f-stack/dpdk/drivers/crypto/scheduler/scheduler_multicore.c

414 lines
11 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2017 Intel Corporation
*/
#include <unistd.h>
#include <rte_cryptodev.h>
#include <rte_malloc.h>
#include "rte_cryptodev_scheduler_operations.h"
#include "scheduler_pmd_private.h"
#define MC_SCHED_ENQ_RING_NAME_PREFIX "MCS_ENQR_"
#define MC_SCHED_DEQ_RING_NAME_PREFIX "MCS_DEQR_"
#define MC_SCHED_BUFFER_SIZE 32
#define CRYPTO_OP_STATUS_BIT_COMPLETE 0x80
/** multi-core scheduler context */
struct mc_scheduler_ctx {
uint32_t num_workers; /**< Number of workers polling */
uint32_t stop_signal;
struct rte_ring *sched_enq_ring[RTE_MAX_LCORE];
struct rte_ring *sched_deq_ring[RTE_MAX_LCORE];
};
struct mc_scheduler_qp_ctx {
struct scheduler_slave slaves[RTE_CRYPTODEV_SCHEDULER_MAX_NB_SLAVES];
uint32_t nb_slaves;
uint32_t last_enq_worker_idx;
uint32_t last_deq_worker_idx;
struct mc_scheduler_ctx *mc_private_ctx;
};
static uint16_t
schedule_enqueue(void *qp, struct rte_crypto_op **ops, uint16_t nb_ops)
{
struct mc_scheduler_qp_ctx *mc_qp_ctx =
((struct scheduler_qp_ctx *)qp)->private_qp_ctx;
struct mc_scheduler_ctx *mc_ctx = mc_qp_ctx->mc_private_ctx;
uint32_t worker_idx = mc_qp_ctx->last_enq_worker_idx;
uint16_t i, processed_ops = 0;
if (unlikely(nb_ops == 0))
return 0;
for (i = 0; i < mc_ctx->num_workers && nb_ops != 0; i++) {
struct rte_ring *enq_ring = mc_ctx->sched_enq_ring[worker_idx];
uint16_t nb_queue_ops = rte_ring_enqueue_burst(enq_ring,
(void *)(&ops[processed_ops]), nb_ops, NULL);
nb_ops -= nb_queue_ops;
processed_ops += nb_queue_ops;
if (++worker_idx == mc_ctx->num_workers)
worker_idx = 0;
}
mc_qp_ctx->last_enq_worker_idx = worker_idx;
return processed_ops;
}
static uint16_t
schedule_enqueue_ordering(void *qp, struct rte_crypto_op **ops,
uint16_t nb_ops)
{
struct rte_ring *order_ring =
((struct scheduler_qp_ctx *)qp)->order_ring;
uint16_t nb_ops_to_enq = get_max_enqueue_order_count(order_ring,
nb_ops);
uint16_t nb_ops_enqd = schedule_enqueue(qp, ops,
nb_ops_to_enq);
scheduler_order_insert(order_ring, ops, nb_ops_enqd);
return nb_ops_enqd;
}
static uint16_t
schedule_dequeue(void *qp, struct rte_crypto_op **ops, uint16_t nb_ops)
{
struct mc_scheduler_qp_ctx *mc_qp_ctx =
((struct scheduler_qp_ctx *)qp)->private_qp_ctx;
struct mc_scheduler_ctx *mc_ctx = mc_qp_ctx->mc_private_ctx;
uint32_t worker_idx = mc_qp_ctx->last_deq_worker_idx;
uint16_t i, processed_ops = 0;
for (i = 0; i < mc_ctx->num_workers && nb_ops != 0; i++) {
struct rte_ring *deq_ring = mc_ctx->sched_deq_ring[worker_idx];
uint16_t nb_deq_ops = rte_ring_dequeue_burst(deq_ring,
(void *)(&ops[processed_ops]), nb_ops, NULL);
nb_ops -= nb_deq_ops;
processed_ops += nb_deq_ops;
if (++worker_idx == mc_ctx->num_workers)
worker_idx = 0;
}
mc_qp_ctx->last_deq_worker_idx = worker_idx;
return processed_ops;
}
static uint16_t
schedule_dequeue_ordering(void *qp, struct rte_crypto_op **ops,
uint16_t nb_ops)
{
struct rte_ring *order_ring = ((struct scheduler_qp_ctx *)qp)->order_ring;
struct rte_crypto_op *op;
uint32_t nb_objs = rte_ring_count(order_ring);
uint32_t nb_ops_to_deq = 0;
uint32_t nb_ops_deqd = 0;
if (nb_objs > nb_ops)
nb_objs = nb_ops;
while (nb_ops_to_deq < nb_objs) {
SCHEDULER_GET_RING_OBJ(order_ring, nb_ops_to_deq, op);
if (!(op->status & CRYPTO_OP_STATUS_BIT_COMPLETE))
break;
op->status &= ~CRYPTO_OP_STATUS_BIT_COMPLETE;
nb_ops_to_deq++;
}
if (nb_ops_to_deq) {
nb_ops_deqd = rte_ring_sc_dequeue_bulk(order_ring,
(void **)ops, nb_ops_to_deq, NULL);
}
return nb_ops_deqd;
}
static int
slave_attach(__rte_unused struct rte_cryptodev *dev,
__rte_unused uint8_t slave_id)
{
return 0;
}
static int
slave_detach(__rte_unused struct rte_cryptodev *dev,
__rte_unused uint8_t slave_id)
{
return 0;
}
static int
mc_scheduler_worker(struct rte_cryptodev *dev)
{
struct scheduler_ctx *sched_ctx = dev->data->dev_private;
struct mc_scheduler_ctx *mc_ctx = sched_ctx->private_ctx;
struct rte_ring *enq_ring;
struct rte_ring *deq_ring;
uint32_t core_id = rte_lcore_id();
int i, worker_idx = -1;
struct scheduler_slave *slave;
struct rte_crypto_op *enq_ops[MC_SCHED_BUFFER_SIZE];
struct rte_crypto_op *deq_ops[MC_SCHED_BUFFER_SIZE];
uint16_t processed_ops;
uint16_t pending_enq_ops = 0;
uint16_t pending_enq_ops_idx = 0;
uint16_t pending_deq_ops = 0;
uint16_t pending_deq_ops_idx = 0;
uint16_t inflight_ops = 0;
const uint8_t reordering_enabled = sched_ctx->reordering_enabled;
for (i = 0; i < (int)sched_ctx->nb_wc; i++) {
if (sched_ctx->wc_pool[i] == core_id) {
worker_idx = i;
break;
}
}
if (worker_idx == -1) {
CR_SCHED_LOG(ERR, "worker on core %u:cannot find worker index!",
core_id);
return -1;
}
slave = &sched_ctx->slaves[worker_idx];
enq_ring = mc_ctx->sched_enq_ring[worker_idx];
deq_ring = mc_ctx->sched_deq_ring[worker_idx];
while (!mc_ctx->stop_signal) {
if (pending_enq_ops) {
processed_ops =
rte_cryptodev_enqueue_burst(slave->dev_id,
slave->qp_id, &enq_ops[pending_enq_ops_idx],
pending_enq_ops);
pending_enq_ops -= processed_ops;
pending_enq_ops_idx += processed_ops;
inflight_ops += processed_ops;
} else {
processed_ops = rte_ring_dequeue_burst(enq_ring, (void *)enq_ops,
MC_SCHED_BUFFER_SIZE, NULL);
if (processed_ops) {
pending_enq_ops_idx = rte_cryptodev_enqueue_burst(
slave->dev_id, slave->qp_id,
enq_ops, processed_ops);
pending_enq_ops = processed_ops - pending_enq_ops_idx;
inflight_ops += pending_enq_ops_idx;
}
}
if (pending_deq_ops) {
processed_ops = rte_ring_enqueue_burst(
deq_ring, (void *)&deq_ops[pending_deq_ops_idx],
pending_deq_ops, NULL);
pending_deq_ops -= processed_ops;
pending_deq_ops_idx += processed_ops;
} else if (inflight_ops) {
processed_ops = rte_cryptodev_dequeue_burst(slave->dev_id,
slave->qp_id, deq_ops, MC_SCHED_BUFFER_SIZE);
if (processed_ops) {
inflight_ops -= processed_ops;
if (reordering_enabled) {
uint16_t j;
for (j = 0; j < processed_ops; j++) {
deq_ops[j]->status |=
CRYPTO_OP_STATUS_BIT_COMPLETE;
}
} else {
pending_deq_ops_idx = rte_ring_enqueue_burst(
deq_ring, (void *)deq_ops, processed_ops,
NULL);
pending_deq_ops = processed_ops -
pending_deq_ops_idx;
}
}
}
rte_pause();
}
return 0;
}
static int
scheduler_start(struct rte_cryptodev *dev)
{
struct scheduler_ctx *sched_ctx = dev->data->dev_private;
struct mc_scheduler_ctx *mc_ctx = sched_ctx->private_ctx;
uint16_t i;
mc_ctx->stop_signal = 0;
for (i = 0; i < sched_ctx->nb_wc; i++)
rte_eal_remote_launch(
(lcore_function_t *)mc_scheduler_worker, dev,
sched_ctx->wc_pool[i]);
if (sched_ctx->reordering_enabled) {
dev->enqueue_burst = &schedule_enqueue_ordering;
dev->dequeue_burst = &schedule_dequeue_ordering;
} else {
dev->enqueue_burst = &schedule_enqueue;
dev->dequeue_burst = &schedule_dequeue;
}
for (i = 0; i < dev->data->nb_queue_pairs; i++) {
struct scheduler_qp_ctx *qp_ctx = dev->data->queue_pairs[i];
struct mc_scheduler_qp_ctx *mc_qp_ctx =
qp_ctx->private_qp_ctx;
uint32_t j;
memset(mc_qp_ctx->slaves, 0,
RTE_CRYPTODEV_SCHEDULER_MAX_NB_SLAVES *
sizeof(struct scheduler_slave));
for (j = 0; j < sched_ctx->nb_slaves; j++) {
mc_qp_ctx->slaves[j].dev_id =
sched_ctx->slaves[j].dev_id;
mc_qp_ctx->slaves[j].qp_id = i;
}
mc_qp_ctx->nb_slaves = sched_ctx->nb_slaves;
mc_qp_ctx->last_enq_worker_idx = 0;
mc_qp_ctx->last_deq_worker_idx = 0;
}
return 0;
}
static int
scheduler_stop(struct rte_cryptodev *dev)
{
struct scheduler_ctx *sched_ctx = dev->data->dev_private;
struct mc_scheduler_ctx *mc_ctx = sched_ctx->private_ctx;
uint16_t i;
mc_ctx->stop_signal = 1;
for (i = 0; i < sched_ctx->nb_wc; i++)
rte_eal_wait_lcore(sched_ctx->wc_pool[i]);
return 0;
}
static int
scheduler_config_qp(struct rte_cryptodev *dev, uint16_t qp_id)
{
struct scheduler_qp_ctx *qp_ctx = dev->data->queue_pairs[qp_id];
struct mc_scheduler_qp_ctx *mc_qp_ctx;
struct scheduler_ctx *sched_ctx = dev->data->dev_private;
struct mc_scheduler_ctx *mc_ctx = sched_ctx->private_ctx;
mc_qp_ctx = rte_zmalloc_socket(NULL, sizeof(*mc_qp_ctx), 0,
rte_socket_id());
if (!mc_qp_ctx) {
CR_SCHED_LOG(ERR, "failed allocate memory for private queue pair");
return -ENOMEM;
}
mc_qp_ctx->mc_private_ctx = mc_ctx;
qp_ctx->private_qp_ctx = (void *)mc_qp_ctx;
return 0;
}
static int
scheduler_create_private_ctx(struct rte_cryptodev *dev)
{
struct scheduler_ctx *sched_ctx = dev->data->dev_private;
struct mc_scheduler_ctx *mc_ctx = NULL;
uint16_t i;
if (sched_ctx->private_ctx) {
rte_free(sched_ctx->private_ctx);
sched_ctx->private_ctx = NULL;
}
mc_ctx = rte_zmalloc_socket(NULL, sizeof(struct mc_scheduler_ctx), 0,
rte_socket_id());
if (!mc_ctx) {
CR_SCHED_LOG(ERR, "failed allocate memory");
return -ENOMEM;
}
mc_ctx->num_workers = sched_ctx->nb_wc;
for (i = 0; i < sched_ctx->nb_wc; i++) {
char r_name[16];
snprintf(r_name, sizeof(r_name), MC_SCHED_ENQ_RING_NAME_PREFIX
"%u_%u", dev->data->dev_id, i);
mc_ctx->sched_enq_ring[i] = rte_ring_lookup(r_name);
if (!mc_ctx->sched_enq_ring[i]) {
mc_ctx->sched_enq_ring[i] = rte_ring_create(r_name,
PER_SLAVE_BUFF_SIZE,
rte_socket_id(),
RING_F_SC_DEQ | RING_F_SP_ENQ);
if (!mc_ctx->sched_enq_ring[i]) {
CR_SCHED_LOG(ERR, "Cannot create ring for worker %u",
i);
goto exit;
}
}
snprintf(r_name, sizeof(r_name), MC_SCHED_DEQ_RING_NAME_PREFIX
"%u_%u", dev->data->dev_id, i);
mc_ctx->sched_deq_ring[i] = rte_ring_lookup(r_name);
if (!mc_ctx->sched_deq_ring[i]) {
mc_ctx->sched_deq_ring[i] = rte_ring_create(r_name,
PER_SLAVE_BUFF_SIZE,
rte_socket_id(),
RING_F_SC_DEQ | RING_F_SP_ENQ);
if (!mc_ctx->sched_deq_ring[i]) {
CR_SCHED_LOG(ERR, "Cannot create ring for worker %u",
i);
goto exit;
}
}
}
sched_ctx->private_ctx = (void *)mc_ctx;
return 0;
exit:
for (i = 0; i < sched_ctx->nb_wc; i++) {
rte_ring_free(mc_ctx->sched_enq_ring[i]);
rte_ring_free(mc_ctx->sched_deq_ring[i]);
}
rte_free(mc_ctx);
return -1;
}
static struct rte_cryptodev_scheduler_ops scheduler_mc_ops = {
slave_attach,
slave_detach,
scheduler_start,
scheduler_stop,
scheduler_config_qp,
scheduler_create_private_ctx,
NULL, /* option_set */
NULL /* option_get */
};
static struct rte_cryptodev_scheduler mc_scheduler = {
.name = "multicore-scheduler",
.description = "scheduler which will run burst across multiple cpu cores",
.mode = CDEV_SCHED_MODE_MULTICORE,
.ops = &scheduler_mc_ops
};
struct rte_cryptodev_scheduler *crypto_scheduler_multicore = &mc_scheduler;