etcd/lease/lessor.go

707 lines
18 KiB
Go

// Copyright 2015 The etcd Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package lease
import (
"container/heap"
"encoding/binary"
"errors"
"math"
"sort"
"sync"
"time"
"github.com/coreos/etcd/lease/leasepb"
"github.com/coreos/etcd/mvcc/backend"
)
// NoLease is a special LeaseID representing the absence of a lease.
const NoLease = LeaseID(0)
// MaxLeaseTTL is the maximum lease TTL value
const MaxLeaseTTL = 9000000000
var (
forever = time.Time{}
leaseBucketName = []byte("lease")
// maximum number of leases to revoke per second; configurable for tests
leaseRevokeRate = 1000
ErrNotPrimary = errors.New("not a primary lessor")
ErrLeaseNotFound = errors.New("lease not found")
ErrLeaseExists = errors.New("lease already exists")
ErrLeaseTTLTooLarge = errors.New("too large lease TTL")
)
// TxnDelete is a TxnWrite that only permits deletes. Defined here
// to avoid circular dependency with mvcc.
type TxnDelete interface {
DeleteRange(key, end []byte) (n, rev int64)
End()
}
// RangeDeleter is a TxnDelete constructor.
type RangeDeleter func() TxnDelete
type LeaseID int64
// Lessor owns leases. It can grant, revoke, renew and modify leases for lessee.
type Lessor interface {
// SetRangeDeleter lets the lessor create TxnDeletes to the store.
// Lessor deletes the items in the revoked or expired lease by creating
// new TxnDeletes.
SetRangeDeleter(rd RangeDeleter)
// Grant grants a lease that expires at least after TTL seconds.
Grant(id LeaseID, ttl int64) (*Lease, error)
// Revoke revokes a lease with given ID. The item attached to the
// given lease will be removed. If the ID does not exist, an error
// will be returned.
Revoke(id LeaseID) error
// Attach attaches given leaseItem to the lease with given LeaseID.
// If the lease does not exist, an error will be returned.
Attach(id LeaseID, items []LeaseItem) error
// GetLease returns LeaseID for given item.
// If no lease found, NoLease value will be returned.
GetLease(item LeaseItem) LeaseID
// Detach detaches given leaseItem from the lease with given LeaseID.
// If the lease does not exist, an error will be returned.
Detach(id LeaseID, items []LeaseItem) error
// Promote promotes the lessor to be the primary lessor. Primary lessor manages
// the expiration and renew of leases.
// Newly promoted lessor renew the TTL of all lease to extend + previous TTL.
Promote(extend time.Duration)
// Demote demotes the lessor from being the primary lessor.
Demote()
// Renew renews a lease with given ID. It returns the renewed TTL. If the ID does not exist,
// an error will be returned.
Renew(id LeaseID) (int64, error)
// Lookup gives the lease at a given lease id, if any
Lookup(id LeaseID) *Lease
// Leases lists all leases.
Leases() []*Lease
// ExpiredLeasesC returns a chan that is used to receive expired leases.
ExpiredLeasesC() <-chan []*Lease
// Recover recovers the lessor state from the given backend and RangeDeleter.
Recover(b backend.Backend, rd RangeDeleter)
// Stop stops the lessor for managing leases. The behavior of calling Stop multiple
// times is undefined.
Stop()
}
// lessor implements Lessor interface.
// TODO: use clockwork for testability.
type lessor struct {
mu sync.RWMutex
// demotec is set when the lessor is the primary.
// demotec will be closed if the lessor is demoted.
demotec chan struct{}
// TODO: probably this should be a heap with a secondary
// id index.
// Now it is O(N) to loop over the leases to find expired ones.
// We want to make Grant, Revoke, and findExpiredLeases all O(logN) and
// Renew O(1).
// findExpiredLeases and Renew should be the most frequent operations.
leaseMap map[LeaseID]*Lease
leaseHeap LeaseQueue
itemMap map[LeaseItem]LeaseID
// When a lease expires, the lessor will delete the
// leased range (or key) by the RangeDeleter.
rd RangeDeleter
// backend to persist leases. We only persist lease ID and expiry for now.
// The leased items can be recovered by iterating all the keys in kv.
b backend.Backend
// minLeaseTTL is the minimum lease TTL that can be granted for a lease. Any
// requests for shorter TTLs are extended to the minimum TTL.
minLeaseTTL int64
expiredC chan []*Lease
// stopC is a channel whose closure indicates that the lessor should be stopped.
stopC chan struct{}
// doneC is a channel whose closure indicates that the lessor is stopped.
doneC chan struct{}
}
func NewLessor(b backend.Backend, minLeaseTTL int64) Lessor {
return newLessor(b, minLeaseTTL)
}
func newLessor(b backend.Backend, minLeaseTTL int64) *lessor {
l := &lessor{
leaseMap: make(map[LeaseID]*Lease),
itemMap: make(map[LeaseItem]LeaseID),
leaseHeap: make(LeaseQueue, 0),
b: b,
minLeaseTTL: minLeaseTTL,
// expiredC is a small buffered chan to avoid unnecessary blocking.
expiredC: make(chan []*Lease, 16),
stopC: make(chan struct{}),
doneC: make(chan struct{}),
}
l.initAndRecover()
go l.runLoop()
return l
}
// isPrimary indicates if this lessor is the primary lessor. The primary
// lessor manages lease expiration and renew.
//
// in etcd, raft leader is the primary. Thus there might be two primary
// leaders at the same time (raft allows concurrent leader but with different term)
// for at most a leader election timeout.
// The old primary leader cannot affect the correctness since its proposal has a
// smaller term and will not be committed.
//
// TODO: raft follower do not forward lease management proposals. There might be a
// very small window (within second normally which depends on go scheduling) that
// a raft follow is the primary between the raft leader demotion and lessor demotion.
// Usually this should not be a problem. Lease should not be that sensitive to timing.
func (le *lessor) isPrimary() bool {
return le.demotec != nil
}
func (le *lessor) SetRangeDeleter(rd RangeDeleter) {
le.mu.Lock()
defer le.mu.Unlock()
le.rd = rd
}
func (le *lessor) Grant(id LeaseID, ttl int64) (*Lease, error) {
if id == NoLease {
return nil, ErrLeaseNotFound
}
if ttl > MaxLeaseTTL {
return nil, ErrLeaseTTLTooLarge
}
// TODO: when lessor is under high load, it should give out lease
// with longer TTL to reduce renew load.
l := &Lease{
ID: id,
ttl: ttl,
itemSet: make(map[LeaseItem]struct{}),
revokec: make(chan struct{}),
}
le.mu.Lock()
defer le.mu.Unlock()
if _, ok := le.leaseMap[id]; ok {
return nil, ErrLeaseExists
}
if l.ttl < le.minLeaseTTL {
l.ttl = le.minLeaseTTL
}
if le.isPrimary() {
l.refresh(0)
} else {
l.forever()
}
le.leaseMap[id] = l
item := &LeaseWithTime{id: l.ID, expiration: l.expiry.UnixNano()}
heap.Push(&le.leaseHeap, item)
l.persistTo(le.b)
return l, nil
}
func (le *lessor) Revoke(id LeaseID) error {
le.mu.Lock()
l := le.leaseMap[id]
if l == nil {
le.mu.Unlock()
return ErrLeaseNotFound
}
defer close(l.revokec)
// unlock before doing external work
le.mu.Unlock()
if le.rd == nil {
return nil
}
txn := le.rd()
// sort keys so deletes are in same order among all members,
// otherwise the backened hashes will be different
keys := l.Keys()
sort.StringSlice(keys).Sort()
for _, key := range keys {
txn.DeleteRange([]byte(key), nil)
}
le.mu.Lock()
defer le.mu.Unlock()
delete(le.leaseMap, l.ID)
// lease deletion needs to be in the same backend transaction with the
// kv deletion. Or we might end up with not executing the revoke or not
// deleting the keys if etcdserver fails in between.
le.b.BatchTx().UnsafeDelete(leaseBucketName, int64ToBytes(int64(l.ID)))
txn.End()
return nil
}
// Renew renews an existing lease. If the given lease does not exist or
// has expired, an error will be returned.
func (le *lessor) Renew(id LeaseID) (int64, error) {
le.mu.Lock()
unlock := func() { le.mu.Unlock() }
defer func() { unlock() }()
if !le.isPrimary() {
// forward renew request to primary instead of returning error.
return -1, ErrNotPrimary
}
demotec := le.demotec
l := le.leaseMap[id]
if l == nil {
return -1, ErrLeaseNotFound
}
if l.expired() {
le.mu.Unlock()
unlock = func() {}
select {
// A expired lease might be pending for revoking or going through
// quorum to be revoked. To be accurate, renew request must wait for the
// deletion to complete.
case <-l.revokec:
return -1, ErrLeaseNotFound
// The expired lease might fail to be revoked if the primary changes.
// The caller will retry on ErrNotPrimary.
case <-demotec:
return -1, ErrNotPrimary
case <-le.stopC:
return -1, ErrNotPrimary
}
}
l.refresh(0)
item := &LeaseWithTime{id: l.ID, expiration: l.expiry.UnixNano()}
heap.Push(&le.leaseHeap, item)
return l.ttl, nil
}
func (le *lessor) Lookup(id LeaseID) *Lease {
le.mu.RLock()
defer le.mu.RUnlock()
return le.leaseMap[id]
}
func (le *lessor) unsafeLeases() []*Lease {
leases := make([]*Lease, 0, len(le.leaseMap))
for _, l := range le.leaseMap {
leases = append(leases, l)
}
sort.Sort(leasesByExpiry(leases))
return leases
}
func (le *lessor) Leases() []*Lease {
le.mu.RLock()
ls := le.unsafeLeases()
le.mu.RUnlock()
return ls
}
func (le *lessor) Promote(extend time.Duration) {
le.mu.Lock()
defer le.mu.Unlock()
le.demotec = make(chan struct{})
// refresh the expiries of all leases.
for _, l := range le.leaseMap {
l.refresh(extend)
item := &LeaseWithTime{id: l.ID, expiration: l.expiry.UnixNano()}
heap.Push(&le.leaseHeap, item)
}
if len(le.leaseMap) < leaseRevokeRate {
// no possibility of lease pile-up
return
}
// adjust expiries in case of overlap
leases := le.unsafeLeases()
baseWindow := leases[0].Remaining()
nextWindow := baseWindow + time.Second
expires := 0
// have fewer expires than the total revoke rate so piled up leases
// don't consume the entire revoke limit
targetExpiresPerSecond := (3 * leaseRevokeRate) / 4
for _, l := range leases {
remaining := l.Remaining()
if remaining > nextWindow {
baseWindow = remaining
nextWindow = baseWindow + time.Second
expires = 1
continue
}
expires++
if expires <= targetExpiresPerSecond {
continue
}
rateDelay := float64(time.Second) * (float64(expires) / float64(targetExpiresPerSecond))
// If leases are extended by n seconds, leases n seconds ahead of the
// base window should be extended by only one second.
rateDelay -= float64(remaining - baseWindow)
delay := time.Duration(rateDelay)
nextWindow = baseWindow + delay
l.refresh(delay + extend)
item := &LeaseWithTime{id: l.ID, expiration: l.expiry.UnixNano()}
heap.Push(&le.leaseHeap, item)
}
}
type leasesByExpiry []*Lease
func (le leasesByExpiry) Len() int { return len(le) }
func (le leasesByExpiry) Less(i, j int) bool { return le[i].Remaining() < le[j].Remaining() }
func (le leasesByExpiry) Swap(i, j int) { le[i], le[j] = le[j], le[i] }
func (le *lessor) Demote() {
le.mu.Lock()
defer le.mu.Unlock()
// set the expiries of all leases to forever
for _, l := range le.leaseMap {
l.forever()
}
if le.demotec != nil {
close(le.demotec)
le.demotec = nil
}
}
// Attach attaches items to the lease with given ID. When the lease
// expires, the attached items will be automatically removed.
// If the given lease does not exist, an error will be returned.
func (le *lessor) Attach(id LeaseID, items []LeaseItem) error {
le.mu.Lock()
defer le.mu.Unlock()
l := le.leaseMap[id]
if l == nil {
return ErrLeaseNotFound
}
l.mu.Lock()
for _, it := range items {
l.itemSet[it] = struct{}{}
le.itemMap[it] = id
}
l.mu.Unlock()
return nil
}
func (le *lessor) GetLease(item LeaseItem) LeaseID {
le.mu.RLock()
id := le.itemMap[item]
le.mu.RUnlock()
return id
}
// Detach detaches items from the lease with given ID.
// If the given lease does not exist, an error will be returned.
func (le *lessor) Detach(id LeaseID, items []LeaseItem) error {
le.mu.Lock()
defer le.mu.Unlock()
l := le.leaseMap[id]
if l == nil {
return ErrLeaseNotFound
}
l.mu.Lock()
for _, it := range items {
delete(l.itemSet, it)
delete(le.itemMap, it)
}
l.mu.Unlock()
return nil
}
func (le *lessor) Recover(b backend.Backend, rd RangeDeleter) {
le.mu.Lock()
defer le.mu.Unlock()
le.b = b
le.rd = rd
le.leaseMap = make(map[LeaseID]*Lease)
le.itemMap = make(map[LeaseItem]LeaseID)
le.initAndRecover()
}
func (le *lessor) ExpiredLeasesC() <-chan []*Lease {
return le.expiredC
}
func (le *lessor) Stop() {
close(le.stopC)
<-le.doneC
}
func (le *lessor) runLoop() {
defer close(le.doneC)
for {
var ls []*Lease
// rate limit
revokeLimit := leaseRevokeRate / 2
le.mu.RLock()
if le.isPrimary() {
ls = le.findExpiredLeases(revokeLimit)
}
le.mu.RUnlock()
if len(ls) != 0 {
select {
case <-le.stopC:
return
case le.expiredC <- ls:
default:
// the receiver of expiredC is probably busy handling
// other stuff
// let's try this next time after 500ms
}
}
select {
case <-time.After(500 * time.Millisecond):
case <-le.stopC:
return
}
}
}
// findExpiredLeases loops leases in the leaseMap until reaching expired limit
// and returns the expired leases that needed to be revoked.
func (le *lessor) findExpiredLeases(limit int) []*Lease {
leases := make([]*Lease, 0, 16)
for {
if le.leaseHeap.Len() == 0 {
break
}
item := heap.Pop(&le.leaseHeap).(*LeaseWithTime)
l := le.leaseMap[item.id]
if l == nil {
// lease has expired or been revoked, continue
continue
}
if time.Now().UnixNano() < item.expiration {
// Candidate expirations are caught up, reinsert this item
heap.Push(&le.leaseHeap, item)
break
}
// if the lease is actually expired, add to the removal list. If it is not expired, we can ignore it because another entry will have been inserted into the heap
if l.expired() {
leases = append(leases, l)
// reach expired limit
if len(leases) == limit {
break
}
}
}
return leases
}
func (le *lessor) initAndRecover() {
tx := le.b.BatchTx()
tx.Lock()
tx.UnsafeCreateBucket(leaseBucketName)
_, vs := tx.UnsafeRange(leaseBucketName, int64ToBytes(0), int64ToBytes(math.MaxInt64), 0)
// TODO: copy vs and do decoding outside tx lock if lock contention becomes an issue.
for i := range vs {
var lpb leasepb.Lease
err := lpb.Unmarshal(vs[i])
if err != nil {
tx.Unlock()
panic("failed to unmarshal lease proto item")
}
ID := LeaseID(lpb.ID)
if lpb.TTL < le.minLeaseTTL {
lpb.TTL = le.minLeaseTTL
}
le.leaseMap[ID] = &Lease{
ID: ID,
ttl: lpb.TTL,
// itemSet will be filled in when recover key-value pairs
// set expiry to forever, refresh when promoted
itemSet: make(map[LeaseItem]struct{}),
expiry: forever,
revokec: make(chan struct{}),
}
}
heap.Init(&le.leaseHeap)
tx.Unlock()
le.b.ForceCommit()
}
type Lease struct {
ID LeaseID
ttl int64 // time to live in seconds
// expiryMu protects concurrent accesses to expiry
expiryMu sync.RWMutex
// expiry is time when lease should expire. no expiration when expiry.IsZero() is true
expiry time.Time
// mu protects concurrent accesses to itemSet
mu sync.RWMutex
itemSet map[LeaseItem]struct{}
revokec chan struct{}
}
func (l *Lease) expired() bool {
return l.Remaining() <= 0
}
func (l *Lease) persistTo(b backend.Backend) {
key := int64ToBytes(int64(l.ID))
lpb := leasepb.Lease{ID: int64(l.ID), TTL: int64(l.ttl)}
val, err := lpb.Marshal()
if err != nil {
panic("failed to marshal lease proto item")
}
b.BatchTx().Lock()
b.BatchTx().UnsafePut(leaseBucketName, key, val)
b.BatchTx().Unlock()
}
// TTL returns the TTL of the Lease.
func (l *Lease) TTL() int64 {
return l.ttl
}
// refresh refreshes the expiry of the lease.
func (l *Lease) refresh(extend time.Duration) {
newExpiry := time.Now().Add(extend + time.Duration(l.ttl)*time.Second)
l.expiryMu.Lock()
defer l.expiryMu.Unlock()
l.expiry = newExpiry
}
// forever sets the expiry of lease to be forever.
func (l *Lease) forever() {
l.expiryMu.Lock()
defer l.expiryMu.Unlock()
l.expiry = forever
}
// Keys returns all the keys attached to the lease.
func (l *Lease) Keys() []string {
l.mu.RLock()
keys := make([]string, 0, len(l.itemSet))
for k := range l.itemSet {
keys = append(keys, k.Key)
}
l.mu.RUnlock()
return keys
}
// Remaining returns the remaining time of the lease.
func (l *Lease) Remaining() time.Duration {
l.expiryMu.RLock()
defer l.expiryMu.RUnlock()
if l.expiry.IsZero() {
return time.Duration(math.MaxInt64)
}
return time.Until(l.expiry)
}
type LeaseItem struct {
Key string
}
func int64ToBytes(n int64) []byte {
bytes := make([]byte, 8)
binary.BigEndian.PutUint64(bytes, uint64(n))
return bytes
}
// FakeLessor is a fake implementation of Lessor interface.
// Used for testing only.
type FakeLessor struct{}
func (fl *FakeLessor) SetRangeDeleter(dr RangeDeleter) {}
func (fl *FakeLessor) Grant(id LeaseID, ttl int64) (*Lease, error) { return nil, nil }
func (fl *FakeLessor) Revoke(id LeaseID) error { return nil }
func (fl *FakeLessor) Attach(id LeaseID, items []LeaseItem) error { return nil }
func (fl *FakeLessor) GetLease(item LeaseItem) LeaseID { return 0 }
func (fl *FakeLessor) Detach(id LeaseID, items []LeaseItem) error { return nil }
func (fl *FakeLessor) Promote(extend time.Duration) {}
func (fl *FakeLessor) Demote() {}
func (fl *FakeLessor) Renew(id LeaseID) (int64, error) { return 10, nil }
func (fl *FakeLessor) Lookup(id LeaseID) *Lease { return nil }
func (fl *FakeLessor) Leases() []*Lease { return nil }
func (fl *FakeLessor) ExpiredLeasesC() <-chan []*Lease { return nil }
func (fl *FakeLessor) Recover(b backend.Backend, rd RangeDeleter) {}
func (fl *FakeLessor) Stop() {}