f-stack/dpdk/drivers/crypto/aesni_mb/rte_aesni_mb_pmd.c

1240 lines
34 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2015-2017 Intel Corporation
*/
#include <intel-ipsec-mb.h>
#include <rte_common.h>
#include <rte_hexdump.h>
#include <rte_cryptodev.h>
#include <rte_cryptodev_pmd.h>
#include <rte_bus_vdev.h>
#include <rte_malloc.h>
#include <rte_cpuflags.h>
#include "rte_aesni_mb_pmd_private.h"
#define AES_CCM_DIGEST_MIN_LEN 4
#define AES_CCM_DIGEST_MAX_LEN 16
#define HMAC_MAX_BLOCK_SIZE 128
static uint8_t cryptodev_driver_id;
typedef void (*hash_one_block_t)(const void *data, void *digest);
typedef void (*aes_keyexp_t)(const void *key, void *enc_exp_keys, void *dec_exp_keys);
/**
* Calculate the authentication pre-computes
*
* @param one_block_hash Function pointer to calculate digest on ipad/opad
* @param ipad Inner pad output byte array
* @param opad Outer pad output byte array
* @param hkey Authentication key
* @param hkey_len Authentication key length
* @param blocksize Block size of selected hash algo
*/
static void
calculate_auth_precomputes(hash_one_block_t one_block_hash,
uint8_t *ipad, uint8_t *opad,
uint8_t *hkey, uint16_t hkey_len,
uint16_t blocksize)
{
unsigned i, length;
uint8_t ipad_buf[blocksize] __rte_aligned(16);
uint8_t opad_buf[blocksize] __rte_aligned(16);
/* Setup inner and outer pads */
memset(ipad_buf, HMAC_IPAD_VALUE, blocksize);
memset(opad_buf, HMAC_OPAD_VALUE, blocksize);
/* XOR hash key with inner and outer pads */
length = hkey_len > blocksize ? blocksize : hkey_len;
for (i = 0; i < length; i++) {
ipad_buf[i] ^= hkey[i];
opad_buf[i] ^= hkey[i];
}
/* Compute partial hashes */
(*one_block_hash)(ipad_buf, ipad);
(*one_block_hash)(opad_buf, opad);
/* Clean up stack */
memset(ipad_buf, 0, blocksize);
memset(opad_buf, 0, blocksize);
}
/** Get xform chain order */
static enum aesni_mb_operation
aesni_mb_get_chain_order(const struct rte_crypto_sym_xform *xform)
{
if (xform == NULL)
return AESNI_MB_OP_NOT_SUPPORTED;
if (xform->type == RTE_CRYPTO_SYM_XFORM_CIPHER) {
if (xform->next == NULL)
return AESNI_MB_OP_CIPHER_ONLY;
if (xform->next->type == RTE_CRYPTO_SYM_XFORM_AUTH)
return AESNI_MB_OP_CIPHER_HASH;
}
if (xform->type == RTE_CRYPTO_SYM_XFORM_AUTH) {
if (xform->next == NULL)
return AESNI_MB_OP_HASH_ONLY;
if (xform->next->type == RTE_CRYPTO_SYM_XFORM_CIPHER)
return AESNI_MB_OP_HASH_CIPHER;
}
if (xform->type == RTE_CRYPTO_SYM_XFORM_AEAD) {
if (xform->aead.algo == RTE_CRYPTO_AEAD_AES_CCM ||
xform->aead.algo == RTE_CRYPTO_AEAD_AES_GCM) {
if (xform->aead.op == RTE_CRYPTO_AEAD_OP_ENCRYPT)
return AESNI_MB_OP_AEAD_CIPHER_HASH;
else
return AESNI_MB_OP_AEAD_HASH_CIPHER;
}
}
return AESNI_MB_OP_NOT_SUPPORTED;
}
/** Set session authentication parameters */
static int
aesni_mb_set_session_auth_parameters(const struct aesni_mb_op_fns *mb_ops,
struct aesni_mb_session *sess,
const struct rte_crypto_sym_xform *xform)
{
hash_one_block_t hash_oneblock_fn;
unsigned int key_larger_block_size = 0;
uint8_t hashed_key[HMAC_MAX_BLOCK_SIZE] = { 0 };
if (xform == NULL) {
sess->auth.algo = NULL_HASH;
return 0;
}
if (xform->type != RTE_CRYPTO_SYM_XFORM_AUTH) {
AESNI_MB_LOG(ERR, "Crypto xform struct not of type auth");
return -1;
}
/* Set the request digest size */
sess->auth.req_digest_len = xform->auth.digest_length;
/* Select auth generate/verify */
sess->auth.operation = xform->auth.op;
/* Set Authentication Parameters */
if (xform->auth.algo == RTE_CRYPTO_AUTH_AES_XCBC_MAC) {
sess->auth.algo = AES_XCBC;
uint16_t xcbc_mac_digest_len =
get_truncated_digest_byte_length(AES_XCBC);
if (sess->auth.req_digest_len != xcbc_mac_digest_len) {
AESNI_MB_LOG(ERR, "Invalid digest size\n");
return -EINVAL;
}
sess->auth.gen_digest_len = sess->auth.req_digest_len;
(*mb_ops->aux.keyexp.aes_xcbc)(xform->auth.key.data,
sess->auth.xcbc.k1_expanded,
sess->auth.xcbc.k2, sess->auth.xcbc.k3);
return 0;
}
if (xform->auth.algo == RTE_CRYPTO_AUTH_AES_CMAC) {
sess->auth.algo = AES_CMAC;
uint16_t cmac_digest_len = get_digest_byte_length(AES_CMAC);
if (sess->auth.req_digest_len > cmac_digest_len) {
AESNI_MB_LOG(ERR, "Invalid digest size\n");
return -EINVAL;
}
/*
* Multi-buffer lib supports digest sizes from 4 to 16 bytes
* in version 0.50 and sizes of 12 and 16 bytes,
* in version 0.49.
* If size requested is different, generate the full digest
* (16 bytes) in a temporary location and then memcpy
* the requested number of bytes.
*/
#if IMB_VERSION_NUM >= IMB_VERSION(0, 50, 0)
if (sess->auth.req_digest_len < 4)
#else
uint16_t cmac_trunc_digest_len =
get_truncated_digest_byte_length(AES_CMAC);
if (sess->auth.req_digest_len != cmac_digest_len &&
sess->auth.req_digest_len != cmac_trunc_digest_len)
#endif
sess->auth.gen_digest_len = cmac_digest_len;
else
sess->auth.gen_digest_len = sess->auth.req_digest_len;
(*mb_ops->aux.keyexp.aes_cmac_expkey)(xform->auth.key.data,
sess->auth.cmac.expkey);
(*mb_ops->aux.keyexp.aes_cmac_subkey)(sess->auth.cmac.expkey,
sess->auth.cmac.skey1, sess->auth.cmac.skey2);
return 0;
}
switch (xform->auth.algo) {
case RTE_CRYPTO_AUTH_MD5_HMAC:
sess->auth.algo = MD5;
hash_oneblock_fn = mb_ops->aux.one_block.md5;
break;
case RTE_CRYPTO_AUTH_SHA1_HMAC:
sess->auth.algo = SHA1;
hash_oneblock_fn = mb_ops->aux.one_block.sha1;
#if IMB_VERSION_NUM >= IMB_VERSION(0, 50, 0)
if (xform->auth.key.length > get_auth_algo_blocksize(SHA1)) {
mb_ops->aux.multi_block.sha1(
xform->auth.key.data,
xform->auth.key.length,
hashed_key);
key_larger_block_size = 1;
}
#endif
break;
case RTE_CRYPTO_AUTH_SHA224_HMAC:
sess->auth.algo = SHA_224;
hash_oneblock_fn = mb_ops->aux.one_block.sha224;
#if IMB_VERSION_NUM >= IMB_VERSION(0, 50, 0)
if (xform->auth.key.length > get_auth_algo_blocksize(SHA_224)) {
mb_ops->aux.multi_block.sha224(
xform->auth.key.data,
xform->auth.key.length,
hashed_key);
key_larger_block_size = 1;
}
#endif
break;
case RTE_CRYPTO_AUTH_SHA256_HMAC:
sess->auth.algo = SHA_256;
hash_oneblock_fn = mb_ops->aux.one_block.sha256;
#if IMB_VERSION_NUM >= IMB_VERSION(0, 50, 0)
if (xform->auth.key.length > get_auth_algo_blocksize(SHA_256)) {
mb_ops->aux.multi_block.sha256(
xform->auth.key.data,
xform->auth.key.length,
hashed_key);
key_larger_block_size = 1;
}
#endif
break;
case RTE_CRYPTO_AUTH_SHA384_HMAC:
sess->auth.algo = SHA_384;
hash_oneblock_fn = mb_ops->aux.one_block.sha384;
#if IMB_VERSION_NUM >= IMB_VERSION(0, 50, 0)
if (xform->auth.key.length > get_auth_algo_blocksize(SHA_384)) {
mb_ops->aux.multi_block.sha384(
xform->auth.key.data,
xform->auth.key.length,
hashed_key);
key_larger_block_size = 1;
}
#endif
break;
case RTE_CRYPTO_AUTH_SHA512_HMAC:
sess->auth.algo = SHA_512;
hash_oneblock_fn = mb_ops->aux.one_block.sha512;
#if IMB_VERSION_NUM >= IMB_VERSION(0, 50, 0)
if (xform->auth.key.length > get_auth_algo_blocksize(SHA_512)) {
mb_ops->aux.multi_block.sha512(
xform->auth.key.data,
xform->auth.key.length,
hashed_key);
key_larger_block_size = 1;
}
#endif
break;
default:
AESNI_MB_LOG(ERR, "Unsupported authentication algorithm selection");
return -ENOTSUP;
}
uint16_t trunc_digest_size =
get_truncated_digest_byte_length(sess->auth.algo);
uint16_t full_digest_size =
get_digest_byte_length(sess->auth.algo);
#if IMB_VERSION_NUM >= IMB_VERSION(0, 50, 0)
if (sess->auth.req_digest_len > full_digest_size ||
sess->auth.req_digest_len == 0) {
#else
if (sess->auth.req_digest_len != trunc_digest_size) {
#endif
AESNI_MB_LOG(ERR, "Invalid digest size\n");
return -EINVAL;
}
if (sess->auth.req_digest_len != trunc_digest_size &&
sess->auth.req_digest_len != full_digest_size)
sess->auth.gen_digest_len = full_digest_size;
else
sess->auth.gen_digest_len = sess->auth.req_digest_len;
/* Calculate Authentication precomputes */
if (key_larger_block_size) {
calculate_auth_precomputes(hash_oneblock_fn,
sess->auth.pads.inner, sess->auth.pads.outer,
hashed_key,
xform->auth.key.length,
get_auth_algo_blocksize(sess->auth.algo));
} else {
calculate_auth_precomputes(hash_oneblock_fn,
sess->auth.pads.inner, sess->auth.pads.outer,
xform->auth.key.data,
xform->auth.key.length,
get_auth_algo_blocksize(sess->auth.algo));
}
return 0;
}
/** Set session cipher parameters */
static int
aesni_mb_set_session_cipher_parameters(const struct aesni_mb_op_fns *mb_ops,
struct aesni_mb_session *sess,
const struct rte_crypto_sym_xform *xform)
{
uint8_t is_aes = 0;
uint8_t is_3DES = 0;
aes_keyexp_t aes_keyexp_fn;
if (xform == NULL) {
sess->cipher.mode = NULL_CIPHER;
return 0;
}
if (xform->type != RTE_CRYPTO_SYM_XFORM_CIPHER) {
AESNI_MB_LOG(ERR, "Crypto xform struct not of type cipher");
return -EINVAL;
}
/* Select cipher direction */
switch (xform->cipher.op) {
case RTE_CRYPTO_CIPHER_OP_ENCRYPT:
sess->cipher.direction = ENCRYPT;
break;
case RTE_CRYPTO_CIPHER_OP_DECRYPT:
sess->cipher.direction = DECRYPT;
break;
default:
AESNI_MB_LOG(ERR, "Invalid cipher operation parameter");
return -EINVAL;
}
/* Select cipher mode */
switch (xform->cipher.algo) {
case RTE_CRYPTO_CIPHER_AES_CBC:
sess->cipher.mode = CBC;
is_aes = 1;
break;
case RTE_CRYPTO_CIPHER_AES_CTR:
sess->cipher.mode = CNTR;
is_aes = 1;
break;
case RTE_CRYPTO_CIPHER_AES_DOCSISBPI:
sess->cipher.mode = DOCSIS_SEC_BPI;
is_aes = 1;
break;
case RTE_CRYPTO_CIPHER_DES_CBC:
sess->cipher.mode = DES;
break;
case RTE_CRYPTO_CIPHER_DES_DOCSISBPI:
sess->cipher.mode = DOCSIS_DES;
break;
case RTE_CRYPTO_CIPHER_3DES_CBC:
sess->cipher.mode = DES3;
is_3DES = 1;
break;
default:
AESNI_MB_LOG(ERR, "Unsupported cipher mode parameter");
return -ENOTSUP;
}
/* Set IV parameters */
sess->iv.offset = xform->cipher.iv.offset;
sess->iv.length = xform->cipher.iv.length;
/* Check key length and choose key expansion function for AES */
if (is_aes) {
switch (xform->cipher.key.length) {
case AES_128_BYTES:
sess->cipher.key_length_in_bytes = AES_128_BYTES;
aes_keyexp_fn = mb_ops->aux.keyexp.aes128;
break;
case AES_192_BYTES:
sess->cipher.key_length_in_bytes = AES_192_BYTES;
aes_keyexp_fn = mb_ops->aux.keyexp.aes192;
break;
case AES_256_BYTES:
sess->cipher.key_length_in_bytes = AES_256_BYTES;
aes_keyexp_fn = mb_ops->aux.keyexp.aes256;
break;
default:
AESNI_MB_LOG(ERR, "Invalid cipher key length");
return -EINVAL;
}
/* Expanded cipher keys */
(*aes_keyexp_fn)(xform->cipher.key.data,
sess->cipher.expanded_aes_keys.encode,
sess->cipher.expanded_aes_keys.decode);
} else if (is_3DES) {
uint64_t *keys[3] = {sess->cipher.exp_3des_keys.key[0],
sess->cipher.exp_3des_keys.key[1],
sess->cipher.exp_3des_keys.key[2]};
switch (xform->cipher.key.length) {
case 24:
des_key_schedule(keys[0], xform->cipher.key.data);
des_key_schedule(keys[1], xform->cipher.key.data+8);
des_key_schedule(keys[2], xform->cipher.key.data+16);
/* Initialize keys - 24 bytes: [K1-K2-K3] */
sess->cipher.exp_3des_keys.ks_ptr[0] = keys[0];
sess->cipher.exp_3des_keys.ks_ptr[1] = keys[1];
sess->cipher.exp_3des_keys.ks_ptr[2] = keys[2];
break;
case 16:
des_key_schedule(keys[0], xform->cipher.key.data);
des_key_schedule(keys[1], xform->cipher.key.data+8);
/* Initialize keys - 16 bytes: [K1=K1,K2=K2,K3=K1] */
sess->cipher.exp_3des_keys.ks_ptr[0] = keys[0];
sess->cipher.exp_3des_keys.ks_ptr[1] = keys[1];
sess->cipher.exp_3des_keys.ks_ptr[2] = keys[0];
break;
case 8:
des_key_schedule(keys[0], xform->cipher.key.data);
/* Initialize keys - 8 bytes: [K1 = K2 = K3] */
sess->cipher.exp_3des_keys.ks_ptr[0] = keys[0];
sess->cipher.exp_3des_keys.ks_ptr[1] = keys[0];
sess->cipher.exp_3des_keys.ks_ptr[2] = keys[0];
break;
default:
AESNI_MB_LOG(ERR, "Invalid cipher key length");
return -EINVAL;
}
#if IMB_VERSION_NUM >= IMB_VERSION(0, 50, 0)
sess->cipher.key_length_in_bytes = 24;
#else
sess->cipher.key_length_in_bytes = 8;
#endif
} else {
if (xform->cipher.key.length != 8) {
AESNI_MB_LOG(ERR, "Invalid cipher key length");
return -EINVAL;
}
sess->cipher.key_length_in_bytes = 8;
des_key_schedule((uint64_t *)sess->cipher.expanded_aes_keys.encode,
xform->cipher.key.data);
des_key_schedule((uint64_t *)sess->cipher.expanded_aes_keys.decode,
xform->cipher.key.data);
}
return 0;
}
static int
aesni_mb_set_session_aead_parameters(const struct aesni_mb_op_fns *mb_ops,
struct aesni_mb_session *sess,
const struct rte_crypto_sym_xform *xform)
{
union {
aes_keyexp_t aes_keyexp_fn;
aes_gcm_keyexp_t aes_gcm_keyexp_fn;
} keyexp;
switch (xform->aead.op) {
case RTE_CRYPTO_AEAD_OP_ENCRYPT:
sess->cipher.direction = ENCRYPT;
sess->auth.operation = RTE_CRYPTO_AUTH_OP_GENERATE;
break;
case RTE_CRYPTO_AEAD_OP_DECRYPT:
sess->cipher.direction = DECRYPT;
sess->auth.operation = RTE_CRYPTO_AUTH_OP_VERIFY;
break;
default:
AESNI_MB_LOG(ERR, "Invalid aead operation parameter");
return -EINVAL;
}
switch (xform->aead.algo) {
case RTE_CRYPTO_AEAD_AES_CCM:
sess->cipher.mode = CCM;
sess->auth.algo = AES_CCM;
/* Check key length and choose key expansion function for AES */
switch (xform->aead.key.length) {
case AES_128_BYTES:
sess->cipher.key_length_in_bytes = AES_128_BYTES;
keyexp.aes_keyexp_fn = mb_ops->aux.keyexp.aes128;
break;
default:
AESNI_MB_LOG(ERR, "Invalid cipher key length");
return -EINVAL;
}
/* Expanded cipher keys */
(*keyexp.aes_keyexp_fn)(xform->aead.key.data,
sess->cipher.expanded_aes_keys.encode,
sess->cipher.expanded_aes_keys.decode);
break;
case RTE_CRYPTO_AEAD_AES_GCM:
sess->cipher.mode = GCM;
sess->auth.algo = AES_GMAC;
switch (xform->aead.key.length) {
case AES_128_BYTES:
sess->cipher.key_length_in_bytes = AES_128_BYTES;
keyexp.aes_gcm_keyexp_fn =
mb_ops->aux.keyexp.aes_gcm_128;
break;
case AES_192_BYTES:
sess->cipher.key_length_in_bytes = AES_192_BYTES;
keyexp.aes_gcm_keyexp_fn =
mb_ops->aux.keyexp.aes_gcm_192;
break;
case AES_256_BYTES:
sess->cipher.key_length_in_bytes = AES_256_BYTES;
keyexp.aes_gcm_keyexp_fn =
mb_ops->aux.keyexp.aes_gcm_256;
break;
default:
AESNI_MB_LOG(ERR, "Invalid cipher key length");
return -EINVAL;
}
(keyexp.aes_gcm_keyexp_fn)(xform->aead.key.data,
&sess->cipher.gcm_key);
break;
default:
AESNI_MB_LOG(ERR, "Unsupported aead mode parameter");
return -ENOTSUP;
}
/* Set IV parameters */
sess->iv.offset = xform->aead.iv.offset;
sess->iv.length = xform->aead.iv.length;
sess->auth.req_digest_len = xform->aead.digest_length;
/* CCM digests must be between 4 and 16 and an even number */
if (sess->auth.req_digest_len < AES_CCM_DIGEST_MIN_LEN ||
sess->auth.req_digest_len > AES_CCM_DIGEST_MAX_LEN ||
(sess->auth.req_digest_len & 1) == 1) {
AESNI_MB_LOG(ERR, "Invalid digest size\n");
return -EINVAL;
}
sess->auth.gen_digest_len = sess->auth.req_digest_len;
return 0;
}
/** Parse crypto xform chain and set private session parameters */
int
aesni_mb_set_session_parameters(const struct aesni_mb_op_fns *mb_ops,
struct aesni_mb_session *sess,
const struct rte_crypto_sym_xform *xform)
{
const struct rte_crypto_sym_xform *auth_xform = NULL;
const struct rte_crypto_sym_xform *cipher_xform = NULL;
const struct rte_crypto_sym_xform *aead_xform = NULL;
int ret;
/* Select Crypto operation - hash then cipher / cipher then hash */
switch (aesni_mb_get_chain_order(xform)) {
case AESNI_MB_OP_HASH_CIPHER:
sess->chain_order = HASH_CIPHER;
auth_xform = xform;
cipher_xform = xform->next;
break;
case AESNI_MB_OP_CIPHER_HASH:
sess->chain_order = CIPHER_HASH;
auth_xform = xform->next;
cipher_xform = xform;
break;
case AESNI_MB_OP_HASH_ONLY:
sess->chain_order = HASH_CIPHER;
auth_xform = xform;
cipher_xform = NULL;
break;
case AESNI_MB_OP_CIPHER_ONLY:
/*
* Multi buffer library operates only at two modes,
* CIPHER_HASH and HASH_CIPHER. When doing ciphering only,
* chain order depends on cipher operation: encryption is always
* the first operation and decryption the last one.
*/
if (xform->cipher.op == RTE_CRYPTO_CIPHER_OP_ENCRYPT)
sess->chain_order = CIPHER_HASH;
else
sess->chain_order = HASH_CIPHER;
auth_xform = NULL;
cipher_xform = xform;
break;
case AESNI_MB_OP_AEAD_CIPHER_HASH:
sess->chain_order = CIPHER_HASH;
sess->aead.aad_len = xform->aead.aad_length;
aead_xform = xform;
break;
case AESNI_MB_OP_AEAD_HASH_CIPHER:
sess->chain_order = HASH_CIPHER;
sess->aead.aad_len = xform->aead.aad_length;
aead_xform = xform;
break;
case AESNI_MB_OP_NOT_SUPPORTED:
default:
AESNI_MB_LOG(ERR, "Unsupported operation chain order parameter");
return -ENOTSUP;
}
/* Default IV length = 0 */
sess->iv.length = 0;
ret = aesni_mb_set_session_auth_parameters(mb_ops, sess, auth_xform);
if (ret != 0) {
AESNI_MB_LOG(ERR, "Invalid/unsupported authentication parameters");
return ret;
}
ret = aesni_mb_set_session_cipher_parameters(mb_ops, sess,
cipher_xform);
if (ret != 0) {
AESNI_MB_LOG(ERR, "Invalid/unsupported cipher parameters");
return ret;
}
if (aead_xform) {
ret = aesni_mb_set_session_aead_parameters(mb_ops, sess,
aead_xform);
if (ret != 0) {
AESNI_MB_LOG(ERR, "Invalid/unsupported aead parameters");
return ret;
}
}
return 0;
}
/**
* burst enqueue, place crypto operations on ingress queue for processing.
*
* @param __qp Queue Pair to process
* @param ops Crypto operations for processing
* @param nb_ops Number of crypto operations for processing
*
* @return
* - Number of crypto operations enqueued
*/
static uint16_t
aesni_mb_pmd_enqueue_burst(void *__qp, struct rte_crypto_op **ops,
uint16_t nb_ops)
{
struct aesni_mb_qp *qp = __qp;
unsigned int nb_enqueued;
nb_enqueued = rte_ring_enqueue_burst(qp->ingress_queue,
(void **)ops, nb_ops, NULL);
qp->stats.enqueued_count += nb_enqueued;
return nb_enqueued;
}
/** Get multi buffer session */
static inline struct aesni_mb_session *
get_session(struct aesni_mb_qp *qp, struct rte_crypto_op *op)
{
struct aesni_mb_session *sess = NULL;
if (op->sess_type == RTE_CRYPTO_OP_WITH_SESSION) {
if (likely(op->sym->session != NULL))
sess = (struct aesni_mb_session *)
get_sym_session_private_data(
op->sym->session,
cryptodev_driver_id);
} else {
void *_sess = NULL;
void *_sess_private_data = NULL;
if (rte_mempool_get(qp->sess_mp, (void **)&_sess))
return NULL;
if (rte_mempool_get(qp->sess_mp, (void **)&_sess_private_data))
return NULL;
sess = (struct aesni_mb_session *)_sess_private_data;
if (unlikely(aesni_mb_set_session_parameters(qp->op_fns,
sess, op->sym->xform) != 0)) {
rte_mempool_put(qp->sess_mp, _sess);
rte_mempool_put(qp->sess_mp, _sess_private_data);
sess = NULL;
}
op->sym->session = (struct rte_cryptodev_sym_session *)_sess;
set_sym_session_private_data(op->sym->session,
cryptodev_driver_id, _sess_private_data);
}
if (unlikely(sess == NULL))
op->status = RTE_CRYPTO_OP_STATUS_INVALID_SESSION;
return sess;
}
/**
* Process a crypto operation and complete a JOB_AES_HMAC job structure for
* submission to the multi buffer library for processing.
*
* @param qp queue pair
* @param job JOB_AES_HMAC structure to fill
* @param m mbuf to process
*
* @return
* - Completed JOB_AES_HMAC structure pointer on success
* - NULL pointer if completion of JOB_AES_HMAC structure isn't possible
*/
static inline int
set_mb_job_params(JOB_AES_HMAC *job, struct aesni_mb_qp *qp,
struct rte_crypto_op *op, uint8_t *digest_idx)
{
struct rte_mbuf *m_src = op->sym->m_src, *m_dst;
struct aesni_mb_session *session;
uint16_t m_offset = 0;
session = get_session(qp, op);
if (session == NULL) {
op->status = RTE_CRYPTO_OP_STATUS_INVALID_SESSION;
return -1;
}
/* Set crypto operation */
job->chain_order = session->chain_order;
/* Set cipher parameters */
job->cipher_direction = session->cipher.direction;
job->cipher_mode = session->cipher.mode;
job->aes_key_len_in_bytes = session->cipher.key_length_in_bytes;
/* Set authentication parameters */
job->hash_alg = session->auth.algo;
switch (job->hash_alg) {
case AES_XCBC:
job->u.XCBC._k1_expanded = session->auth.xcbc.k1_expanded;
job->u.XCBC._k2 = session->auth.xcbc.k2;
job->u.XCBC._k3 = session->auth.xcbc.k3;
job->aes_enc_key_expanded =
session->cipher.expanded_aes_keys.encode;
job->aes_dec_key_expanded =
session->cipher.expanded_aes_keys.decode;
break;
case AES_CCM:
job->u.CCM.aad = op->sym->aead.aad.data + 18;
job->u.CCM.aad_len_in_bytes = session->aead.aad_len;
job->aes_enc_key_expanded =
session->cipher.expanded_aes_keys.encode;
job->aes_dec_key_expanded =
session->cipher.expanded_aes_keys.decode;
break;
case AES_CMAC:
job->u.CMAC._key_expanded = session->auth.cmac.expkey;
job->u.CMAC._skey1 = session->auth.cmac.skey1;
job->u.CMAC._skey2 = session->auth.cmac.skey2;
job->aes_enc_key_expanded =
session->cipher.expanded_aes_keys.encode;
job->aes_dec_key_expanded =
session->cipher.expanded_aes_keys.decode;
break;
case AES_GMAC:
job->u.GCM.aad = op->sym->aead.aad.data;
job->u.GCM.aad_len_in_bytes = session->aead.aad_len;
job->aes_enc_key_expanded = &session->cipher.gcm_key;
job->aes_dec_key_expanded = &session->cipher.gcm_key;
break;
default:
job->u.HMAC._hashed_auth_key_xor_ipad = session->auth.pads.inner;
job->u.HMAC._hashed_auth_key_xor_opad = session->auth.pads.outer;
if (job->cipher_mode == DES3) {
job->aes_enc_key_expanded =
session->cipher.exp_3des_keys.ks_ptr;
job->aes_dec_key_expanded =
session->cipher.exp_3des_keys.ks_ptr;
} else {
job->aes_enc_key_expanded =
session->cipher.expanded_aes_keys.encode;
job->aes_dec_key_expanded =
session->cipher.expanded_aes_keys.decode;
}
}
/* Mutable crypto operation parameters */
if (op->sym->m_dst) {
m_src = m_dst = op->sym->m_dst;
/* append space for output data to mbuf */
char *odata = rte_pktmbuf_append(m_dst,
rte_pktmbuf_data_len(op->sym->m_src));
if (odata == NULL) {
AESNI_MB_LOG(ERR, "failed to allocate space in destination "
"mbuf for source data");
op->status = RTE_CRYPTO_OP_STATUS_ERROR;
return -1;
}
memcpy(odata, rte_pktmbuf_mtod(op->sym->m_src, void*),
rte_pktmbuf_data_len(op->sym->m_src));
} else {
m_dst = m_src;
if (job->hash_alg == AES_CCM || job->hash_alg == AES_GMAC)
m_offset = op->sym->aead.data.offset;
else
m_offset = op->sym->cipher.data.offset;
}
/* Set digest output location */
if (job->hash_alg != NULL_HASH &&
session->auth.operation == RTE_CRYPTO_AUTH_OP_VERIFY) {
job->auth_tag_output = qp->temp_digests[*digest_idx];
*digest_idx = (*digest_idx + 1) % MAX_JOBS;
} else {
if (job->hash_alg == AES_CCM || job->hash_alg == AES_GMAC)
job->auth_tag_output = op->sym->aead.digest.data;
else
job->auth_tag_output = op->sym->auth.digest.data;
if (session->auth.req_digest_len != session->auth.gen_digest_len) {
job->auth_tag_output = qp->temp_digests[*digest_idx];
*digest_idx = (*digest_idx + 1) % MAX_JOBS;
}
}
/*
* Multi-buffer library current only support returning a truncated
* digest length as specified in the relevant IPsec RFCs
*/
/* Set digest length */
job->auth_tag_output_len_in_bytes = session->auth.gen_digest_len;
/* Set IV parameters */
job->iv_len_in_bytes = session->iv.length;
/* Data Parameter */
job->src = rte_pktmbuf_mtod(m_src, uint8_t *);
job->dst = rte_pktmbuf_mtod_offset(m_dst, uint8_t *, m_offset);
switch (job->hash_alg) {
case AES_CCM:
job->cipher_start_src_offset_in_bytes =
op->sym->aead.data.offset;
job->msg_len_to_cipher_in_bytes = op->sym->aead.data.length;
job->hash_start_src_offset_in_bytes = op->sym->aead.data.offset;
job->msg_len_to_hash_in_bytes = op->sym->aead.data.length;
job->iv = rte_crypto_op_ctod_offset(op, uint8_t *,
session->iv.offset + 1);
break;
case AES_GMAC:
job->cipher_start_src_offset_in_bytes =
op->sym->aead.data.offset;
job->hash_start_src_offset_in_bytes = op->sym->aead.data.offset;
job->msg_len_to_cipher_in_bytes = op->sym->aead.data.length;
job->msg_len_to_hash_in_bytes = job->msg_len_to_cipher_in_bytes;
job->iv = rte_crypto_op_ctod_offset(op, uint8_t *,
session->iv.offset);
break;
default:
job->cipher_start_src_offset_in_bytes =
op->sym->cipher.data.offset;
job->msg_len_to_cipher_in_bytes = op->sym->cipher.data.length;
job->hash_start_src_offset_in_bytes = op->sym->auth.data.offset;
job->msg_len_to_hash_in_bytes = op->sym->auth.data.length;
job->iv = rte_crypto_op_ctod_offset(op, uint8_t *,
session->iv.offset);
}
/* Set user data to be crypto operation data struct */
job->user_data = op;
return 0;
}
static inline void
verify_digest(JOB_AES_HMAC *job, struct rte_crypto_op *op,
struct aesni_mb_session *sess)
{
/* Verify digest if required */
if (job->hash_alg == AES_CCM || job->hash_alg == AES_GMAC) {
if (memcmp(job->auth_tag_output, op->sym->aead.digest.data,
sess->auth.req_digest_len) != 0)
op->status = RTE_CRYPTO_OP_STATUS_AUTH_FAILED;
} else {
if (memcmp(job->auth_tag_output, op->sym->auth.digest.data,
sess->auth.req_digest_len) != 0)
op->status = RTE_CRYPTO_OP_STATUS_AUTH_FAILED;
}
}
static inline void
generate_digest(JOB_AES_HMAC *job, struct rte_crypto_op *op,
struct aesni_mb_session *sess)
{
/* No extra copy neeed */
if (likely(sess->auth.req_digest_len == sess->auth.gen_digest_len))
return;
/*
* This can only happen for HMAC, so only digest
* for authentication algos is required
*/
memcpy(op->sym->auth.digest.data, job->auth_tag_output,
sess->auth.req_digest_len);
}
/**
* Process a completed job and return rte_mbuf which job processed
*
* @param qp Queue Pair to process
* @param job JOB_AES_HMAC job to process
*
* @return
* - Returns processed crypto operation.
* - Returns NULL on invalid job
*/
static inline struct rte_crypto_op *
post_process_mb_job(struct aesni_mb_qp *qp, JOB_AES_HMAC *job)
{
struct rte_crypto_op *op = (struct rte_crypto_op *)job->user_data;
struct aesni_mb_session *sess = get_sym_session_private_data(
op->sym->session,
cryptodev_driver_id);
if (likely(op->status == RTE_CRYPTO_OP_STATUS_NOT_PROCESSED)) {
switch (job->status) {
case STS_COMPLETED:
op->status = RTE_CRYPTO_OP_STATUS_SUCCESS;
if (job->hash_alg != NULL_HASH) {
if (sess->auth.operation ==
RTE_CRYPTO_AUTH_OP_VERIFY)
verify_digest(job, op, sess);
else
generate_digest(job, op, sess);
}
break;
default:
op->status = RTE_CRYPTO_OP_STATUS_ERROR;
}
}
/* Free session if a session-less crypto op */
if (op->sess_type == RTE_CRYPTO_OP_SESSIONLESS) {
memset(sess, 0, sizeof(struct aesni_mb_session));
memset(op->sym->session, 0,
rte_cryptodev_sym_get_header_session_size());
rte_mempool_put(qp->sess_mp, sess);
rte_mempool_put(qp->sess_mp, op->sym->session);
op->sym->session = NULL;
}
return op;
}
/**
* Process a completed JOB_AES_HMAC job and keep processing jobs until
* get_completed_job return NULL
*
* @param qp Queue Pair to process
* @param job JOB_AES_HMAC job
*
* @return
* - Number of processed jobs
*/
static unsigned
handle_completed_jobs(struct aesni_mb_qp *qp, JOB_AES_HMAC *job,
struct rte_crypto_op **ops, uint16_t nb_ops)
{
struct rte_crypto_op *op = NULL;
unsigned processed_jobs = 0;
while (job != NULL) {
op = post_process_mb_job(qp, job);
if (op) {
ops[processed_jobs++] = op;
qp->stats.dequeued_count++;
} else {
qp->stats.dequeue_err_count++;
break;
}
if (processed_jobs == nb_ops)
break;
job = (*qp->op_fns->job.get_completed_job)(qp->mb_mgr);
}
return processed_jobs;
}
static inline uint16_t
flush_mb_mgr(struct aesni_mb_qp *qp, struct rte_crypto_op **ops,
uint16_t nb_ops)
{
int processed_ops = 0;
/* Flush the remaining jobs */
JOB_AES_HMAC *job = (*qp->op_fns->job.flush_job)(qp->mb_mgr);
if (job)
processed_ops += handle_completed_jobs(qp, job,
&ops[processed_ops], nb_ops - processed_ops);
return processed_ops;
}
static inline JOB_AES_HMAC *
set_job_null_op(JOB_AES_HMAC *job, struct rte_crypto_op *op)
{
job->chain_order = HASH_CIPHER;
job->cipher_mode = NULL_CIPHER;
job->hash_alg = NULL_HASH;
job->cipher_direction = DECRYPT;
/* Set user data to be crypto operation data struct */
job->user_data = op;
return job;
}
static uint16_t
aesni_mb_pmd_dequeue_burst(void *queue_pair, struct rte_crypto_op **ops,
uint16_t nb_ops)
{
struct aesni_mb_qp *qp = queue_pair;
struct rte_crypto_op *op;
JOB_AES_HMAC *job;
int retval, processed_jobs = 0;
if (unlikely(nb_ops == 0))
return 0;
uint8_t digest_idx = qp->digest_idx;
do {
/* Get next free mb job struct from mb manager */
job = (*qp->op_fns->job.get_next)(qp->mb_mgr);
if (unlikely(job == NULL)) {
/* if no free mb job structs we need to flush mb_mgr */
processed_jobs += flush_mb_mgr(qp,
&ops[processed_jobs],
nb_ops - processed_jobs);
if (nb_ops == processed_jobs)
break;
job = (*qp->op_fns->job.get_next)(qp->mb_mgr);
}
/*
* Get next operation to process from ingress queue.
* There is no need to return the job to the MB_MGR
* if there are no more operations to process, since the MB_MGR
* can use that pointer again in next get_next calls.
*/
retval = rte_ring_dequeue(qp->ingress_queue, (void **)&op);
if (retval < 0)
break;
retval = set_mb_job_params(job, qp, op, &digest_idx);
if (unlikely(retval != 0)) {
qp->stats.dequeue_err_count++;
set_job_null_op(job, op);
}
/* Submit job to multi-buffer for processing */
job = (*qp->op_fns->job.submit)(qp->mb_mgr);
/*
* If submit returns a processed job then handle it,
* before submitting subsequent jobs
*/
if (job)
processed_jobs += handle_completed_jobs(qp, job,
&ops[processed_jobs],
nb_ops - processed_jobs);
} while (processed_jobs < nb_ops);
qp->digest_idx = digest_idx;
if (processed_jobs < 1)
processed_jobs += flush_mb_mgr(qp,
&ops[processed_jobs],
nb_ops - processed_jobs);
return processed_jobs;
}
static int cryptodev_aesni_mb_remove(struct rte_vdev_device *vdev);
static int
cryptodev_aesni_mb_create(const char *name,
struct rte_vdev_device *vdev,
struct rte_cryptodev_pmd_init_params *init_params)
{
struct rte_cryptodev *dev;
struct aesni_mb_private *internals;
enum aesni_mb_vector_mode vector_mode;
/* Check CPU for support for AES instruction set */
if (!rte_cpu_get_flag_enabled(RTE_CPUFLAG_AES)) {
AESNI_MB_LOG(ERR, "AES instructions not supported by CPU");
return -EFAULT;
}
dev = rte_cryptodev_pmd_create(name, &vdev->device, init_params);
if (dev == NULL) {
AESNI_MB_LOG(ERR, "failed to create cryptodev vdev");
return -ENODEV;
}
/* Check CPU for supported vector instruction set */
if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F))
vector_mode = RTE_AESNI_MB_AVX512;
else if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2))
vector_mode = RTE_AESNI_MB_AVX2;
else if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX))
vector_mode = RTE_AESNI_MB_AVX;
else
vector_mode = RTE_AESNI_MB_SSE;
dev->driver_id = cryptodev_driver_id;
dev->dev_ops = rte_aesni_mb_pmd_ops;
/* register rx/tx burst functions for data path */
dev->dequeue_burst = aesni_mb_pmd_dequeue_burst;
dev->enqueue_burst = aesni_mb_pmd_enqueue_burst;
dev->feature_flags = RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO |
RTE_CRYPTODEV_FF_SYM_OPERATION_CHAINING |
RTE_CRYPTODEV_FF_CPU_AESNI;
switch (vector_mode) {
case RTE_AESNI_MB_SSE:
dev->feature_flags |= RTE_CRYPTODEV_FF_CPU_SSE;
break;
case RTE_AESNI_MB_AVX:
dev->feature_flags |= RTE_CRYPTODEV_FF_CPU_AVX;
break;
case RTE_AESNI_MB_AVX2:
dev->feature_flags |= RTE_CRYPTODEV_FF_CPU_AVX2;
break;
case RTE_AESNI_MB_AVX512:
dev->feature_flags |= RTE_CRYPTODEV_FF_CPU_AVX512;
break;
default:
break;
}
/* Set vector instructions mode supported */
internals = dev->data->dev_private;
internals->vector_mode = vector_mode;
internals->max_nb_queue_pairs = init_params->max_nb_queue_pairs;
#if IMB_VERSION_NUM >= IMB_VERSION(0, 50, 0)
AESNI_MB_LOG(INFO, "IPSec Multi-buffer library version used: %s\n",
imb_get_version_str());
#else
AESNI_MB_LOG(INFO, "IPSec Multi-buffer library version used: 0.49.0\n");
#endif
return 0;
}
static int
cryptodev_aesni_mb_probe(struct rte_vdev_device *vdev)
{
struct rte_cryptodev_pmd_init_params init_params = {
"",
sizeof(struct aesni_mb_private),
rte_socket_id(),
RTE_CRYPTODEV_PMD_DEFAULT_MAX_NB_QUEUE_PAIRS
};
const char *name, *args;
int retval;
name = rte_vdev_device_name(vdev);
if (name == NULL)
return -EINVAL;
args = rte_vdev_device_args(vdev);
retval = rte_cryptodev_pmd_parse_input_args(&init_params, args);
if (retval) {
AESNI_MB_LOG(ERR, "Failed to parse initialisation arguments[%s]",
args);
return -EINVAL;
}
return cryptodev_aesni_mb_create(name, vdev, &init_params);
}
static int
cryptodev_aesni_mb_remove(struct rte_vdev_device *vdev)
{
struct rte_cryptodev *cryptodev;
const char *name;
name = rte_vdev_device_name(vdev);
if (name == NULL)
return -EINVAL;
cryptodev = rte_cryptodev_pmd_get_named_dev(name);
if (cryptodev == NULL)
return -ENODEV;
return rte_cryptodev_pmd_destroy(cryptodev);
}
static struct rte_vdev_driver cryptodev_aesni_mb_pmd_drv = {
.probe = cryptodev_aesni_mb_probe,
.remove = cryptodev_aesni_mb_remove
};
static struct cryptodev_driver aesni_mb_crypto_drv;
RTE_PMD_REGISTER_VDEV(CRYPTODEV_NAME_AESNI_MB_PMD, cryptodev_aesni_mb_pmd_drv);
RTE_PMD_REGISTER_ALIAS(CRYPTODEV_NAME_AESNI_MB_PMD, cryptodev_aesni_mb_pmd);
RTE_PMD_REGISTER_PARAM_STRING(CRYPTODEV_NAME_AESNI_MB_PMD,
"max_nb_queue_pairs=<int> "
"socket_id=<int>");
RTE_PMD_REGISTER_CRYPTO_DRIVER(aesni_mb_crypto_drv,
cryptodev_aesni_mb_pmd_drv.driver,
cryptodev_driver_id);
RTE_INIT(aesni_mb_init_log)
{
aesni_mb_logtype_driver = rte_log_register("pmd.crypto.aesni_mb");
}