etcd/raft/rawnode_test.go

1108 lines
32 KiB
Go

// Copyright 2015 The etcd Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package raft
import (
"bytes"
"context"
"fmt"
"math"
"reflect"
"testing"
"go.etcd.io/etcd/v3/raft/quorum"
pb "go.etcd.io/etcd/v3/raft/raftpb"
"go.etcd.io/etcd/v3/raft/tracker"
)
// rawNodeAdapter is essentially a lint that makes sure that RawNode implements
// "most of" Node. The exceptions (some of which are easy to fix) are listed
// below.
type rawNodeAdapter struct {
*RawNode
}
var _ Node = (*rawNodeAdapter)(nil)
// Node specifies lead, which is pointless, can just be filled in.
func (a *rawNodeAdapter) TransferLeadership(ctx context.Context, lead, transferee uint64) {
a.RawNode.TransferLeader(transferee)
}
// Node has a goroutine, RawNode doesn't need this.
func (a *rawNodeAdapter) Stop() {}
// RawNode returns a *Status.
func (a *rawNodeAdapter) Status() Status { return a.RawNode.Status() }
// RawNode takes a Ready. It doesn't really have to do that I think? It can hold on
// to it internally. But maybe that approach is frail.
func (a *rawNodeAdapter) Advance() { a.RawNode.Advance(Ready{}) }
// RawNode returns a Ready, not a chan of one.
func (a *rawNodeAdapter) Ready() <-chan Ready { return nil }
// Node takes more contexts. Easy enough to fix.
func (a *rawNodeAdapter) Campaign(context.Context) error { return a.RawNode.Campaign() }
func (a *rawNodeAdapter) ReadIndex(_ context.Context, rctx []byte) error {
a.RawNode.ReadIndex(rctx)
// RawNode swallowed the error in ReadIndex, it probably should not do that.
return nil
}
func (a *rawNodeAdapter) Step(_ context.Context, m pb.Message) error { return a.RawNode.Step(m) }
func (a *rawNodeAdapter) Propose(_ context.Context, data []byte) error {
return a.RawNode.Propose(data)
}
func (a *rawNodeAdapter) ProposeConfChange(_ context.Context, cc pb.ConfChangeI) error {
return a.RawNode.ProposeConfChange(cc)
}
// TestRawNodeStep ensures that RawNode.Step ignore local message.
func TestRawNodeStep(t *testing.T) {
for i, msgn := range pb.MessageType_name {
t.Run(msgn, func(t *testing.T) {
s := NewMemoryStorage()
s.SetHardState(pb.HardState{Term: 1, Commit: 1})
s.Append([]pb.Entry{{Term: 1, Index: 1}})
if err := s.ApplySnapshot(pb.Snapshot{Metadata: pb.SnapshotMetadata{
ConfState: pb.ConfState{
Voters: []uint64{1},
},
Index: 1,
Term: 1,
}}); err != nil {
t.Fatal(err)
}
// Append an empty entry to make sure the non-local messages (like
// vote requests) are ignored and don't trigger assertions.
rawNode, err := NewRawNode(newTestConfig(1, nil, 10, 1, s))
if err != nil {
t.Fatal(err)
}
msgt := pb.MessageType(i)
err = rawNode.Step(pb.Message{Type: msgt})
// LocalMsg should be ignored.
if IsLocalMsg(msgt) {
if err != ErrStepLocalMsg {
t.Errorf("%d: step should ignore %s", msgt, msgn)
}
}
})
}
}
// TestNodeStepUnblock from node_test.go has no equivalent in rawNode because there is
// no goroutine in RawNode.
// TestRawNodeProposeAndConfChange tests the configuration change mechanism. Each
// test case sends a configuration change which is either simple or joint, verifies
// that it applies and that the resulting ConfState matches expectations, and for
// joint configurations makes sure that they are exited successfully.
func TestRawNodeProposeAndConfChange(t *testing.T) {
testCases := []struct {
cc pb.ConfChangeI
exp pb.ConfState
exp2 *pb.ConfState
}{
// V1 config change.
{
pb.ConfChange{Type: pb.ConfChangeAddNode, NodeID: 2},
pb.ConfState{Voters: []uint64{1, 2}},
nil,
},
// Proposing the same as a V2 change works just the same, without entering
// a joint config.
{
pb.ConfChangeV2{Changes: []pb.ConfChangeSingle{
{Type: pb.ConfChangeAddNode, NodeID: 2},
},
},
pb.ConfState{Voters: []uint64{1, 2}},
nil,
},
// Ditto if we add it as a learner instead.
{
pb.ConfChangeV2{Changes: []pb.ConfChangeSingle{
{Type: pb.ConfChangeAddLearnerNode, NodeID: 2},
},
},
pb.ConfState{Voters: []uint64{1}, Learners: []uint64{2}},
nil,
},
// We can ask explicitly for joint consensus if we want it.
{
pb.ConfChangeV2{Changes: []pb.ConfChangeSingle{
{Type: pb.ConfChangeAddLearnerNode, NodeID: 2},
},
Transition: pb.ConfChangeTransitionJointExplicit,
},
pb.ConfState{Voters: []uint64{1}, VotersOutgoing: []uint64{1}, Learners: []uint64{2}},
&pb.ConfState{Voters: []uint64{1}, Learners: []uint64{2}},
},
// Ditto, but with implicit transition (the harness checks this).
{
pb.ConfChangeV2{Changes: []pb.ConfChangeSingle{
{Type: pb.ConfChangeAddLearnerNode, NodeID: 2},
},
Transition: pb.ConfChangeTransitionJointImplicit,
},
pb.ConfState{
Voters: []uint64{1}, VotersOutgoing: []uint64{1}, Learners: []uint64{2},
AutoLeave: true,
},
&pb.ConfState{Voters: []uint64{1}, Learners: []uint64{2}},
},
// Add a new node and demote n1. This exercises the interesting case in
// which we really need joint config changes and also need LearnersNext.
{
pb.ConfChangeV2{Changes: []pb.ConfChangeSingle{
{NodeID: 2, Type: pb.ConfChangeAddNode},
{NodeID: 1, Type: pb.ConfChangeAddLearnerNode},
{NodeID: 3, Type: pb.ConfChangeAddLearnerNode},
},
},
pb.ConfState{
Voters: []uint64{2},
VotersOutgoing: []uint64{1},
Learners: []uint64{3},
LearnersNext: []uint64{1},
AutoLeave: true,
},
&pb.ConfState{Voters: []uint64{2}, Learners: []uint64{1, 3}},
},
// Ditto explicit.
{
pb.ConfChangeV2{Changes: []pb.ConfChangeSingle{
{NodeID: 2, Type: pb.ConfChangeAddNode},
{NodeID: 1, Type: pb.ConfChangeAddLearnerNode},
{NodeID: 3, Type: pb.ConfChangeAddLearnerNode},
},
Transition: pb.ConfChangeTransitionJointExplicit,
},
pb.ConfState{
Voters: []uint64{2},
VotersOutgoing: []uint64{1},
Learners: []uint64{3},
LearnersNext: []uint64{1},
},
&pb.ConfState{Voters: []uint64{2}, Learners: []uint64{1, 3}},
},
// Ditto implicit.
{
pb.ConfChangeV2{
Changes: []pb.ConfChangeSingle{
{NodeID: 2, Type: pb.ConfChangeAddNode},
{NodeID: 1, Type: pb.ConfChangeAddLearnerNode},
{NodeID: 3, Type: pb.ConfChangeAddLearnerNode},
},
Transition: pb.ConfChangeTransitionJointImplicit,
},
pb.ConfState{
Voters: []uint64{2},
VotersOutgoing: []uint64{1},
Learners: []uint64{3},
LearnersNext: []uint64{1},
AutoLeave: true,
},
&pb.ConfState{Voters: []uint64{2}, Learners: []uint64{1, 3}},
},
}
for _, tc := range testCases {
t.Run("", func(t *testing.T) {
s := NewMemoryStorage()
rawNode, err := NewRawNode(newTestConfig(1, []uint64{1}, 10, 1, s))
if err != nil {
t.Fatal(err)
}
rawNode.Campaign()
proposed := false
var (
lastIndex uint64
ccdata []byte
)
// Propose the ConfChange, wait until it applies, save the resulting
// ConfState.
var cs *pb.ConfState
for cs == nil {
rd := rawNode.Ready()
s.Append(rd.Entries)
for _, ent := range rd.CommittedEntries {
var cc pb.ConfChangeI
if ent.Type == pb.EntryConfChange {
var ccc pb.ConfChange
if err = ccc.Unmarshal(ent.Data); err != nil {
t.Fatal(err)
}
cc = ccc
} else if ent.Type == pb.EntryConfChangeV2 {
var ccc pb.ConfChangeV2
if err = ccc.Unmarshal(ent.Data); err != nil {
t.Fatal(err)
}
cc = ccc
}
if cc != nil {
cs = rawNode.ApplyConfChange(cc)
}
}
rawNode.Advance(rd)
// Once we are the leader, propose a command and a ConfChange.
if !proposed && rd.SoftState.Lead == rawNode.raft.id {
if err = rawNode.Propose([]byte("somedata")); err != nil {
t.Fatal(err)
}
if ccv1, ok := tc.cc.AsV1(); ok {
ccdata, err = ccv1.Marshal()
if err != nil {
t.Fatal(err)
}
rawNode.ProposeConfChange(ccv1)
} else {
ccv2 := tc.cc.AsV2()
ccdata, err = ccv2.Marshal()
if err != nil {
t.Fatal(err)
}
rawNode.ProposeConfChange(ccv2)
}
proposed = true
}
}
// Check that the last index is exactly the conf change we put in,
// down to the bits. Note that this comes from the Storage, which
// will not reflect any unstable entries that we'll only be presented
// with in the next Ready.
lastIndex, err = s.LastIndex()
if err != nil {
t.Fatal(err)
}
entries, err := s.Entries(lastIndex-1, lastIndex+1, noLimit)
if err != nil {
t.Fatal(err)
}
if len(entries) != 2 {
t.Fatalf("len(entries) = %d, want %d", len(entries), 2)
}
if !bytes.Equal(entries[0].Data, []byte("somedata")) {
t.Errorf("entries[0].Data = %v, want %v", entries[0].Data, []byte("somedata"))
}
typ := pb.EntryConfChange
if _, ok := tc.cc.AsV1(); !ok {
typ = pb.EntryConfChangeV2
}
if entries[1].Type != typ {
t.Fatalf("type = %v, want %v", entries[1].Type, typ)
}
if !bytes.Equal(entries[1].Data, ccdata) {
t.Errorf("data = %v, want %v", entries[1].Data, ccdata)
}
if exp := &tc.exp; !reflect.DeepEqual(exp, cs) {
t.Fatalf("exp:\n%+v\nact:\n%+v", exp, cs)
}
var maybePlusOne uint64
if autoLeave, ok := tc.cc.AsV2().EnterJoint(); ok && autoLeave {
// If this is an auto-leaving joint conf change, it will have
// appended the entry that auto-leaves, so add one to the last
// index that forms the basis of our expectations on
// pendingConfIndex. (Recall that lastIndex was taken from stable
// storage, but this auto-leaving entry isn't on stable storage
// yet).
maybePlusOne = 1
}
if exp, act := lastIndex+maybePlusOne, rawNode.raft.pendingConfIndex; exp != act {
t.Fatalf("pendingConfIndex: expected %d, got %d", exp, act)
}
// Move the RawNode along. If the ConfChange was simple, nothing else
// should happen. Otherwise, we're in a joint state, which is either
// left automatically or not. If not, we add the proposal that leaves
// it manually.
rd := rawNode.Ready()
var context []byte
if !tc.exp.AutoLeave {
if len(rd.Entries) > 0 {
t.Fatal("expected no more entries")
}
if tc.exp2 == nil {
return
}
context = []byte("manual")
t.Log("leaving joint state manually")
if err := rawNode.ProposeConfChange(pb.ConfChangeV2{Context: context}); err != nil {
t.Fatal(err)
}
rd = rawNode.Ready()
}
// Check that the right ConfChange comes out.
if len(rd.Entries) != 1 || rd.Entries[0].Type != pb.EntryConfChangeV2 {
t.Fatalf("expected exactly one more entry, got %+v", rd)
}
var cc pb.ConfChangeV2
if err := cc.Unmarshal(rd.Entries[0].Data); err != nil {
t.Fatal(err)
}
if !reflect.DeepEqual(cc, pb.ConfChangeV2{Context: context}) {
t.Fatalf("expected zero ConfChangeV2, got %+v", cc)
}
// Lie and pretend the ConfChange applied. It won't do so because now
// we require the joint quorum and we're only running one node.
cs = rawNode.ApplyConfChange(cc)
if exp := tc.exp2; !reflect.DeepEqual(exp, cs) {
t.Fatalf("exp:\n%+v\nact:\n%+v", exp, cs)
}
})
}
}
// TestRawNodeJointAutoLeave tests the configuration change auto leave even leader
// lost leadership.
func TestRawNodeJointAutoLeave(t *testing.T) {
testCc := pb.ConfChangeV2{Changes: []pb.ConfChangeSingle{
{Type: pb.ConfChangeAddLearnerNode, NodeID: 2},
},
Transition: pb.ConfChangeTransitionJointImplicit,
}
expCs := pb.ConfState{
Voters: []uint64{1}, VotersOutgoing: []uint64{1}, Learners: []uint64{2},
AutoLeave: true,
}
exp2Cs := pb.ConfState{Voters: []uint64{1}, Learners: []uint64{2}}
t.Run("", func(t *testing.T) {
s := NewMemoryStorage()
rawNode, err := NewRawNode(newTestConfig(1, []uint64{1}, 10, 1, s))
if err != nil {
t.Fatal(err)
}
rawNode.Campaign()
proposed := false
var (
lastIndex uint64
ccdata []byte
)
// Propose the ConfChange, wait until it applies, save the resulting
// ConfState.
var cs *pb.ConfState
for cs == nil {
rd := rawNode.Ready()
s.Append(rd.Entries)
for _, ent := range rd.CommittedEntries {
var cc pb.ConfChangeI
if ent.Type == pb.EntryConfChangeV2 {
var ccc pb.ConfChangeV2
if err = ccc.Unmarshal(ent.Data); err != nil {
t.Fatal(err)
}
cc = &ccc
}
if cc != nil {
// Force it step down.
rawNode.Step(pb.Message{Type: pb.MsgHeartbeatResp, From: 1, Term: rawNode.raft.Term + 1})
cs = rawNode.ApplyConfChange(cc)
}
}
rawNode.Advance(rd)
// Once we are the leader, propose a command and a ConfChange.
if !proposed && rd.SoftState.Lead == rawNode.raft.id {
if err = rawNode.Propose([]byte("somedata")); err != nil {
t.Fatal(err)
}
ccdata, err = testCc.Marshal()
if err != nil {
t.Fatal(err)
}
rawNode.ProposeConfChange(testCc)
proposed = true
}
}
// Check that the last index is exactly the conf change we put in,
// down to the bits. Note that this comes from the Storage, which
// will not reflect any unstable entries that we'll only be presented
// with in the next Ready.
lastIndex, err = s.LastIndex()
if err != nil {
t.Fatal(err)
}
entries, err := s.Entries(lastIndex-1, lastIndex+1, noLimit)
if err != nil {
t.Fatal(err)
}
if len(entries) != 2 {
t.Fatalf("len(entries) = %d, want %d", len(entries), 2)
}
if !bytes.Equal(entries[0].Data, []byte("somedata")) {
t.Errorf("entries[0].Data = %v, want %v", entries[0].Data, []byte("somedata"))
}
if entries[1].Type != pb.EntryConfChangeV2 {
t.Fatalf("type = %v, want %v", entries[1].Type, pb.EntryConfChangeV2)
}
if !bytes.Equal(entries[1].Data, ccdata) {
t.Errorf("data = %v, want %v", entries[1].Data, ccdata)
}
if !reflect.DeepEqual(&expCs, cs) {
t.Fatalf("exp:\n%+v\nact:\n%+v", expCs, cs)
}
if 0 != rawNode.raft.pendingConfIndex {
t.Fatalf("pendingConfIndex: expected %d, got %d", 0, rawNode.raft.pendingConfIndex)
}
// Move the RawNode along. It should not leave joint because it's follower.
rd := rawNode.readyWithoutAccept()
// Check that the right ConfChange comes out.
if len(rd.Entries) != 0 {
t.Fatalf("expected zero entry, got %+v", rd)
}
// Make it leader again. It should leave joint automatically after moving apply index.
rawNode.Campaign()
rd = rawNode.Ready()
s.Append(rd.Entries)
rawNode.Advance(rd)
rd = rawNode.Ready()
s.Append(rd.Entries)
// Check that the right ConfChange comes out.
if len(rd.Entries) != 1 || rd.Entries[0].Type != pb.EntryConfChangeV2 {
t.Fatalf("expected exactly one more entry, got %+v", rd)
}
var cc pb.ConfChangeV2
if err := cc.Unmarshal(rd.Entries[0].Data); err != nil {
t.Fatal(err)
}
if !reflect.DeepEqual(cc, pb.ConfChangeV2{Context: nil}) {
t.Fatalf("expected zero ConfChangeV2, got %+v", cc)
}
// Lie and pretend the ConfChange applied. It won't do so because now
// we require the joint quorum and we're only running one node.
cs = rawNode.ApplyConfChange(cc)
if exp := exp2Cs; !reflect.DeepEqual(&exp, cs) {
t.Fatalf("exp:\n%+v\nact:\n%+v", exp, cs)
}
})
}
// TestRawNodeProposeAddDuplicateNode ensures that two proposes to add the same node should
// not affect the later propose to add new node.
func TestRawNodeProposeAddDuplicateNode(t *testing.T) {
s := NewMemoryStorage()
rawNode, err := NewRawNode(newTestConfig(1, []uint64{1}, 10, 1, s))
if err != nil {
t.Fatal(err)
}
rd := rawNode.Ready()
s.Append(rd.Entries)
rawNode.Advance(rd)
rawNode.Campaign()
for {
rd = rawNode.Ready()
s.Append(rd.Entries)
if rd.SoftState.Lead == rawNode.raft.id {
rawNode.Advance(rd)
break
}
rawNode.Advance(rd)
}
proposeConfChangeAndApply := func(cc pb.ConfChange) {
rawNode.ProposeConfChange(cc)
rd = rawNode.Ready()
s.Append(rd.Entries)
for _, entry := range rd.CommittedEntries {
if entry.Type == pb.EntryConfChange {
var cc pb.ConfChange
cc.Unmarshal(entry.Data)
rawNode.ApplyConfChange(cc)
}
}
rawNode.Advance(rd)
}
cc1 := pb.ConfChange{Type: pb.ConfChangeAddNode, NodeID: 1}
ccdata1, err := cc1.Marshal()
if err != nil {
t.Fatal(err)
}
proposeConfChangeAndApply(cc1)
// try to add the same node again
proposeConfChangeAndApply(cc1)
// the new node join should be ok
cc2 := pb.ConfChange{Type: pb.ConfChangeAddNode, NodeID: 2}
ccdata2, err := cc2.Marshal()
if err != nil {
t.Fatal(err)
}
proposeConfChangeAndApply(cc2)
lastIndex, err := s.LastIndex()
if err != nil {
t.Fatal(err)
}
// the last three entries should be: ConfChange cc1, cc1, cc2
entries, err := s.Entries(lastIndex-2, lastIndex+1, noLimit)
if err != nil {
t.Fatal(err)
}
if len(entries) != 3 {
t.Fatalf("len(entries) = %d, want %d", len(entries), 3)
}
if !bytes.Equal(entries[0].Data, ccdata1) {
t.Errorf("entries[0].Data = %v, want %v", entries[0].Data, ccdata1)
}
if !bytes.Equal(entries[2].Data, ccdata2) {
t.Errorf("entries[2].Data = %v, want %v", entries[2].Data, ccdata2)
}
}
// TestRawNodeReadIndex ensures that Rawnode.ReadIndex sends the MsgReadIndex message
// to the underlying raft. It also ensures that ReadState can be read out.
func TestRawNodeReadIndex(t *testing.T) {
msgs := []pb.Message{}
appendStep := func(r *raft, m pb.Message) error {
msgs = append(msgs, m)
return nil
}
wrs := []ReadState{{Index: uint64(1), RequestCtx: []byte("somedata")}}
s := NewMemoryStorage()
c := newTestConfig(1, []uint64{1}, 10, 1, s)
rawNode, err := NewRawNode(c)
if err != nil {
t.Fatal(err)
}
rawNode.raft.readStates = wrs
// ensure the ReadStates can be read out
hasReady := rawNode.HasReady()
if !hasReady {
t.Errorf("HasReady() returns %t, want %t", hasReady, true)
}
rd := rawNode.Ready()
if !reflect.DeepEqual(rd.ReadStates, wrs) {
t.Errorf("ReadStates = %d, want %d", rd.ReadStates, wrs)
}
s.Append(rd.Entries)
rawNode.Advance(rd)
// ensure raft.readStates is reset after advance
if rawNode.raft.readStates != nil {
t.Errorf("readStates = %v, want %v", rawNode.raft.readStates, nil)
}
wrequestCtx := []byte("somedata2")
rawNode.Campaign()
for {
rd = rawNode.Ready()
s.Append(rd.Entries)
if rd.SoftState.Lead == rawNode.raft.id {
rawNode.Advance(rd)
// Once we are the leader, issue a ReadIndex request
rawNode.raft.step = appendStep
rawNode.ReadIndex(wrequestCtx)
break
}
rawNode.Advance(rd)
}
// ensure that MsgReadIndex message is sent to the underlying raft
if len(msgs) != 1 {
t.Fatalf("len(msgs) = %d, want %d", len(msgs), 1)
}
if msgs[0].Type != pb.MsgReadIndex {
t.Errorf("msg type = %d, want %d", msgs[0].Type, pb.MsgReadIndex)
}
if !bytes.Equal(msgs[0].Entries[0].Data, wrequestCtx) {
t.Errorf("data = %v, want %v", msgs[0].Entries[0].Data, wrequestCtx)
}
}
// TestBlockProposal from node_test.go has no equivalent in rawNode because there is
// no leader check in RawNode.
// TestNodeTick from node_test.go has no equivalent in rawNode because
// it reaches into the raft object which is not exposed.
// TestNodeStop from node_test.go has no equivalent in rawNode because there is
// no goroutine in RawNode.
// TestRawNodeStart ensures that a node can be started correctly. Note that RawNode
// requires the application to bootstrap the state, i.e. it does not accept peers
// and will not create faux configuration change entries.
func TestRawNodeStart(t *testing.T) {
want := Ready{
SoftState: &SoftState{Lead: 1, RaftState: StateLeader},
HardState: pb.HardState{Term: 1, Commit: 3, Vote: 1},
Entries: []pb.Entry{
{Term: 1, Index: 2, Data: nil}, // empty entry
{Term: 1, Index: 3, Data: []byte("foo")}, // empty entry
},
CommittedEntries: []pb.Entry{
{Term: 1, Index: 2, Data: nil}, // empty entry
{Term: 1, Index: 3, Data: []byte("foo")}, // empty entry
},
MustSync: true,
}
storage := NewMemoryStorage()
storage.ents[0].Index = 1
// TODO(tbg): this is a first prototype of what bootstrapping could look
// like (without the annoying faux ConfChanges). We want to persist a
// ConfState at some index and make sure that this index can't be reached
// from log position 1, so that followers are forced to pick up the
// ConfState in order to move away from log position 1 (unless they got
// bootstrapped in the same way already). Failing to do so would mean that
// followers diverge from the bootstrapped nodes and don't learn about the
// initial config.
//
// NB: this is exactly what CockroachDB does. The Raft log really begins at
// index 10, so empty followers (at index 1) always need a snapshot first.
type appenderStorage interface {
Storage
ApplySnapshot(pb.Snapshot) error
}
bootstrap := func(storage appenderStorage, cs pb.ConfState) error {
if len(cs.Voters) == 0 {
return fmt.Errorf("no voters specified")
}
fi, err := storage.FirstIndex()
if err != nil {
return err
}
if fi < 2 {
return fmt.Errorf("FirstIndex >= 2 is prerequisite for bootstrap")
}
if _, err = storage.Entries(fi, fi, math.MaxUint64); err == nil {
// TODO(tbg): match exact error
return fmt.Errorf("should not have been able to load first index")
}
li, err := storage.LastIndex()
if err != nil {
return err
}
if _, err = storage.Entries(li, li, math.MaxUint64); err == nil {
return fmt.Errorf("should not have been able to load last index")
}
hs, ics, err := storage.InitialState()
if err != nil {
return err
}
if !IsEmptyHardState(hs) {
return fmt.Errorf("HardState not empty")
}
if len(ics.Voters) != 0 {
return fmt.Errorf("ConfState not empty")
}
meta := pb.SnapshotMetadata{
Index: 1,
Term: 0,
ConfState: cs,
}
snap := pb.Snapshot{Metadata: meta}
return storage.ApplySnapshot(snap)
}
if err := bootstrap(storage, pb.ConfState{Voters: []uint64{1}}); err != nil {
t.Fatal(err)
}
rawNode, err := NewRawNode(newTestConfig(1, nil, 10, 1, storage))
if err != nil {
t.Fatal(err)
}
if rawNode.HasReady() {
t.Fatalf("unexpected ready: %+v", rawNode.Ready())
}
rawNode.Campaign()
rawNode.Propose([]byte("foo"))
if !rawNode.HasReady() {
t.Fatal("expected a Ready")
}
rd := rawNode.Ready()
storage.Append(rd.Entries)
rawNode.Advance(rd)
rd.SoftState, want.SoftState = nil, nil
if !reflect.DeepEqual(rd, want) {
t.Fatalf("unexpected Ready:\n%+v\nvs\n%+v", rd, want)
}
if rawNode.HasReady() {
t.Errorf("unexpected Ready: %+v", rawNode.Ready())
}
}
func TestRawNodeRestart(t *testing.T) {
entries := []pb.Entry{
{Term: 1, Index: 1},
{Term: 1, Index: 2, Data: []byte("foo")},
}
st := pb.HardState{Term: 1, Commit: 1}
want := Ready{
HardState: emptyState,
// commit up to commit index in st
CommittedEntries: entries[:st.Commit],
MustSync: false,
}
storage := NewMemoryStorage()
storage.SetHardState(st)
storage.Append(entries)
rawNode, err := NewRawNode(newTestConfig(1, []uint64{1}, 10, 1, storage))
if err != nil {
t.Fatal(err)
}
rd := rawNode.Ready()
if !reflect.DeepEqual(rd, want) {
t.Errorf("g = %+v,\n w %+v", rd, want)
}
rawNode.Advance(rd)
if rawNode.HasReady() {
t.Errorf("unexpected Ready: %+v", rawNode.Ready())
}
}
func TestRawNodeRestartFromSnapshot(t *testing.T) {
snap := pb.Snapshot{
Metadata: pb.SnapshotMetadata{
ConfState: pb.ConfState{Voters: []uint64{1, 2}},
Index: 2,
Term: 1,
},
}
entries := []pb.Entry{
{Term: 1, Index: 3, Data: []byte("foo")},
}
st := pb.HardState{Term: 1, Commit: 3}
want := Ready{
HardState: emptyState,
// commit up to commit index in st
CommittedEntries: entries,
MustSync: false,
}
s := NewMemoryStorage()
s.SetHardState(st)
s.ApplySnapshot(snap)
s.Append(entries)
rawNode, err := NewRawNode(newTestConfig(1, nil, 10, 1, s))
if err != nil {
t.Fatal(err)
}
if rd := rawNode.Ready(); !reflect.DeepEqual(rd, want) {
t.Errorf("g = %+v,\n w %+v", rd, want)
} else {
rawNode.Advance(rd)
}
if rawNode.HasReady() {
t.Errorf("unexpected Ready: %+v", rawNode.HasReady())
}
}
// TestNodeAdvance from node_test.go has no equivalent in rawNode because there is
// no dependency check between Ready() and Advance()
func TestRawNodeStatus(t *testing.T) {
s := NewMemoryStorage()
rn, err := NewRawNode(newTestConfig(1, []uint64{1}, 10, 1, s))
if err != nil {
t.Fatal(err)
}
if status := rn.Status(); status.Progress != nil {
t.Fatalf("expected no Progress because not leader: %+v", status.Progress)
}
if err := rn.Campaign(); err != nil {
t.Fatal(err)
}
status := rn.Status()
if status.Lead != 1 {
t.Fatal("not lead")
}
if status.RaftState != StateLeader {
t.Fatal("not leader")
}
if exp, act := *rn.raft.prs.Progress[1], status.Progress[1]; !reflect.DeepEqual(exp, act) {
t.Fatalf("want: %+v\ngot: %+v", exp, act)
}
expCfg := tracker.Config{Voters: quorum.JointConfig{
quorum.MajorityConfig{1: {}},
nil,
}}
if !reflect.DeepEqual(expCfg, status.Config) {
t.Fatalf("want: %+v\ngot: %+v", expCfg, status.Config)
}
}
// TestRawNodeCommitPaginationAfterRestart is the RawNode version of
// TestNodeCommitPaginationAfterRestart. The anomaly here was even worse as the
// Raft group would forget to apply entries:
//
// - node learns that index 11 is committed
// - nextEnts returns index 1..10 in CommittedEntries (but index 10 already
// exceeds maxBytes), which isn't noticed internally by Raft
// - Commit index gets bumped to 10
// - the node persists the HardState, but crashes before applying the entries
// - upon restart, the storage returns the same entries, but `slice` takes a
// different code path and removes the last entry.
// - Raft does not emit a HardState, but when the app calls Advance(), it bumps
// its internal applied index cursor to 10 (when it should be 9)
// - the next Ready asks the app to apply index 11 (omitting index 10), losing a
// write.
func TestRawNodeCommitPaginationAfterRestart(t *testing.T) {
s := &ignoreSizeHintMemStorage{
MemoryStorage: NewMemoryStorage(),
}
persistedHardState := pb.HardState{
Term: 1,
Vote: 1,
Commit: 10,
}
s.hardState = persistedHardState
s.ents = make([]pb.Entry, 10)
var size uint64
for i := range s.ents {
ent := pb.Entry{
Term: 1,
Index: uint64(i + 1),
Type: pb.EntryNormal,
Data: []byte("a"),
}
s.ents[i] = ent
size += uint64(ent.Size())
}
cfg := newTestConfig(1, []uint64{1}, 10, 1, s)
// Set a MaxSizePerMsg that would suggest to Raft that the last committed entry should
// not be included in the initial rd.CommittedEntries. However, our storage will ignore
// this and *will* return it (which is how the Commit index ended up being 10 initially).
cfg.MaxSizePerMsg = size - uint64(s.ents[len(s.ents)-1].Size()) - 1
s.ents = append(s.ents, pb.Entry{
Term: 1,
Index: uint64(11),
Type: pb.EntryNormal,
Data: []byte("boom"),
})
rawNode, err := NewRawNode(cfg)
if err != nil {
t.Fatal(err)
}
for highestApplied := uint64(0); highestApplied != 11; {
rd := rawNode.Ready()
n := len(rd.CommittedEntries)
if n == 0 {
t.Fatalf("stopped applying entries at index %d", highestApplied)
}
if next := rd.CommittedEntries[0].Index; highestApplied != 0 && highestApplied+1 != next {
t.Fatalf("attempting to apply index %d after index %d, leaving a gap", next, highestApplied)
}
highestApplied = rd.CommittedEntries[n-1].Index
rawNode.Advance(rd)
rawNode.Step(pb.Message{
Type: pb.MsgHeartbeat,
To: 1,
From: 1, // illegal, but we get away with it
Term: 1,
Commit: 11,
})
}
}
// TestRawNodeBoundedLogGrowthWithPartition tests a scenario where a leader is
// partitioned from a quorum of nodes. It verifies that the leader's log is
// protected from unbounded growth even as new entries continue to be proposed.
// This protection is provided by the MaxUncommittedEntriesSize configuration.
func TestRawNodeBoundedLogGrowthWithPartition(t *testing.T) {
const maxEntries = 16
data := []byte("testdata")
testEntry := pb.Entry{Data: data}
maxEntrySize := uint64(maxEntries * PayloadSize(testEntry))
s := NewMemoryStorage()
cfg := newTestConfig(1, []uint64{1}, 10, 1, s)
cfg.MaxUncommittedEntriesSize = maxEntrySize
rawNode, err := NewRawNode(cfg)
if err != nil {
t.Fatal(err)
}
rd := rawNode.Ready()
s.Append(rd.Entries)
rawNode.Advance(rd)
// Become the leader.
rawNode.Campaign()
for {
rd = rawNode.Ready()
s.Append(rd.Entries)
if rd.SoftState.Lead == rawNode.raft.id {
rawNode.Advance(rd)
break
}
rawNode.Advance(rd)
}
// Simulate a network partition while we make our proposals by never
// committing anything. These proposals should not cause the leader's
// log to grow indefinitely.
for i := 0; i < 1024; i++ {
rawNode.Propose(data)
}
// Check the size of leader's uncommitted log tail. It should not exceed the
// MaxUncommittedEntriesSize limit.
checkUncommitted := func(exp uint64) {
t.Helper()
if a := rawNode.raft.uncommittedSize; exp != a {
t.Fatalf("expected %d uncommitted entry bytes, found %d", exp, a)
}
}
checkUncommitted(maxEntrySize)
// Recover from the partition. The uncommitted tail of the Raft log should
// disappear as entries are committed.
rd = rawNode.Ready()
if len(rd.CommittedEntries) != maxEntries {
t.Fatalf("expected %d entries, got %d", maxEntries, len(rd.CommittedEntries))
}
s.Append(rd.Entries)
rawNode.Advance(rd)
checkUncommitted(0)
}
func BenchmarkStatus(b *testing.B) {
setup := func(members int) *RawNode {
peers := make([]uint64, members)
for i := range peers {
peers[i] = uint64(i + 1)
}
cfg := newTestConfig(1, peers, 3, 1, NewMemoryStorage())
cfg.Logger = discardLogger
r := newRaft(cfg)
r.becomeFollower(1, 1)
r.becomeCandidate()
r.becomeLeader()
return &RawNode{raft: r}
}
for _, members := range []int{1, 3, 5, 100} {
b.Run(fmt.Sprintf("members=%d", members), func(b *testing.B) {
rn := setup(members)
b.Run("Status", func(b *testing.B) {
b.ReportAllocs()
for i := 0; i < b.N; i++ {
_ = rn.Status()
}
})
b.Run("Status-example", func(b *testing.B) {
b.ReportAllocs()
for i := 0; i < b.N; i++ {
s := rn.Status()
var n uint64
for _, pr := range s.Progress {
n += pr.Match
}
_ = n
}
})
b.Run("BasicStatus", func(b *testing.B) {
b.ReportAllocs()
for i := 0; i < b.N; i++ {
_ = rn.BasicStatus()
}
})
b.Run("WithProgress", func(b *testing.B) {
b.ReportAllocs()
visit := func(uint64, ProgressType, tracker.Progress) {}
for i := 0; i < b.N; i++ {
rn.WithProgress(visit)
}
})
b.Run("WithProgress-example", func(b *testing.B) {
b.ReportAllocs()
for i := 0; i < b.N; i++ {
var n uint64
visit := func(_ uint64, _ ProgressType, pr tracker.Progress) {
n += pr.Match
}
rn.WithProgress(visit)
_ = n
}
})
})
}
}
func TestRawNodeConsumeReady(t *testing.T) {
// Check that readyWithoutAccept() does not call acceptReady (which resets
// the messages) but Ready() does.
s := NewMemoryStorage()
rn := newTestRawNode(1, []uint64{1}, 3, 1, s)
m1 := pb.Message{Context: []byte("foo")}
m2 := pb.Message{Context: []byte("bar")}
// Inject first message, make sure it's visible via readyWithoutAccept.
rn.raft.msgs = append(rn.raft.msgs, m1)
rd := rn.readyWithoutAccept()
if len(rd.Messages) != 1 || !reflect.DeepEqual(rd.Messages[0], m1) {
t.Fatalf("expected only m1 sent, got %+v", rd.Messages)
}
if len(rn.raft.msgs) != 1 || !reflect.DeepEqual(rn.raft.msgs[0], m1) {
t.Fatalf("expected only m1 in raft.msgs, got %+v", rn.raft.msgs)
}
// Now call Ready() which should move the message into the Ready (as opposed
// to leaving it in both places).
rd = rn.Ready()
if len(rn.raft.msgs) > 0 {
t.Fatalf("messages not reset: %+v", rn.raft.msgs)
}
if len(rd.Messages) != 1 || !reflect.DeepEqual(rd.Messages[0], m1) {
t.Fatalf("expected only m1 sent, got %+v", rd.Messages)
}
// Add a message to raft to make sure that Advance() doesn't drop it.
rn.raft.msgs = append(rn.raft.msgs, m2)
rn.Advance(rd)
if len(rn.raft.msgs) != 1 || !reflect.DeepEqual(rn.raft.msgs[0], m2) {
t.Fatalf("expected only m2 in raft.msgs, got %+v", rn.raft.msgs)
}
}