f-stack/freebsd/contrib/dev/ath/ath_hal/ar9300/ar9300eep.h

710 lines
28 KiB
C

/*
* Copyright (c) 2013 Qualcomm Atheros, Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH
* REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
* AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
* INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
* LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
* OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
* PERFORMANCE OF THIS SOFTWARE.
*/
#ifndef _ATH_AR9300_EEP_H_
#define _ATH_AR9300_EEP_H_
#include "opt_ah.h"
#include "ah.h"
#if defined(WIN32) || defined(WIN64)
#pragma pack (push, ar9300, 1)
#endif
/* FreeBSD extras - should be in ah_eeprom.h ? */
#define AR_EEPROM_EEPCAP_COMPRESS_DIS 0x0001
#define AR_EEPROM_EEPCAP_AES_DIS 0x0002
#define AR_EEPROM_EEPCAP_FASTFRAME_DIS 0x0004
#define AR_EEPROM_EEPCAP_BURST_DIS 0x0008
#define AR_EEPROM_EEPCAP_MAXQCU 0x01F0
#define AR_EEPROM_EEPCAP_MAXQCU_S 4
#define AR_EEPROM_EEPCAP_HEAVY_CLIP_EN 0x0200
#define AR_EEPROM_EEPCAP_KC_ENTRIES 0xF000
#define AR_EEPROM_EEPCAP_KC_ENTRIES_S 12
#define MSTATE 100
#define MOUTPUT 2048
#define MDEFAULT 15
#define MVALUE 100
enum CompressAlgorithm
{
_compress_none = 0,
_compress_lzma,
_compress_pairs,
_compress_block,
_compress4,
_compress5,
_compress6,
_compress7,
};
enum
{
calibration_data_none = 0,
calibration_data_dram,
calibration_data_flash,
calibration_data_eeprom,
calibration_data_otp,
#ifdef ATH_CAL_NAND_FLASH
calibration_data_nand,
#endif
CalibrationDataDontLoad,
};
#define HOST_CALDATA_SIZE (16*1024)
//
// DO NOT CHANGE THE DEFINTIONS OF THESE SYMBOLS.
// Add additional definitions to the end.
// Yes, the first one is 2. Do not use 0 or 1.
//
enum Ar9300EepromTemplate
{
ar9300_eeprom_template_generic = 2,
ar9300_eeprom_template_hb112 = 3,
ar9300_eeprom_template_hb116 = 4,
ar9300_eeprom_template_xb112 = 5,
ar9300_eeprom_template_xb113 = 6,
ar9300_eeprom_template_xb114 = 7,
ar9300_eeprom_template_tb417 = 8,
ar9300_eeprom_template_ap111 = 9,
ar9300_eeprom_template_ap121 = 10,
ar9300_eeprom_template_hornet_generic = 11,
ar9300_eeprom_template_wasp_2 = 12,
ar9300_eeprom_template_wasp_k31 = 13,
ar9300_eeprom_template_osprey_k31 = 14,
ar9300_eeprom_template_aphrodite = 15
};
#define ar9300_eeprom_template_default ar9300_eeprom_template_generic
#define Ar9300EepromFormatDefault 2
#define reference_current 0
#define compression_header_length 4
#define compression_checksum_length 2
#define OSPREY_EEP_VER 0xD000
#define OSPREY_EEP_VER_MINOR_MASK 0xFFF
#define OSPREY_EEP_MINOR_VER_1 0x1
#define OSPREY_EEP_MINOR_VER OSPREY_EEP_MINOR_VER_1
// 16-bit offset location start of calibration struct
#define OSPREY_EEP_START_LOC 256
#define OSPREY_NUM_5G_CAL_PIERS 8
#define OSPREY_NUM_2G_CAL_PIERS 3
#define OSPREY_NUM_5G_20_TARGET_POWERS 8
#define OSPREY_NUM_5G_40_TARGET_POWERS 8
#define OSPREY_NUM_2G_CCK_TARGET_POWERS 2
#define OSPREY_NUM_2G_20_TARGET_POWERS 3
#define OSPREY_NUM_2G_40_TARGET_POWERS 3
//#define OSPREY_NUM_CTLS 21
#define OSPREY_NUM_CTLS_5G 9
#define OSPREY_NUM_CTLS_2G 12
#define OSPREY_CTL_MODE_M 0xF
#define OSPREY_NUM_BAND_EDGES_5G 8
#define OSPREY_NUM_BAND_EDGES_2G 4
#define OSPREY_NUM_PD_GAINS 4
#define OSPREY_PD_GAINS_IN_MASK 4
#define OSPREY_PD_GAIN_ICEPTS 5
#define OSPREY_EEPROM_MODAL_SPURS 5
#define OSPREY_MAX_RATE_POWER 63
#define OSPREY_NUM_PDADC_VALUES 128
#define OSPREY_NUM_RATES 16
#define OSPREY_BCHAN_UNUSED 0xFF
#define OSPREY_MAX_PWR_RANGE_IN_HALF_DB 64
#define OSPREY_OPFLAGS_11A 0x01
#define OSPREY_OPFLAGS_11G 0x02
#define OSPREY_OPFLAGS_5G_HT40 0x04
#define OSPREY_OPFLAGS_2G_HT40 0x08
#define OSPREY_OPFLAGS_5G_HT20 0x10
#define OSPREY_OPFLAGS_2G_HT20 0x20
#define OSPREY_EEPMISC_BIG_ENDIAN 0x01
#define OSPREY_EEPMISC_WOW 0x02
#define OSPREY_CUSTOMER_DATA_SIZE 20
#define FREQ2FBIN(x,y) \
(((y) == HAL_FREQ_BAND_2GHZ) ? ((x) - 2300) : (((x) - 4800) / 5))
#define FBIN2FREQ(x,y) \
(((y) == HAL_FREQ_BAND_2GHZ) ? (2300 + x) : (4800 + 5 * x))
#define OSPREY_MAX_CHAINS 3
#define OSPREY_ANT_16S 25
#define OSPREY_FUTURE_MODAL_SZ 6
#define OSPREY_NUM_ANT_CHAIN_FIELDS 7
#define OSPREY_NUM_ANT_COMMON_FIELDS 4
#define OSPREY_SIZE_ANT_CHAIN_FIELD 3
#define OSPREY_SIZE_ANT_COMMON_FIELD 4
#define OSPREY_ANT_CHAIN_MASK 0x7
#define OSPREY_ANT_COMMON_MASK 0xf
#define OSPREY_CHAIN_0_IDX 0
#define OSPREY_CHAIN_1_IDX 1
#define OSPREY_CHAIN_2_IDX 2
#define OSPREY_1_CHAINMASK 1
#define OSPREY_2LOHI_CHAINMASK 5
#define OSPREY_2LOMID_CHAINMASK 3
#define OSPREY_3_CHAINMASK 7
#define AR928X_NUM_ANT_CHAIN_FIELDS 6
#define AR928X_SIZE_ANT_CHAIN_FIELD 2
#define AR928X_ANT_CHAIN_MASK 0x3
/* Delta from which to start power to pdadc table */
/* This offset is used in both open loop and closed loop power control
* schemes. In open loop power control, it is not really needed, but for
* the "sake of consistency" it was kept.
* For certain AP designs, this value is overwritten by the value in the flag
* "pwrTableOffset" just before writing the pdadc vs pwr into the chip registers.
*/
#define OSPREY_PWR_TABLE_OFFSET 0
//enable flags for voltage and temp compensation
#define ENABLE_TEMP_COMPENSATION 0x01
#define ENABLE_VOLT_COMPENSATION 0x02
#define FLASH_BASE_CALDATA_OFFSET 0x1000
#define AR9300_EEPROM_SIZE 16*1024 // byte addressable
#define FIXED_CCA_THRESHOLD 15
typedef struct eepFlags {
u_int8_t op_flags;
u_int8_t eepMisc;
} __packed EEP_FLAGS;
typedef enum targetPowerHTRates {
HT_TARGET_RATE_0_8_16,
HT_TARGET_RATE_1_3_9_11_17_19,
HT_TARGET_RATE_4,
HT_TARGET_RATE_5,
HT_TARGET_RATE_6,
HT_TARGET_RATE_7,
HT_TARGET_RATE_12,
HT_TARGET_RATE_13,
HT_TARGET_RATE_14,
HT_TARGET_RATE_15,
HT_TARGET_RATE_20,
HT_TARGET_RATE_21,
HT_TARGET_RATE_22,
HT_TARGET_RATE_23
}TARGET_POWER_HT_RATES;
const static int mapRate2Index[24]=
{
0,1,1,1,2,
3,4,5,0,1,
1,1,6,7,8,
9,0,1,1,1,
10,11,12,13
};
typedef enum targetPowerLegacyRates {
LEGACY_TARGET_RATE_6_24,
LEGACY_TARGET_RATE_36,
LEGACY_TARGET_RATE_48,
LEGACY_TARGET_RATE_54
}TARGET_POWER_LEGACY_RATES;
typedef enum targetPowerCckRates {
LEGACY_TARGET_RATE_1L_5L,
LEGACY_TARGET_RATE_5S,
LEGACY_TARGET_RATE_11L,
LEGACY_TARGET_RATE_11S
}TARGET_POWER_CCK_RATES;
#define MAX_MODAL_RESERVED 11
#define MAX_MODAL_FUTURE 5
#define MAX_BASE_EXTENSION_FUTURE 2
#define MAX_TEMP_SLOPE 8
#define OSPREY_CHECKSUM_LOCATION (OSPREY_EEP_START_LOC + 1)
typedef struct osprey_BaseEepHeader {
u_int16_t reg_dmn[2]; //Does this need to be outside of this structure, if it gets written after calibration
u_int8_t txrx_mask; //4 bits tx and 4 bits rx
EEP_FLAGS op_cap_flags;
u_int8_t rf_silent;
u_int8_t blue_tooth_options;
u_int8_t device_cap;
u_int8_t device_type; // takes lower byte in eeprom location
int8_t pwrTableOffset; // offset in dB to be added to beginning of pdadc table in calibration
u_int8_t params_for_tuning_caps[2]; //placeholder, get more details from Don
u_int8_t feature_enable; //bit0 - enable tx temp comp
//bit1 - enable tx volt comp
//bit2 - enable fastClock - default to 1
//bit3 - enable doubling - default to 1
//bit4 - enable internal regulator - default to 1
//bit5 - enable paprd - default to 0
//bit6 - enable TuningCaps - default to 0
//bit7 - enable tx_frame_to_xpa_on - default to 0
u_int8_t misc_configuration; //misc flags: bit0 - turn down drivestrength
// bit 1:2 - 0=don't force, 1=force to thermometer 0, 2=force to thermometer 1, 3=force to thermometer 2
// bit 3 - reduce chain mask from 0x7 to 0x3 on 2 stream rates
// bit 4 - enable quick drop
// bit 5 - enable 8 temp slop
// bit 6; enable xLNA_bias_strength
// bit 7; enable rf_gain_cap
u_int8_t eeprom_write_enable_gpio;
u_int8_t wlan_disable_gpio;
u_int8_t wlan_led_gpio;
u_int8_t rx_band_select_gpio;
u_int8_t txrxgain;
u_int32_t swreg; // SW controlled internal regulator fields
} __packed OSPREY_BASE_EEP_HEADER;
typedef struct osprey_BaseExtension_1 {
u_int8_t ant_div_control;
u_int8_t future[MAX_BASE_EXTENSION_FUTURE];
u_int8_t misc_enable;
int8_t tempslopextension[MAX_TEMP_SLOPE];
int8_t quick_drop_low;
int8_t quick_drop_high;
} __packed OSPREY_BASE_EXTENSION_1;
typedef struct osprey_BaseExtension_2 {
int8_t temp_slope_low;
int8_t temp_slope_high;
u_int8_t xatten1_db_low[OSPREY_MAX_CHAINS]; // 3 //xatten1_db for merlin (0xa20c/b20c 5:0)
u_int8_t xatten1_margin_low[OSPREY_MAX_CHAINS]; // 3 //xatten1_margin for merlin (0xa20c/b20c 16:12
u_int8_t xatten1_db_high[OSPREY_MAX_CHAINS]; // 3 //xatten1_db for merlin (0xa20c/b20c 5:0)
u_int8_t xatten1_margin_high[OSPREY_MAX_CHAINS]; // 3 //xatten1_margin for merlin (0xa20c/b20c 16:12
} __packed OSPREY_BASE_EXTENSION_2;
typedef struct spurChanStruct {
u_int16_t spur_chan;
u_int8_t spurRangeLow;
u_int8_t spurRangeHigh;
} __packed SPUR_CHAN;
//Note the order of the fields in this structure has been optimized to put all fields likely to change together
typedef struct ospreyModalEepHeader {
u_int32_t ant_ctrl_common; // 4 idle, t1, t2, b (4 bits per setting)
u_int32_t ant_ctrl_common2; // 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12
u_int16_t ant_ctrl_chain[OSPREY_MAX_CHAINS]; // 6 idle, t, r, rx1, rx12, b (2 bits each)
u_int8_t xatten1_db[OSPREY_MAX_CHAINS]; // 3 //xatten1_db for merlin (0xa20c/b20c 5:0)
u_int8_t xatten1_margin[OSPREY_MAX_CHAINS]; // 3 //xatten1_margin for merlin (0xa20c/b20c 16:12
int8_t temp_slope;
int8_t voltSlope;
u_int8_t spur_chans[OSPREY_EEPROM_MODAL_SPURS]; // spur channels in usual fbin coding format
int8_t noise_floor_thresh_ch[OSPREY_MAX_CHAINS];// 3 //Check if the register is per chain
u_int8_t reserved[MAX_MODAL_RESERVED];
int8_t quick_drop;
u_int8_t xpa_bias_lvl; // 1
u_int8_t tx_frame_to_data_start; // 1
u_int8_t tx_frame_to_pa_on; // 1
u_int8_t txClip; // 4 bits tx_clip, 4 bits dac_scale_cck
int8_t antenna_gain; // 1
u_int8_t switchSettling; // 1
int8_t adcDesiredSize; // 1
u_int8_t tx_end_to_xpa_off; // 1
u_int8_t txEndToRxOn; // 1
u_int8_t tx_frame_to_xpa_on; // 1
u_int8_t thresh62; // 1
u_int32_t paprd_rate_mask_ht20;
u_int32_t paprd_rate_mask_ht40;
u_int16_t switchcomspdt;
u_int8_t xLNA_bias_strength; // bit: 0,1:chain0, 2,3:chain1, 4,5:chain2
u_int8_t rf_gain_cap;
u_int8_t tx_gain_cap; // bit0:4 txgain cap, txgain index for max_txgain + 20 (10dBm higher than max txgain)
u_int8_t futureModal[MAX_MODAL_FUTURE];
// last 12 bytes stolen and moved to newly created base extension structure
} __packed OSPREY_MODAL_EEP_HEADER; // == 100 B
typedef struct ospCalDataPerFreqOpLoop {
int8_t ref_power; /* */
u_int8_t volt_meas; /* pdadc voltage at power measurement */
u_int8_t temp_meas; /* pcdac used for power measurement */
int8_t rx_noisefloor_cal; /*range is -60 to -127 create a mapping equation 1db resolution */
int8_t rx_noisefloor_power; /*range is same as noisefloor */
u_int8_t rxTempMeas; /*temp measured when noisefloor cal was performed */
} __packed OSP_CAL_DATA_PER_FREQ_OP_LOOP;
typedef struct CalTargetPowerLegacy {
u_int8_t t_pow2x[4];
} __packed CAL_TARGET_POWER_LEG;
typedef struct ospCalTargetPowerHt {
u_int8_t t_pow2x[14];
} __packed OSP_CAL_TARGET_POWER_HT;
#if AH_BYTE_ORDER == AH_BIG_ENDIAN
typedef struct CalCtlEdgePwr {
u_int8_t flag :2,
t_power :6;
} __packed CAL_CTL_EDGE_PWR;
#else
typedef struct CalCtlEdgePwr {
u_int8_t t_power :6,
flag :2;
} __packed CAL_CTL_EDGE_PWR;
#endif
typedef struct ospCalCtlData_5G {
CAL_CTL_EDGE_PWR ctl_edges[OSPREY_NUM_BAND_EDGES_5G];
} __packed OSP_CAL_CTL_DATA_5G;
typedef struct ospCalCtlData_2G {
CAL_CTL_EDGE_PWR ctl_edges[OSPREY_NUM_BAND_EDGES_2G];
} __packed OSP_CAL_CTL_DATA_2G;
typedef struct ospreyEeprom {
u_int8_t eeprom_version;
u_int8_t template_version;
u_int8_t mac_addr[6];
u_int8_t custData[OSPREY_CUSTOMER_DATA_SIZE];
OSPREY_BASE_EEP_HEADER base_eep_header;
OSPREY_MODAL_EEP_HEADER modal_header_2g;
OSPREY_BASE_EXTENSION_1 base_ext1;
u_int8_t cal_freq_pier_2g[OSPREY_NUM_2G_CAL_PIERS];
OSP_CAL_DATA_PER_FREQ_OP_LOOP cal_pier_data_2g[OSPREY_MAX_CHAINS][OSPREY_NUM_2G_CAL_PIERS];
u_int8_t cal_target_freqbin_cck[OSPREY_NUM_2G_CCK_TARGET_POWERS];
u_int8_t cal_target_freqbin_2g[OSPREY_NUM_2G_20_TARGET_POWERS];
u_int8_t cal_target_freqbin_2g_ht20[OSPREY_NUM_2G_20_TARGET_POWERS];
u_int8_t cal_target_freqbin_2g_ht40[OSPREY_NUM_2G_40_TARGET_POWERS];
CAL_TARGET_POWER_LEG cal_target_power_cck[OSPREY_NUM_2G_CCK_TARGET_POWERS];
CAL_TARGET_POWER_LEG cal_target_power_2g[OSPREY_NUM_2G_20_TARGET_POWERS];
OSP_CAL_TARGET_POWER_HT cal_target_power_2g_ht20[OSPREY_NUM_2G_20_TARGET_POWERS];
OSP_CAL_TARGET_POWER_HT cal_target_power_2g_ht40[OSPREY_NUM_2G_40_TARGET_POWERS];
u_int8_t ctl_index_2g[OSPREY_NUM_CTLS_2G];
u_int8_t ctl_freqbin_2G[OSPREY_NUM_CTLS_2G][OSPREY_NUM_BAND_EDGES_2G];
OSP_CAL_CTL_DATA_2G ctl_power_data_2g[OSPREY_NUM_CTLS_2G];
OSPREY_MODAL_EEP_HEADER modal_header_5g;
OSPREY_BASE_EXTENSION_2 base_ext2;
u_int8_t cal_freq_pier_5g[OSPREY_NUM_5G_CAL_PIERS];
OSP_CAL_DATA_PER_FREQ_OP_LOOP cal_pier_data_5g[OSPREY_MAX_CHAINS][OSPREY_NUM_5G_CAL_PIERS];
u_int8_t cal_target_freqbin_5g[OSPREY_NUM_5G_20_TARGET_POWERS];
u_int8_t cal_target_freqbin_5g_ht20[OSPREY_NUM_5G_20_TARGET_POWERS];
u_int8_t cal_target_freqbin_5g_ht40[OSPREY_NUM_5G_40_TARGET_POWERS];
CAL_TARGET_POWER_LEG cal_target_power_5g[OSPREY_NUM_5G_20_TARGET_POWERS];
OSP_CAL_TARGET_POWER_HT cal_target_power_5g_ht20[OSPREY_NUM_5G_20_TARGET_POWERS];
OSP_CAL_TARGET_POWER_HT cal_target_power_5g_ht40[OSPREY_NUM_5G_40_TARGET_POWERS];
u_int8_t ctl_index_5g[OSPREY_NUM_CTLS_5G];
u_int8_t ctl_freqbin_5G[OSPREY_NUM_CTLS_5G][OSPREY_NUM_BAND_EDGES_5G];
OSP_CAL_CTL_DATA_5G ctl_power_data_5g[OSPREY_NUM_CTLS_5G];
} __packed ar9300_eeprom_t;
/*
** SWAP Functions
** used to read EEPROM data, which is apparently stored in little
** endian form. We have included both forms of the swap functions,
** one for big endian and one for little endian. The indices of the
** array elements are the differences
*/
#if AH_BYTE_ORDER == AH_BIG_ENDIAN
#define AR9300_EEPROM_MAGIC 0x5aa5
#define SWAP16(_x) ( (u_int16_t)( (((const u_int8_t *)(&_x))[0] ) |\
( ( (const u_int8_t *)( &_x ) )[1]<< 8) ) )
#define SWAP32(_x) ((u_int32_t)( \
(((const u_int8_t *)(&_x))[0]) | \
(((const u_int8_t *)(&_x))[1]<< 8) | \
(((const u_int8_t *)(&_x))[2]<<16) | \
(((const u_int8_t *)(&_x))[3]<<24)))
#else // AH_BYTE_ORDER
#define AR9300_EEPROM_MAGIC 0xa55a
#define SWAP16(_x) ( (u_int16_t)( (((const u_int8_t *)(&_x))[1] ) |\
( ( (const u_int8_t *)( &_x ) )[0]<< 8) ) )
#define SWAP32(_x) ((u_int32_t)( \
(((const u_int8_t *)(&_x))[3]) | \
(((const u_int8_t *)(&_x))[2]<< 8) | \
(((const u_int8_t *)(&_x))[1]<<16) | \
(((const u_int8_t *)(&_x))[0]<<24)))
#endif // AH_BYTE_ORDER
// OTP registers for OSPREY
#define AR_GPIO_IN_OUT 0x4048 // GPIO input / output register
#define OTP_MEM_START_ADDRESS 0x14000
#define OTP_STATUS0_OTP_SM_BUSY 0x00015f18
#define OTP_STATUS1_EFUSE_READ_DATA 0x00015f1c
#define OTP_LDO_CONTROL_ENABLE 0x00015f24
#define OTP_LDO_STATUS_POWER_ON 0x00015f2c
#define OTP_INTF0_EFUSE_WR_ENABLE_REG_V 0x00015f00
// OTP register for Jupiter
#define GLB_OTP_LDO_CONTROL_ENABLE 0x00020020
#define GLB_OTP_LDO_STATUS_POWER_ON 0x00020028
#define OTP_PGENB_SETUP_HOLD_TIME_DELAY 0x15f34
// OTP register for Jupiter BT
#define BTOTP_MEM_START_ADDRESS 0x64000
#define BTOTP_STATUS0_OTP_SM_BUSY 0x00065f18
#define BTOTP_STATUS1_EFUSE_READ_DATA 0x00065f1c
#define BTOTP_INTF0_EFUSE_WR_ENABLE_REG_V 0x00065f00
#define BTOTP_INTF2 0x00065f08
#define BTOTP_PGENB_SETUP_HOLD_TIME_DELAY 0x65f34
#define BT_RESET_CTL 0x44000
#define BT_CLOCK_CONTROL 0x44028
// OTP register for WASP
#define OTP_MEM_START_ADDRESS_WASP 0x00030000
#define OTP_STATUS0_OTP_SM_BUSY_WASP (OTP_MEM_START_ADDRESS_WASP + 0x1018)
#define OTP_STATUS1_EFUSE_READ_DATA_WASP (OTP_MEM_START_ADDRESS_WASP + 0x101C)
#define OTP_LDO_CONTROL_ENABLE_WASP (OTP_MEM_START_ADDRESS_WASP + 0x1024)
#define OTP_LDO_STATUS_POWER_ON_WASP (OTP_MEM_START_ADDRESS_WASP + 0x102C)
#define OTP_INTF0_EFUSE_WR_ENABLE_REG_V_WASP (OTP_MEM_START_ADDRESS_WASP + 0x1000)
// Below control the access timing of OTP read/write
#define OTP_PG_STROBE_PW_REG_V_WASP (OTP_MEM_START_ADDRESS_WASP + 0x1008)
#define OTP_RD_STROBE_PW_REG_V_WASP (OTP_MEM_START_ADDRESS_WASP + 0x100C)
#define OTP_VDDQ_HOLD_TIME_DELAY_WASP (OTP_MEM_START_ADDRESS_WASP + 0x1030)
#define OTP_PGENB_SETUP_HOLD_TIME_DELAY_WASP (OTP_MEM_START_ADDRESS_WASP + 0x1034)
#define OTP_STROBE_PULSE_INTERVAL_DELAY_WASP (OTP_MEM_START_ADDRESS_WASP + 0x1038)
#define OTP_CSB_ADDR_LOAD_SETUP_HOLD_DELAY_WASP (OTP_MEM_START_ADDRESS_WASP + 0x103C)
#define AR9300_EEPROM_MAGIC_OFFSET 0x0
/* reg_off = 4 * (eep_off) */
#define AR9300_EEPROM_S 2
#define AR9300_EEPROM_OFFSET 0x2000
#ifdef AR9100
#define AR9300_EEPROM_START_ADDR 0x1fff1000
#else
#define AR9300_EEPROM_START_ADDR 0x503f1200
#endif
#define AR9300_FLASH_CAL_START_OFFSET 0x1000
#define AR9300_EEPROM_MAX 0xae0
#define IS_EEP_MINOR_V3(_ahp) (ar9300_eeprom_get((_ahp), EEP_MINOR_REV) >= AR9300_EEP_MINOR_VER_3)
#define ar9300_get_ntxchains(_txchainmask) \
(((_txchainmask >> 2) & 1) + ((_txchainmask >> 1) & 1) + (_txchainmask & 1))
/* RF silent fields in \ */
#define EEP_RFSILENT_ENABLED 0x0001 /* bit 0: enabled/disabled */
#define EEP_RFSILENT_ENABLED_S 0 /* bit 0: enabled/disabled */
#define EEP_RFSILENT_POLARITY 0x0002 /* bit 1: polarity */
#define EEP_RFSILENT_POLARITY_S 1 /* bit 1: polarity */
#define EEP_RFSILENT_GPIO_SEL 0x00fc /* bits 2..7: gpio PIN */
#define EEP_RFSILENT_GPIO_SEL_S 2 /* bits 2..7: gpio PIN */
#define AR9300_EEP_VER 0xE
#define AR9300_BCHAN_UNUSED 0xFF
#define AR9300_MAX_RATE_POWER 63
typedef enum {
CALDATA_AUTO=0,
CALDATA_EEPROM,
CALDATA_FLASH,
CALDATA_OTP
} CALDATA_TYPE;
typedef enum {
EEP_NFTHRESH_5,
EEP_NFTHRESH_2,
EEP_MAC_MSW,
EEP_MAC_MID,
EEP_MAC_LSW,
EEP_REG_0,
EEP_REG_1,
EEP_OP_CAP,
EEP_OP_MODE,
EEP_RF_SILENT,
EEP_OB_5,
EEP_DB_5,
EEP_OB_2,
EEP_DB_2,
EEP_MINOR_REV,
EEP_TX_MASK,
EEP_RX_MASK,
EEP_FSTCLK_5G,
EEP_RXGAIN_TYPE,
EEP_OL_PWRCTRL,
EEP_TXGAIN_TYPE,
EEP_RC_CHAIN_MASK,
EEP_DAC_HPWR_5G,
EEP_FRAC_N_5G,
EEP_DEV_TYPE,
EEP_TEMPSENSE_SLOPE,
EEP_TEMPSENSE_SLOPE_PAL_ON,
EEP_PWR_TABLE_OFFSET,
EEP_DRIVE_STRENGTH,
EEP_INTERNAL_REGULATOR,
EEP_SWREG,
EEP_PAPRD_ENABLED,
EEP_ANTDIV_control,
EEP_CHAIN_MASK_REDUCE,
} EEPROM_PARAM;
#define AR9300_RATES_OFDM_OFFSET 0
#define AR9300_RATES_CCK_OFFSET 4
#define AR9300_RATES_HT20_OFFSET 8
#define AR9300_RATES_HT40_OFFSET 22
typedef enum ar9300_Rates {
ALL_TARGET_LEGACY_6_24,
ALL_TARGET_LEGACY_36,
ALL_TARGET_LEGACY_48,
ALL_TARGET_LEGACY_54,
ALL_TARGET_LEGACY_1L_5L,
ALL_TARGET_LEGACY_5S,
ALL_TARGET_LEGACY_11L,
ALL_TARGET_LEGACY_11S,
ALL_TARGET_HT20_0_8_16,
ALL_TARGET_HT20_1_3_9_11_17_19,
ALL_TARGET_HT20_4,
ALL_TARGET_HT20_5,
ALL_TARGET_HT20_6,
ALL_TARGET_HT20_7,
ALL_TARGET_HT20_12,
ALL_TARGET_HT20_13,
ALL_TARGET_HT20_14,
ALL_TARGET_HT20_15,
ALL_TARGET_HT20_20,
ALL_TARGET_HT20_21,
ALL_TARGET_HT20_22,
ALL_TARGET_HT20_23,
ALL_TARGET_HT40_0_8_16,
ALL_TARGET_HT40_1_3_9_11_17_19,
ALL_TARGET_HT40_4,
ALL_TARGET_HT40_5,
ALL_TARGET_HT40_6,
ALL_TARGET_HT40_7,
ALL_TARGET_HT40_12,
ALL_TARGET_HT40_13,
ALL_TARGET_HT40_14,
ALL_TARGET_HT40_15,
ALL_TARGET_HT40_20,
ALL_TARGET_HT40_21,
ALL_TARGET_HT40_22,
ALL_TARGET_HT40_23,
ar9300_rate_size
} AR9300_RATES;
/**************************************************************************
* fbin2freq
*
* Get channel value from binary representation held in eeprom
* RETURNS: the frequency in MHz
*/
static inline u_int16_t
fbin2freq(u_int8_t fbin, HAL_BOOL is_2ghz)
{
/*
* Reserved value 0xFF provides an empty definition both as
* an fbin and as a frequency - do not convert
*/
if (fbin == AR9300_BCHAN_UNUSED)
{
return fbin;
}
return (u_int16_t)((is_2ghz) ? (2300 + fbin) : (4800 + 5 * fbin));
}
extern int CompressionHeaderUnpack(u_int8_t *best, int *code, int *reference, int *length, int *major, int *minor);
extern void Ar9300EepromFormatConvert(ar9300_eeprom_t *mptr);
extern HAL_BOOL ar9300_eeprom_restore(struct ath_hal *ah);
extern int ar9300_eeprom_restore_internal(struct ath_hal *ah, ar9300_eeprom_t *mptr, int /*msize*/);
extern int ar9300_eeprom_base_address(struct ath_hal *ah);
extern int ar9300_eeprom_volatile(struct ath_hal *ah);
extern int ar9300_eeprom_low_limit(struct ath_hal *ah);
extern u_int16_t ar9300_compression_checksum(u_int8_t *data, int dsize);
extern int ar9300_compression_header_unpack(u_int8_t *best, int *code, int *reference, int *length, int *major, int *minor);
extern u_int16_t ar9300_eeprom_struct_size(void);
extern ar9300_eeprom_t *ar9300EepromStructInit(int default_index);
extern ar9300_eeprom_t *ar9300EepromStructGet(void);
extern ar9300_eeprom_t *ar9300_eeprom_struct_default(int default_index);
extern ar9300_eeprom_t *ar9300_eeprom_struct_default_find_by_id(int ver);
extern int ar9300_eeprom_struct_default_many(void);
extern int ar9300EepromUpdateCalPier(int pierIdx, int freq, int chain,
int pwrCorrection, int volt_meas, int temp_meas);
extern int ar9300_power_control_override(struct ath_hal *ah, int frequency, int *correction, int *voltage, int *temperature);
extern void ar9300EepromDisplayCalData(int for2GHz);
extern void ar9300EepromDisplayAll(void);
extern void ar9300_set_target_power_from_eeprom(struct ath_hal *ah, u_int16_t freq,
u_int8_t *target_power_val_t2);
extern HAL_BOOL ar9300_eeprom_set_power_per_rate_table(struct ath_hal *ah,
ar9300_eeprom_t *p_eep_data,
const struct ieee80211_channel *chan,
u_int8_t *p_pwr_array,
u_int16_t cfg_ctl,
u_int16_t antenna_reduction,
u_int16_t twice_max_regulatory_power,
u_int16_t power_limit,
u_int8_t chainmask);
extern int ar9300_transmit_power_reg_write(struct ath_hal *ah, u_int8_t *p_pwr_array);
extern u_int8_t ar9300_eeprom_get_legacy_trgt_pwr(struct ath_hal *ah, u_int16_t rate_index, u_int16_t freq, HAL_BOOL is_2ghz);
extern u_int8_t ar9300_eeprom_get_ht20_trgt_pwr(struct ath_hal *ah, u_int16_t rate_index, u_int16_t freq, HAL_BOOL is_2ghz);
extern u_int8_t ar9300_eeprom_get_ht40_trgt_pwr(struct ath_hal *ah, u_int16_t rate_index, u_int16_t freq, HAL_BOOL is_2ghz);
extern u_int8_t ar9300_eeprom_get_cck_trgt_pwr(struct ath_hal *ah, u_int16_t rate_index, u_int16_t freq);
extern HAL_BOOL ar9300_internal_regulator_apply(struct ath_hal *ah);
extern HAL_BOOL ar9300_drive_strength_apply(struct ath_hal *ah);
extern HAL_BOOL ar9300_attenuation_apply(struct ath_hal *ah, u_int16_t channel);
extern int32_t ar9300_thermometer_get(struct ath_hal *ah);
extern HAL_BOOL ar9300_thermometer_apply(struct ath_hal *ah);
extern HAL_BOOL ar9300_xpa_timing_control_apply(struct ath_hal *ah, HAL_BOOL is_2ghz);
extern HAL_BOOL ar9300_x_lNA_bias_strength_apply(struct ath_hal *ah, HAL_BOOL is_2ghz);
extern int32_t ar9300MacAdressGet(u_int8_t *mac);
extern int32_t ar9300CustomerDataGet(u_int8_t *data, int32_t len);
extern int32_t ar9300ReconfigDriveStrengthGet(void);
extern int32_t ar9300EnableTempCompensationGet(void);
extern int32_t ar9300EnableVoltCompensationGet(void);
extern int32_t ar9300FastClockEnableGet(void);
extern int32_t ar9300EnableDoublingGet(void);
extern u_int16_t *ar9300_regulatory_domain_get(struct ath_hal *ah);
extern int32_t ar9300_eeprom_write_enable_gpio_get(struct ath_hal *ah);
extern int32_t ar9300_wlan_led_gpio_get(struct ath_hal *ah);
extern int32_t ar9300_wlan_disable_gpio_get(struct ath_hal *ah);
extern int32_t ar9300_rx_band_select_gpio_get(struct ath_hal *ah);
extern int32_t ar9300_rx_gain_index_get(struct ath_hal *ah);
extern int32_t ar9300_tx_gain_index_get(struct ath_hal *ah);
extern int32_t ar9300_xpa_bias_level_get(struct ath_hal *ah, HAL_BOOL is_2ghz);
extern HAL_BOOL ar9300_xpa_bias_level_apply(struct ath_hal *ah, HAL_BOOL is_2ghz);
extern u_int32_t ar9300_ant_ctrl_common_get(struct ath_hal *ah, HAL_BOOL is_2ghz);
extern u_int32_t ar9300_ant_ctrl_common2_get(struct ath_hal *ah, HAL_BOOL is_2ghz);
extern u_int16_t ar9300_ant_ctrl_chain_get(struct ath_hal *ah, int chain, HAL_BOOL is_2ghz);
extern HAL_BOOL ar9300_ant_ctrl_apply(struct ath_hal *ah, HAL_BOOL is_2ghz);
/* since valid noise floor values are negative, returns 1 on error */
extern int32_t ar9300_noise_floor_cal_or_power_get(
struct ath_hal *ah, int32_t frequency, int32_t ichain, HAL_BOOL use_cal);
#define ar9300NoiseFloorGet(ah, frequency, ichain) \
ar9300_noise_floor_cal_or_power_get(ah, frequency, ichain, 1/*use_cal*/)
#define ar9300NoiseFloorPowerGet(ah, frequency, ichain) \
ar9300_noise_floor_cal_or_power_get(ah, frequency, ichain, 0/*use_cal*/)
extern void ar9300_eeprom_template_preference(int32_t value);
extern int32_t ar9300_eeprom_template_install(struct ath_hal *ah, int32_t value);
extern void ar9300_calibration_data_set(struct ath_hal *ah, int32_t source);
extern int32_t ar9300_calibration_data_get(struct ath_hal *ah);
extern int32_t ar9300_calibration_data_address_get(struct ath_hal *ah);
extern void ar9300_calibration_data_address_set(struct ath_hal *ah, int32_t source);
extern HAL_BOOL ar9300_calibration_data_read_flash(struct ath_hal *ah, long address, u_int8_t *buffer, int many);
extern HAL_BOOL ar9300_calibration_data_read_eeprom(struct ath_hal *ah, long address, u_int8_t *buffer, int many);
extern HAL_BOOL ar9300_calibration_data_read_otp(struct ath_hal *ah, long address, u_int8_t *buffer, int many, HAL_BOOL is_wifi);
extern HAL_BOOL ar9300_calibration_data_read(struct ath_hal *ah, long address, u_int8_t *buffer, int many);
extern int32_t ar9300_eeprom_size(struct ath_hal *ah);
extern int32_t ar9300_otp_size(struct ath_hal *ah);
extern HAL_BOOL ar9300_calibration_data_read_array(struct ath_hal *ah, int address, u_int8_t *buffer, int many);
#if defined(WIN32) || defined(WIN64)
#pragma pack (pop, ar9300)
#endif
#endif /* _ATH_AR9300_EEP_H_ */