f-stack/freebsd/contrib/dev/ath/ath_hal/ar9300/ar9300_xmit_ds.c

966 lines
28 KiB
C

/*
* Copyright (c) 2013 Qualcomm Atheros, Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH
* REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
* AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
* INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
* LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
* OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
* PERFORMANCE OF THIS SOFTWARE.
*/
#include "opt_ah.h"
#include "ah.h"
#include "ah_desc.h"
#include "ah_internal.h"
#include "ar9300/ar9300desc.h"
#include "ar9300/ar9300.h"
#include "ar9300/ar9300reg.h"
#include "ar9300/ar9300phy.h"
#include "ah_devid.h"
#if AH_BYTE_ORDER == AH_BIG_ENDIAN
static void ar9300_swap_tx_desc(void *ds);
#endif
void
ar9300_tx_req_intr_desc(struct ath_hal *ah, void *ds)
{
HALDEBUG(ah, HAL_DEBUG_INTERRUPT,
"%s:Desc Interrupt not supported\n", __func__);
}
static inline u_int16_t
ar9300_calc_ptr_chk_sum(struct ar9300_txc *ads)
{
u_int checksum;
u_int16_t ptrchecksum;
/* checksum = __bswap32(ads->ds_info) + ads->ds_link */
checksum = ads->ds_info + ads->ds_link
+ ads->ds_data0 + ads->ds_ctl3
+ ads->ds_data1 + ads->ds_ctl5
+ ads->ds_data2 + ads->ds_ctl7
+ ads->ds_data3 + ads->ds_ctl9;
ptrchecksum = ((checksum & 0xffff) + (checksum >> 16)) & AR_tx_ptr_chk_sum;
return ptrchecksum;
}
HAL_BOOL
ar9300_fill_tx_desc(
struct ath_hal *ah,
void *ds,
HAL_DMA_ADDR *buf_addr,
u_int32_t *seg_len,
u_int desc_id,
u_int qcu,
HAL_KEY_TYPE key_type,
HAL_BOOL first_seg,
HAL_BOOL last_seg,
const void *ds0)
{
struct ar9300_txc *ads = AR9300TXC(ds);
short desclen;
/* Fill TXC info field */
desclen = (AR_SREV_JUPITER(ah) || AR_SREV_APHRODITE(ah)) ? 0x18 : 0x17;
ads->ds_info = TXC_INFO(qcu, desclen);
/* Set the buffer addresses */
ads->ds_data0 = buf_addr[0];
ads->ds_data1 = buf_addr[1];
ads->ds_data2 = buf_addr[2];
ads->ds_data3 = buf_addr[3];
/* Set the buffer lengths */
ads->ds_ctl3 = (seg_len[0] << AR_buf_len_S) & AR_buf_len;
ads->ds_ctl5 = (seg_len[1] << AR_buf_len_S) & AR_buf_len;
ads->ds_ctl7 = (seg_len[2] << AR_buf_len_S) & AR_buf_len;
ads->ds_ctl9 = (seg_len[3] << AR_buf_len_S) & AR_buf_len;
/* Fill in pointer checksum and descriptor id */
ads->ds_ctl10 = (desc_id << AR_tx_desc_id_S) | ar9300_calc_ptr_chk_sum(ads);
if (first_seg) {
/*
* First descriptor, don't clobber xmit control data
* setup by ar9300_set_11n_tx_desc.
*
* Note: AR_encr_type is already setup in the first descriptor by
* set_11n_tx_desc().
*/
ads->ds_ctl12 |= (last_seg ? 0 : AR_tx_more);
} else if (last_seg) { /* !first_seg && last_seg */
/*
* Last descriptor in a multi-descriptor frame,
* copy the multi-rate transmit parameters from
* the first frame for processing on completion.
*/
ads->ds_ctl11 = 0;
ads->ds_ctl12 = 0;
#ifdef AH_NEED_DESC_SWAP
ads->ds_ctl13 = __bswap32(AR9300TXC_CONST(ds0)->ds_ctl13);
ads->ds_ctl14 = __bswap32(AR9300TXC_CONST(ds0)->ds_ctl14);
ads->ds_ctl17 = __bswap32(SM(key_type, AR_encr_type));
#else
ads->ds_ctl13 = AR9300TXC_CONST(ds0)->ds_ctl13;
ads->ds_ctl14 = AR9300TXC_CONST(ds0)->ds_ctl14;
ads->ds_ctl17 = SM(key_type, AR_encr_type);
#endif
} else { /* !first_seg && !last_seg */
/*
* XXX Intermediate descriptor in a multi-descriptor frame.
*/
ads->ds_ctl11 = 0;
ads->ds_ctl12 = AR_tx_more;
ads->ds_ctl13 = 0;
ads->ds_ctl14 = 0;
ads->ds_ctl17 = SM(key_type, AR_encr_type);
}
/* Only relevant for Jupiter/Aphrodite */
ads->ds_ctl23 = 0;
return AH_TRUE;
}
void
ar9300_set_desc_link(struct ath_hal *ah, void *ds, u_int32_t link)
{
struct ar9300_txc *ads = AR9300TXC(ds);
ads->ds_link = link;
/* TODO - checksum is calculated twice for subframes
* Once in filldesc and again when linked. Need to fix.
*/
/* Fill in pointer checksum. Preserve descriptor id */
ads->ds_ctl10 &= ~AR_tx_ptr_chk_sum;
ads->ds_ctl10 |= ar9300_calc_ptr_chk_sum(ads);
}
void
ar9300_get_desc_link_ptr(struct ath_hal *ah, void *ds, u_int32_t **link)
{
struct ar9300_txc *ads = AR9300TXC(ds);
*link = &ads->ds_link;
}
void
ar9300_clear_tx_desc_status(struct ath_hal *ah, void *ds)
{
struct ar9300_txs *ads = AR9300TXS(ds);
ads->status1 = ads->status2 = 0;
ads->status3 = ads->status4 = 0;
ads->status5 = ads->status6 = 0;
ads->status7 = ads->status8 = 0;
}
#ifdef ATH_SWRETRY
void
ar9300_clear_dest_mask(struct ath_hal *ah, void *ds)
{
struct ar9300_txc *ads = AR9300TXC(ds);
ads->ds_ctl11 |= AR_clr_dest_mask;
}
#endif
#if AH_BYTE_ORDER == AH_BIG_ENDIAN
/* XXX what words need swapping */
/* Swap transmit descriptor */
static __inline void
ar9300_swap_tx_desc(void *dsp)
{
struct ar9300_txs *ds = (struct ar9300_txs *)dsp;
ds->ds_info = __bswap32(ds->ds_info);
ds->status1 = __bswap32(ds->status1);
ds->status2 = __bswap32(ds->status2);
ds->status3 = __bswap32(ds->status3);
ds->status4 = __bswap32(ds->status4);
ds->status5 = __bswap32(ds->status5);
ds->status6 = __bswap32(ds->status6);
ds->status7 = __bswap32(ds->status7);
ds->status8 = __bswap32(ds->status8);
}
#endif
/*
* Extract the transmit rate code.
*/
void
ar9300_get_tx_rate_code(struct ath_hal *ah, void *ds, struct ath_tx_status *ts)
{
struct ar9300_txc *ads = AR9300TXC(ds);
switch (ts->ts_finaltsi) {
case 0:
ts->ts_rate = MS(ads->ds_ctl14, AR_xmit_rate0);
break;
case 1:
ts->ts_rate = MS(ads->ds_ctl14, AR_xmit_rate1);
break;
case 2:
ts->ts_rate = MS(ads->ds_ctl14, AR_xmit_rate2);
break;
case 3:
ts->ts_rate = MS(ads->ds_ctl14, AR_xmit_rate3);
break;
}
ar9300_set_selfgenrate_limit(ah, ts->ts_rate);
}
/*
* Get TX Status descriptor contents.
*/
void
ar9300_get_raw_tx_desc(struct ath_hal *ah, u_int32_t *txstatus)
{
struct ath_hal_9300 *ahp = AH9300(ah);
struct ar9300_txs *ads;
ads = &ahp->ts_ring[ahp->ts_tail];
OS_MEMCPY(txstatus, ads, sizeof(struct ar9300_txs));
}
/*
* Processing of HW TX descriptor.
*/
HAL_STATUS
ar9300_proc_tx_desc(struct ath_hal *ah, void *txstatus)
{
struct ath_hal_9300 *ahp = AH9300(ah);
struct ar9300_txs *ads;
struct ath_tx_status *ts = (struct ath_tx_status *)txstatus;
u_int32_t dsinfo;
ads = &ahp->ts_ring[ahp->ts_tail];
if ((ads->status8 & AR_tx_done) == 0) {
return HAL_EINPROGRESS;
}
/*
* Sanity check
*/
#if 0
ath_hal_printf(ah,
"CHH: tail=%d\n", ahp->ts_tail);
ath_hal_printf(ah,
"CHH: ds_info 0x%x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
ads->ds_info,
ads->status1,
ads->status2,
ads->status3,
ads->status4,
ads->status5,
ads->status6,
ads->status7,
ads->status8);
#endif
/* Increment the tail to point to the next status element. */
ahp->ts_tail = (ahp->ts_tail + 1) & (ahp->ts_size-1);
/*
** For big endian systems, ds_info is not swapped as the other
** registers are. Ensure we use the bswap32 version (which is
** defined to "nothing" in little endian systems
*/
dsinfo = ads->ds_info;
if ((MS(dsinfo, AR_desc_id) != ATHEROS_VENDOR_ID) ||
(MS(dsinfo, AR_tx_rx_desc) != 1))
{
HALDEBUG(AH_NULL, HAL_DEBUG_UNMASKABLE, "%s: Tx Descriptor error %x\n",
__func__, dsinfo);
HALASSERT(0);
/* Zero out the status for reuse */
OS_MEMZERO(ads, sizeof(struct ar9300_txs));
return HAL_EIO;
}
/* Update software copies of the HW status */
ts->ts_queue_id = MS(dsinfo, AR_tx_qcu_num);
ts->ts_desc_id = MS(ads->status1, AR_tx_desc_id);
ts->ts_seqnum = MS(ads->status8, AR_seq_num);
ts->ts_tstamp = ads->status4;
ts->ts_status = 0;
ts->ts_flags = 0;
if (ads->status3 & AR_excessive_retries) {
ts->ts_status |= HAL_TXERR_XRETRY;
}
if (ads->status3 & AR_filtered) {
ts->ts_status |= HAL_TXERR_FILT;
}
if (ads->status3 & AR_fifounderrun) {
ts->ts_status |= HAL_TXERR_FIFO;
ar9300_update_tx_trig_level(ah, AH_TRUE);
}
if (ads->status8 & AR_tx_op_exceeded) {
ts->ts_status |= HAL_TXERR_XTXOP;
}
if (ads->status3 & AR_tx_timer_expired) {
ts->ts_status |= HAL_TXERR_TIMER_EXPIRED;
}
if (ads->status3 & AR_desc_cfg_err) {
ts->ts_flags |= HAL_TX_DESC_CFG_ERR;
}
if (ads->status3 & AR_tx_data_underrun) {
ts->ts_flags |= HAL_TX_DATA_UNDERRUN;
ar9300_update_tx_trig_level(ah, AH_TRUE);
}
if (ads->status3 & AR_tx_delim_underrun) {
ts->ts_flags |= HAL_TX_DELIM_UNDERRUN;
ar9300_update_tx_trig_level(ah, AH_TRUE);
}
if (ads->status2 & AR_tx_ba_status) {
ts->ts_flags |= HAL_TX_BA;
ts->ts_ba_low = ads->status5;
ts->ts_ba_high = ads->status6;
}
/*
* Extract the transmit rate.
*/
ts->ts_finaltsi = MS(ads->status8, AR_final_tx_idx);
ts->ts_rssi = MS(ads->status7, AR_tx_rssi_combined);
ts->ts_rssi_ctl[0] = MS(ads->status2, AR_tx_rssi_ant00);
ts->ts_rssi_ctl[1] = MS(ads->status2, AR_tx_rssi_ant01);
ts->ts_rssi_ctl[2] = MS(ads->status2, AR_tx_rssi_ant02);
ts->ts_rssi_ext[0] = MS(ads->status7, AR_tx_rssi_ant10);
ts->ts_rssi_ext[1] = MS(ads->status7, AR_tx_rssi_ant11);
ts->ts_rssi_ext[2] = MS(ads->status7, AR_tx_rssi_ant12);
ts->ts_shortretry = MS(ads->status3, AR_rts_fail_cnt);
ts->ts_longretry = MS(ads->status3, AR_data_fail_cnt);
ts->ts_virtcol = MS(ads->status3, AR_virt_retry_cnt);
ts->ts_antenna = 0;
/* extract TID from block ack */
ts->ts_tid = MS(ads->status8, AR_tx_tid);
/* Zero out the status for reuse */
OS_MEMZERO(ads, sizeof(struct ar9300_txs));
return HAL_OK;
}
/*
* Calculate air time of a transmit packet
* if comp_wastedt is 1, calculate air time only for failed subframes
* this is required for VOW_DCS ( dynamic channel selection )
*/
u_int32_t
ar9300_calc_tx_airtime(struct ath_hal *ah, void *ds, struct ath_tx_status *ts,
HAL_BOOL comp_wastedt, u_int8_t nbad, u_int8_t nframes )
{
struct ar9300_txc *ads = AR9300TXC(ds);
int finalindex_tries;
u_int32_t airtime, lastrate_dur;
/*
* Number of attempts made on the final index
* Note: If no BA was recv, then the data_fail_cnt is the number of tries
* made on the final index. If BA was recv, then add 1 to account for the
* successful attempt.
*/
if ( !comp_wastedt ){
finalindex_tries = ts->ts_longretry + (ts->ts_flags & HAL_TX_BA)? 1 : 0;
} else {
finalindex_tries = ts->ts_longretry ;
}
/*
* Calculate time of transmit on air for packet including retries
* at different rates.
*/
switch (ts->ts_finaltsi) {
case 0:
lastrate_dur = MS(ads->ds_ctl15, AR_packet_dur0);
airtime = (lastrate_dur * finalindex_tries);
break;
case 1:
lastrate_dur = MS(ads->ds_ctl15, AR_packet_dur1);
airtime = (lastrate_dur * finalindex_tries) +
(MS(ads->ds_ctl13, AR_xmit_data_tries0) *
MS(ads->ds_ctl15, AR_packet_dur0));
break;
case 2:
lastrate_dur = MS(ads->ds_ctl16, AR_packet_dur2);
airtime = (lastrate_dur * finalindex_tries) +
(MS(ads->ds_ctl13, AR_xmit_data_tries1) *
MS(ads->ds_ctl15, AR_packet_dur1)) +
(MS(ads->ds_ctl13, AR_xmit_data_tries0) *
MS(ads->ds_ctl15, AR_packet_dur0));
break;
case 3:
lastrate_dur = MS(ads->ds_ctl16, AR_packet_dur3);
airtime = (lastrate_dur * finalindex_tries) +
(MS(ads->ds_ctl13, AR_xmit_data_tries2) *
MS(ads->ds_ctl16, AR_packet_dur2)) +
(MS(ads->ds_ctl13, AR_xmit_data_tries1) *
MS(ads->ds_ctl15, AR_packet_dur1)) +
(MS(ads->ds_ctl13, AR_xmit_data_tries0) *
MS(ads->ds_ctl15, AR_packet_dur0));
break;
default:
HALASSERT(0);
return 0;
}
if ( comp_wastedt && (ts->ts_flags & HAL_TX_BA)){
airtime += nbad?((lastrate_dur*nbad) / nframes):0;
}
return airtime;
}
#ifdef AH_PRIVATE_DIAG
void
ar9300__cont_tx_mode(struct ath_hal *ah, void *ds, int mode)
{
#if 0
static int qnum = 0;
int i;
unsigned int qbits, val, val1, val2;
int prefetch;
struct ar9300_txs *ads = AR9300TXS(ds);
if (mode == 10) {
return;
}
if (mode == 7) { /* print status from the cont tx desc */
if (ads) {
val1 = ads->ds_txstatus1;
val2 = ads->ds_txstatus2;
HALDEBUG(ah, HAL_DEBUG_TXDESC, "s0(%x) s1(%x)\n",
(unsigned)val1, (unsigned)val2);
}
HALDEBUG(ah, HAL_DEBUG_TXDESC, "txe(%x) txd(%x)\n",
OS_REG_READ(ah, AR_Q_TXE),
OS_REG_READ(ah, AR_Q_TXD)
);
for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
val = OS_REG_READ(ah, AR_QTXDP(i));
val2 = OS_REG_READ(ah, AR_QSTS(i)) & AR_Q_STS_PEND_FR_CNT;
HALDEBUG(ah, HAL_DEBUG_TXDESC, "[%d] %x %d\n", i, val, val2);
}
return;
}
if (mode == 8) { /* set TXE for qnum */
OS_REG_WRITE(ah, AR_Q_TXE, 1 << qnum);
return;
}
if (mode == 9) {
prefetch = (int)ds;
return;
}
if (mode >= 1) { /* initiate cont tx operation */
/* Disable AGC to A2 */
qnum = (int) ds;
OS_REG_WRITE(ah, AR_PHY_TEST,
(OS_REG_READ(ah, AR_PHY_TEST) | PHY_AGC_CLR) );
OS_REG_WRITE(ah, 0x9864, OS_REG_READ(ah, 0x9864) | 0x7f000);
OS_REG_WRITE(ah, 0x9924, OS_REG_READ(ah, 0x9924) | 0x7f00fe);
OS_REG_WRITE(ah, AR_DIAG_SW,
(OS_REG_READ(ah, AR_DIAG_SW) |
(AR_DIAG_FORCE_RX_CLEAR + AR_DIAG_IGNORE_VIRT_CS)) );
OS_REG_WRITE(ah, AR_CR, AR_CR_RXD); /* set receive disable */
if (mode == 3 || mode == 4) {
int txcfg;
if (mode == 3) {
OS_REG_WRITE(ah, AR_DLCL_IFS(qnum), 0);
OS_REG_WRITE(ah, AR_DRETRY_LIMIT(qnum), 0xffffffff);
OS_REG_WRITE(ah, AR_D_GBL_IFS_SIFS, 100);
OS_REG_WRITE(ah, AR_D_GBL_IFS_EIFS, 100);
OS_REG_WRITE(ah, AR_TIME_OUT, 2);
OS_REG_WRITE(ah, AR_D_GBL_IFS_SLOT, 100);
}
OS_REG_WRITE(ah, AR_DRETRY_LIMIT(qnum), 0xffffffff);
/* enable prefetch on qnum */
OS_REG_WRITE(ah, AR_D_FPCTL, 0x10 | qnum);
txcfg = 5 | (6 << AR_FTRIG_S);
OS_REG_WRITE(ah, AR_TXCFG, txcfg);
OS_REG_WRITE(ah, AR_QMISC(qnum), /* set QCU modes */
AR_Q_MISC_DCU_EARLY_TERM_REQ
+ AR_Q_MISC_FSP_ASAP
+ AR_Q_MISC_CBR_INCR_DIS1
+ AR_Q_MISC_CBR_INCR_DIS0
);
/* stop tx dma all all except qnum */
qbits = 0x3ff;
qbits &= ~(1 << qnum);
for (i = 0; i < 10; i++) {
if (i == qnum) {
continue;
}
OS_REG_WRITE(ah, AR_Q_TXD, 1 << i);
}
OS_REG_WRITE(ah, AR_Q_TXD, qbits);
/* clear and freeze MIB counters */
OS_REG_WRITE(ah, AR_MIBC, AR_MIBC_CMC);
OS_REG_WRITE(ah, AR_MIBC, AR_MIBC_FMC);
OS_REG_WRITE(ah, AR_DMISC(qnum),
(AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL <<
AR_D_MISC_ARB_LOCKOUT_CNTRL_S)
+ (AR_D_MISC_ARB_LOCKOUT_IGNORE)
+ (AR_D_MISC_POST_FR_BKOFF_DIS)
+ (AR_D_MISC_VIR_COL_HANDLING_IGNORE <<
AR_D_MISC_VIR_COL_HANDLING_S));
for (i = 0; i < HAL_NUM_TX_QUEUES + 2; i++) { /* disconnect QCUs */
if (i == qnum) {
continue;
}
OS_REG_WRITE(ah, AR_DQCUMASK(i), 0);
}
}
}
if (mode == 0) {
OS_REG_WRITE(ah, AR_PHY_TEST,
(OS_REG_READ(ah, AR_PHY_TEST) & ~PHY_AGC_CLR));
OS_REG_WRITE(ah, AR_DIAG_SW,
(OS_REG_READ(ah, AR_DIAG_SW) &
~(AR_DIAG_FORCE_RX_CLEAR + AR_DIAG_IGNORE_VIRT_CS)));
}
#endif
}
#endif
void
ar9300_set_paprd_tx_desc(struct ath_hal *ah, void *ds, int chain_num)
{
struct ar9300_txc *ads = AR9300TXC(ds);
ads->ds_ctl12 |= SM((1 << chain_num), AR_paprd_chain_mask);
}
HAL_STATUS
ar9300_is_tx_done(struct ath_hal *ah)
{
struct ath_hal_9300 *ahp = AH9300(ah);
struct ar9300_txs *ads;
ads = &ahp->ts_ring[ahp->ts_tail];
if (ads->status8 & AR_tx_done) {
return HAL_OK;
}
return HAL_EINPROGRESS;
}
void
ar9300_set_11n_tx_desc(
struct ath_hal *ah,
void *ds,
u_int pkt_len,
HAL_PKT_TYPE type,
u_int tx_power,
u_int key_ix,
HAL_KEY_TYPE key_type,
u_int flags)
{
struct ar9300_txc *ads = AR9300TXC(ds);
struct ath_hal_9300 *ahp = AH9300(ah);
HALASSERT(is_valid_pkt_type(type));
HALASSERT(is_valid_key_type(key_type));
tx_power += ahp->ah_tx_power_index_offset;
if (tx_power > 63) {
tx_power = 63;
}
ads->ds_ctl11 =
(pkt_len & AR_frame_len)
| (flags & HAL_TXDESC_VMF ? AR_virt_more_frag : 0)
| SM(tx_power, AR_xmit_power0)
| (flags & HAL_TXDESC_VEOL ? AR_veol : 0)
| (flags & HAL_TXDESC_CLRDMASK ? AR_clr_dest_mask : 0)
| (key_ix != HAL_TXKEYIX_INVALID ? AR_dest_idx_valid : 0)
| (flags & HAL_TXDESC_LOWRXCHAIN ? AR_low_rx_chain : 0);
ads->ds_ctl12 =
(key_ix != HAL_TXKEYIX_INVALID ? SM(key_ix, AR_dest_idx) : 0)
| SM(type, AR_frame_type)
| (flags & HAL_TXDESC_NOACK ? AR_no_ack : 0)
| (flags & HAL_TXDESC_HWTS ? AR_insert_ts : 0)
| (flags & HAL_TXDESC_EXT_ONLY ? AR_ext_only : 0)
| (flags & HAL_TXDESC_EXT_AND_CTL ? AR_ext_and_ctl : 0);
ads->ds_ctl17 =
SM(key_type, AR_encr_type) | (flags & HAL_TXDESC_LDPC ? AR_ldpc : 0);
ads->ds_ctl18 = 0;
ads->ds_ctl19 = AR_not_sounding; /* set not sounding for normal frame */
/*
* Clear Ness1/2/3 (Number of Extension Spatial Streams) fields.
* Ness0 is cleared in ctl19. See EV66059 (BB panic).
*/
ads->ds_ctl20 = 0;
ads->ds_ctl21 = 0;
ads->ds_ctl22 = 0;
}
void ar9300_set_rx_chainmask(struct ath_hal *ah, int rxchainmask)
{
OS_REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rxchainmask);
}
void ar9300_update_loc_ctl_reg(struct ath_hal *ah, int pos_bit)
{
u_int32_t reg_val;
reg_val = OS_REG_READ(ah, AR_LOC_CTL_REG);
if (pos_bit) {
if (!(reg_val & AR_LOC_CTL_REG_FS)) {
/* set fast timestamp bit in the regiter */
OS_REG_WRITE(ah, AR_LOC_CTL_REG, (reg_val | AR_LOC_CTL_REG_FS));
OS_REG_WRITE(ah, AR_LOC_TIMER_REG, 0);
}
}
else {
OS_REG_WRITE(ah, AR_LOC_CTL_REG, (reg_val & ~AR_LOC_CTL_REG_FS));
}
}
#if 0
#define HT_RC_2_MCS(_rc) ((_rc) & 0x0f)
static const u_int8_t ba_duration_delta[] = {
24, /* 0: BPSK */
12, /* 1: QPSK 1/2 */
12, /* 2: QPSK 3/4 */
4, /* 3: 16-QAM 1/2 */
4, /* 4: 16-QAM 3/4 */
4, /* 5: 64-QAM 2/3 */
4, /* 6: 64-QAM 3/4 */
4, /* 7: 64-QAM 5/6 */
24, /* 8: BPSK */
12, /* 9: QPSK 1/2 */
12, /* 10: QPSK 3/4 */
4, /* 11: 16-QAM 1/2 */
4, /* 12: 16-QAM 3/4 */
4, /* 13: 64-QAM 2/3 */
4, /* 14: 64-QAM 3/4 */
4, /* 15: 64-QAM 5/6 */
};
#endif
static u_int8_t
ar9300_get_tx_mode(u_int rate_flags)
{
/* Check whether STBC is enabled if TxBF is not enabled */
if (rate_flags & HAL_RATESERIES_STBC){
return AR9300_STBC_MODE;
}
return AR9300_DEF_MODE;
}
void
ar9300_set_11n_rate_scenario(
struct ath_hal *ah,
void *ds,
void *lastds,
u_int dur_update_en,
u_int rts_cts_rate,
u_int rts_cts_duration,
HAL_11N_RATE_SERIES series[],
u_int nseries,
u_int flags,
u_int32_t smart_antenna)
{
struct ath_hal_private *ap = AH_PRIVATE(ah);
struct ar9300_txc *ads = AR9300TXC(ds);
struct ar9300_txc *last_ads = AR9300TXC(lastds);
u_int32_t ds_ctl11;
u_int8_t ant, cal_pkt = 0;
u_int mode, tx_mode = AR9300_DEF_MODE;
HALASSERT(nseries == 4);
(void)nseries;
(void)rts_cts_duration; /* use H/W to calculate RTSCTSDuration */
ds_ctl11 = ads->ds_ctl11;
/*
* Rate control settings override
*/
if (flags & (HAL_TXDESC_RTSENA | HAL_TXDESC_CTSENA)) {
if (flags & HAL_TXDESC_RTSENA) {
ds_ctl11 &= ~AR_cts_enable;
ds_ctl11 |= AR_rts_enable;
} else {
ds_ctl11 &= ~AR_rts_enable;
ds_ctl11 |= AR_cts_enable;
}
} else {
ds_ctl11 = (ds_ctl11 & ~(AR_rts_enable | AR_cts_enable));
}
mode = ath_hal_get_curmode(ah, ap->ah_curchan);
cal_pkt = (ads->ds_ctl12 & AR_paprd_chain_mask)?1:0;
if (ah->ah_config.ath_hal_desc_tpc) {
int16_t txpower;
if (!cal_pkt) {
/* Series 0 TxPower */
tx_mode = ar9300_get_tx_mode(series[0].RateFlags);
txpower = ar9300_get_rate_txpower(ah, mode, series[0].RateIndex,
series[0].ChSel, tx_mode);
} else {
txpower = AH9300(ah)->paprd_training_power;
}
ds_ctl11 &= ~AR_xmit_power0;
ds_ctl11 |=
set_11n_tx_power(0, AH_MIN(txpower, series[0].tx_power_cap));
}
ads->ds_ctl11 = ds_ctl11;
ads->ds_ctl13 = set_11n_tries(series, 0)
| set_11n_tries(series, 1)
| set_11n_tries(series, 2)
| set_11n_tries(series, 3)
| (dur_update_en ? AR_dur_update_ena : 0)
| SM(0, AR_burst_dur);
ads->ds_ctl14 = set_11n_rate(series, 0)
| set_11n_rate(series, 1)
| set_11n_rate(series, 2)
| set_11n_rate(series, 3);
ads->ds_ctl15 = set_11n_pkt_dur_rts_cts(series, 0)
| set_11n_pkt_dur_rts_cts(series, 1);
ads->ds_ctl16 = set_11n_pkt_dur_rts_cts(series, 2)
| set_11n_pkt_dur_rts_cts(series, 3);
ads->ds_ctl18 = set_11n_rate_flags(series, 0)
| set_11n_rate_flags(series, 1)
| set_11n_rate_flags(series, 2)
| set_11n_rate_flags(series, 3)
| SM(rts_cts_rate, AR_rts_cts_rate);
/* set not sounding for normal frame */
ads->ds_ctl19 = AR_not_sounding;
if (ah->ah_config.ath_hal_desc_tpc) {
int16_t txpower;
if (!cal_pkt) {
/* Series 1 TxPower */
tx_mode = ar9300_get_tx_mode(series[1].RateFlags);
txpower = ar9300_get_rate_txpower(
ah, mode, series[1].RateIndex, series[1].ChSel, tx_mode);
} else {
txpower = AH9300(ah)->paprd_training_power;
}
ads->ds_ctl20 |=
set_11n_tx_power(1, AH_MIN(txpower, series[1].tx_power_cap));
/* Series 2 TxPower */
if (!cal_pkt) {
tx_mode = ar9300_get_tx_mode(series[2].RateFlags);
txpower = ar9300_get_rate_txpower(
ah, mode, series[2].RateIndex, series[2].ChSel, tx_mode);
} else {
txpower = AH9300(ah)->paprd_training_power;
}
ads->ds_ctl21 |=
set_11n_tx_power(2, AH_MIN(txpower, series[2].tx_power_cap));
/* Series 3 TxPower */
if (!cal_pkt) {
tx_mode = ar9300_get_tx_mode(series[3].RateFlags);
txpower = ar9300_get_rate_txpower(
ah, mode, series[3].RateIndex, series[3].ChSel, tx_mode);
} else {
txpower = AH9300(ah)->paprd_training_power;
}
ads->ds_ctl22 |=
set_11n_tx_power(3, AH_MIN(txpower, series[3].tx_power_cap));
}
if (smart_antenna != 0xffffffff)
{
/* TX DESC dword 19 to 23 are used for smart antenna configuaration
* ctl19 for rate series 0 ... ctrl22 for series 3
* bits[2:0] used to configure smart anntenna
*/
ant = (smart_antenna&0x000000ff);
ads->ds_ctl19 |= ant; /* rateseries 0 */
ant = (smart_antenna&0x0000ff00) >> 8;
ads->ds_ctl20 |= ant; /* rateseries 1 */
ant = (smart_antenna&0x00ff0000) >> 16;
ads->ds_ctl21 |= ant; /* rateseries 2 */
ant = (smart_antenna&0xff000000) >> 24;
ads->ds_ctl22 |= ant; /* rateseries 3 */
}
#ifdef AH_NEED_DESC_SWAP
last_ads->ds_ctl13 = __bswap32(ads->ds_ctl13);
last_ads->ds_ctl14 = __bswap32(ads->ds_ctl14);
#else
last_ads->ds_ctl13 = ads->ds_ctl13;
last_ads->ds_ctl14 = ads->ds_ctl14;
#endif
}
void
ar9300_set_11n_aggr_first(struct ath_hal *ah, struct ath_desc *ds,
u_int aggr_len, u_int num_delims)
{
struct ar9300_txc *ads = AR9300TXC(ds);
ads->ds_ctl12 |= (AR_is_aggr | AR_more_aggr);
ads->ds_ctl17 &= ~AR_aggr_len;
ads->ds_ctl17 &= ~AR_pad_delim;
/* XXX should use a stack variable! */
ads->ds_ctl17 |= SM(aggr_len, AR_aggr_len);
ads->ds_ctl17 |= SM(num_delims, AR_pad_delim);
}
void
ar9300_set_11n_aggr_middle(struct ath_hal *ah, struct ath_desc *ds,
u_int num_delims)
{
struct ar9300_txc *ads = AR9300TXC(ds);
unsigned int ctl17;
ads->ds_ctl12 |= (AR_is_aggr | AR_more_aggr);
/*
* We use a stack variable to manipulate ctl6 to reduce uncached
* read modify, modfiy, write.
*/
ctl17 = ads->ds_ctl17;
ctl17 &= ~AR_pad_delim;
ctl17 |= SM(num_delims, AR_pad_delim);
ads->ds_ctl17 = ctl17;
}
void
ar9300_set_11n_aggr_last(struct ath_hal *ah, struct ath_desc *ds)
{
struct ar9300_txc *ads = AR9300TXC(ds);
ads->ds_ctl12 |= AR_is_aggr;
ads->ds_ctl12 &= ~AR_more_aggr;
ads->ds_ctl17 &= ~AR_pad_delim;
}
void
ar9300_clr_11n_aggr(struct ath_hal *ah, struct ath_desc *ds)
{
struct ar9300_txc *ads = AR9300TXC(ds);
ads->ds_ctl12 &= (~AR_is_aggr & ~AR_more_aggr);
}
void
ar9300_set_11n_burst_duration(struct ath_hal *ah, struct ath_desc *ds,
u_int burst_duration)
{
struct ar9300_txc *ads = AR9300TXC(ds);
ads->ds_ctl13 &= ~AR_burst_dur;
ads->ds_ctl13 |= SM(burst_duration, AR_burst_dur);
}
void
ar9300_set_11n_rifs_burst_middle(struct ath_hal *ah, void *ds)
{
struct ar9300_txc *ads = AR9300TXC(ds);
ads->ds_ctl12 |= AR_more_rifs | AR_no_ack;
}
void
ar9300_set_11n_rifs_burst_last(struct ath_hal *ah, void *ds)
{
struct ar9300_txc *ads = AR9300TXC(ds);
ads->ds_ctl12 &= (~AR_more_aggr & ~AR_more_rifs);
}
void
ar9300_clr_11n_rifs_burst(struct ath_hal *ah, void *ds)
{
struct ar9300_txc *ads = AR9300TXC(ds);
ads->ds_ctl12 &= (~AR_more_rifs & ~AR_no_ack);
}
void
ar9300_set_11n_aggr_rifs_burst(struct ath_hal *ah, void *ds)
{
struct ar9300_txc *ads = AR9300TXC(ds);
ads->ds_ctl12 |= AR_no_ack;
ads->ds_ctl12 &= ~AR_more_rifs;
}
void
ar9300_set_11n_virtual_more_frag(struct ath_hal *ah, struct ath_desc *ds,
u_int vmf)
{
struct ar9300_txc *ads = AR9300TXC(ds);
if (vmf) {
ads->ds_ctl11 |= AR_virt_more_frag;
} else {
ads->ds_ctl11 &= ~AR_virt_more_frag;
}
}
void
ar9300_get_desc_info(struct ath_hal *ah, HAL_DESC_INFO *desc_info)
{
desc_info->txctl_numwords = TXCTL_NUMWORDS(ah);
desc_info->txctl_offset = TXCTL_OFFSET(ah);
desc_info->txstatus_numwords = TXSTATUS_NUMWORDS(ah);
desc_info->txstatus_offset = TXSTATUS_OFFSET(ah);
desc_info->rxctl_numwords = RXCTL_NUMWORDS(ah);
desc_info->rxctl_offset = RXCTL_OFFSET(ah);
desc_info->rxstatus_numwords = RXSTATUS_NUMWORDS(ah);
desc_info->rxstatus_offset = RXSTATUS_OFFSET(ah);
}