *testing.T) {
ctx, cancel := context.WithCancel(context.Background())
defer cancel()
storage := NewMemoryStorage()
c := &Config{
ID: 1,
ElectionTick: 10,
HeartbeatTick: 1,
Storage: storage,
MaxSizePerMsg: noLimit,
MaxInflightMsgs: 256,
}
n := StartNode(c, []Peer{{ID: 1}})
defer n.Stop()
rd := <-n.Ready()
storage.Append(rd.Entries)
n.Advance()
n.Campaign(ctx)
<-n.Ready()
n.Propose(ctx, []byte("foo"))
select {
case rd = <-n.Ready():
t.Fatalf("unexpected Ready before Advance: %+v", rd)
case <-time.After(time.Millisecond):
}
storage.Append(rd.Entries)
n.Advance()
select {
case <-n.Ready():
case <-time.After(100 * time.Millisecond):
t.Errorf("expect Ready after Advance, but there is no Ready available")
}
}
func TestSoftStateEqual(t *testing.T) {
tests := []struct {
st *SoftState
we bool
}{
{&SoftState{}, true},
{&SoftState{Lead: 1}, false},
{&SoftState{RaftState: StateLeader}, false},
}
for i, tt := range tests {
if g := tt.st.equal(&SoftState{}); g != tt.we {
t.Errorf("#%d, equal = %v, want %v", i, g, tt.we)
}
}
}
func TestIsHardStateEqual(t *testing.T) {
tests := []struct {
st raftpb.HardState
we bool
}{
{emptyState, true},
{raftpb.HardState{Vote: 1}, false},
{raftpb.HardState{Commit: 1}, false},
{raftpb.HardState{Term: 1}, false},
}
for i, tt := range tests {
if isHardStateEqual(tt.st, emptyState) != tt.we {
t.Errorf("#%d, equal = %v, want %v", i, isHardStateEqual(tt.st, emptyState), tt.we)
}
}
}
func TestNodeProposeAddLearnerNode(t *testing.T) {
ticker := time.NewTicker(time.Millisecond * 100)
defer ticker.Stop()
s := NewMemoryStorage()
rn := newTestRawNode(1, []uint64{1}, 10, 1, s)
n := newNode(rn)
go n.run()
n.Campaign(context.TODO())
stop := make(chan struct{})
done := make(chan struct{})
applyConfChan := make(chan struct{})
go func() {
defer close(done)
for {
select {
case <-stop:
return
case <-ticker.C:
n.Tick()
case rd := <-n.Ready():
s.Append(rd.Entries)
t.Logf("raft: %v", rd.Entries)
for _, ent := range rd.Entries {
if ent.Type != raftpb.EntryConfChange {
continue
}
var cc raftpb.ConfChange
cc.Unmarshal(ent.Data)
state := n.ApplyConfChange(cc)
if len(state.Learners) == 0 ||
state.Learners[0] != cc.NodeID ||
cc.NodeID != 2 {
t.Errorf("apply conf change should return new added learner: %v", state.String())
}
if len(state.Voters) != 1 {
t.Errorf("add learner should not change the nodes: %v", state.String())
}
t.Logf("apply raft conf %v changed to: %v", cc, state.String())
applyConfChan <- struct{}{}
}
n.Advance()
}
}
}()
cc := raftpb.ConfChange{Type: raftpb.ConfChangeAddLearnerNode, NodeID: 2}
n.ProposeConfChange(context.TODO(), cc)
<-applyConfChan
close(stop)
<-done
}
func TestAppendPagination(t *testing.T) {
const maxSizePerMsg = 2048
n := newNetworkWithConfig(func(c *Config) {
c.MaxSizePerMsg = maxSizePerMsg
}, nil, nil, nil)
seenFullMessage := false
// Inspect all messages to see that we never exceed the limit, but
// we do see messages of larger than half the limit.
n.msgHook = func(m raftpb.Message) bool {
if m.Type == raftpb.MsgApp {
size := 0
for _, e := range m.Entries {
size += len(e.Data)
}
if size > maxSizePerMsg {
t.Errorf("sent MsgApp that is too large: %d bytes", size)
}
if size > maxSizePerMsg/2 {
seenFullMessage = true
}
}
return true
}
n.send(raftpb.Message{From: 1, To: 1, Type: raftpb.MsgHup})
// Partition the network while we make our proposals. This forces
// the entries to be batched into larger messages.
n.isolate(1)
blob := []byte(strings.Repeat("a", 1000))
for i := 0; i < 5; i++ {
n.send(raftpb.Message{From: 1, To: 1, Type: raftpb.MsgProp, Entries: []raftpb.Entry{{Data: blob}}})
}
n.recover()
// After the partition recovers, tick the clock to wake everything
// back up and send the messages.
n.send(raftpb.Message{From: 1, To: 1, Type: raftpb.MsgBeat})
if !seenFullMessage {
t.Error("didn't see any messages more than half the max size; something is wrong with this test")
}
}
func TestCommitPagination(t *testing.T) {
s := NewMemoryStorage()
cfg := newTestConfig(1, []uint64{1}, 10, 1, s)
cfg.MaxCommittedSizePerReady = 2048
rn, err := NewRawNode(cfg)
if err != nil {
t.Fatal(err)
}
n := newNode(rn)
go n.run()
n.Campaign(context.TODO())
rd := readyWithTimeout(&n)
if len(rd.CommittedEntries) != 1 {
t.Fatalf("expected 1 (empty) entry, got %d", len(rd.CommittedEntries))
}
s.Append(rd.Entries)
n.Advance()
blob := []byte(strings.Repeat("a", 1000))
for i := 0; i < 3; i++ {
if err := n.Propose(context.TODO(), blob); err != nil {
t.Fatal(err)
}
}
// The 3 proposals will commit in two batches.
rd = readyWithTimeout(&n)
if len(rd.CommittedEntries) != 2 {
t.Fatalf("expected 2 entries in first batch, got %d", len(rd.CommittedEntries))
}
s.Append(rd.Entries)
n.Advance()
rd = readyWithTimeout(&n)
if len(rd.CommittedEntries) != 1 {
t.Fatalf("expected 1 entry in second batch, got %d", len(rd.CommittedEntries))
}
s.Append(rd.Entries)
n.Advance()
}
type ignoreSizeHintMemStorage struct {
*MemoryStorage
}
func (s *ignoreSizeHintMemStorage) Entries(lo, hi uint64, maxSize uint64) ([]raftpb.Entry, error) {
return s.MemoryStorage.Entries(lo, hi, math.MaxUint64)
}
// TestNodeCommitPaginationAfterRestart regression tests a scenario in which the
// Storage's Entries size limitation is slightly more permissive than Raft's
// internal one. The original bug was the following:
//
// - node learns that index 11 (or 100, doesn't matter) is committed
// - nextEnts returns index 1..10 in CommittedEntries due to size limiting. However,
// index 10 already exceeds maxBytes, due to a user-provided impl of Entries.
// - Commit index gets bumped to 10
// - the node persists the HardState, but crashes before applying the entries
// - upon restart, the storage returns the same entries, but `slice` takes a different code path
// (since it is now called with an upper bound of 10) and removes the last entry.
// - Raft emits a HardState with a regressing commit index.
//
// A simpler version of this test would have the storage return a lot less entries than dictated
// by maxSize (for example, exactly one entry) after the restart, resulting in a larger regression.
// This wouldn't need to exploit anything about Raft-internal code paths to fail.
func TestNodeCommitPaginationAfterRestart(t *testing.T) {
s := &ignoreSizeHintMemStorage{
MemoryStorage: NewMemoryStorage(),
}
persistedHardState := raftpb.HardState{
Term: 1,
Vote: 1,
Commit: 10,
}
s.hardState = persistedHardState
s.ents = make([]raftpb.Entry, 10)
var size uint64
for i := range s.ents {
ent := raftpb.Entry{
Term: 1,
Index: uint64(i + 1),
Type: raftpb.EntryNormal,
Data: []byte("a"),
}
s.ents[i] = ent
size += uint64(ent.Size())
}
cfg := newTestConfig(1, []uint64{1}, 10, 1, s)
// Set a MaxSizePerMsg that would suggest to Raft that the last committed entry should
// not be included in the initial rd.CommittedEntries. However, our storage will ignore
// this and *will* return it (which is how the Commit index ended up being 10 initially).
cfg.MaxSizePerMsg = size - uint64(s.ents[len(s.ents)-1].Size()) - 1
rn, err := NewRawNode(cfg)
if err != nil {
t.Fatal(err)
}
n := newNode(rn)
go n.run()
defer n.Stop()
rd := readyWithTimeout(&n)
if !IsEmptyHardState(rd.HardState) && rd.HardState.Commit < persistedHardState.Commit {
t.Errorf("HardState regressed: Commit %d -> %d\nCommitting:\n%+v",
persistedHardState.Commit, rd.HardState.Commit,
DescribeEntries(rd.CommittedEntries, func(data []byte) string { return fmt.Sprintf("%q", data) }),
)
}
}