arm: NEON optimisations for gf_w8

Optimisations for the 4,4 split table region multiplication and carry
less multiplication using NEON's polynomial long multiplication.
arm: w8: NEON carry less multiplication

Selected time_tool.sh results for a 1.7GHz cortex-a9:
Region Best (MB/s):   375.86   W-Method: 8 -m CARRY_FREE -
Region Best (MB/s):   142.94   W-Method: 8 -m TABLE -
Region Best (MB/s):   225.01   W-Method: 8 -m TABLE -r DOUBLE -
Region Best (MB/s):   211.23   W-Method: 8 -m TABLE -r DOUBLE -r LAZY -
Region Best (MB/s):   160.09   W-Method: 8 -m LOG -
Region Best (MB/s):   123.61   W-Method: 8 -m LOG_ZERO -
Region Best (MB/s):   123.85   W-Method: 8 -m LOG_ZERO_EXT -
Region Best (MB/s):  1183.79   W-Method: 8 -m SPLIT 8 4 -r SIMD -
Region Best (MB/s):   177.68   W-Method: 8 -m SPLIT 8 4 -r NOSIMD -
Region Best (MB/s):    87.85   W-Method: 8 -m COMPOSITE 2 - -
Region Best (MB/s):   428.59   W-Method: 8 -m COMPOSITE 2 - -r ALTMAP -
master
Janne Grunau 2014-09-03 16:57:06 +02:00
parent 1311a44f7a
commit bec15359de
5 changed files with 428 additions and 89 deletions

99
include/gf_w8.h Normal file
View File

@ -0,0 +1,99 @@
/*
* GF-Complete: A Comprehensive Open Source Library for Galois Field Arithmetic
* James S. Plank, Ethan L. Miller, Kevin M. Greenan,
* Benjamin A. Arnold, John A. Burnum, Adam W. Disney, Allen C. McBride.
*
* gf_w8.c
*
* Defines and data stuctures for 8-bit Galois fields
*/
#ifndef GF_COMPLETE_GF_W8_H
#define GF_COMPLETE_GF_W8_H
#include "gf_int.h"
#include <stdint.h>
#define GF_FIELD_WIDTH (8)
#define GF_FIELD_SIZE (1 << GF_FIELD_WIDTH)
#define GF_HALF_SIZE (1 << (GF_FIELD_WIDTH/2))
#define GF_MULT_GROUP_SIZE GF_FIELD_SIZE-1
#define GF_BASE_FIELD_WIDTH (4)
#define GF_BASE_FIELD_SIZE (1 << GF_BASE_FIELD_WIDTH)
struct gf_w8_logtable_data {
uint8_t log_tbl[GF_FIELD_SIZE];
uint8_t antilog_tbl[GF_FIELD_SIZE * 2];
uint8_t inv_tbl[GF_FIELD_SIZE];
};
struct gf_w8_logzero_table_data {
short log_tbl[GF_FIELD_SIZE]; /* Make this signed, so that we can divide easily */
uint8_t antilog_tbl[512+512+1];
uint8_t *div_tbl;
uint8_t *inv_tbl;
};
struct gf_w8_logzero_small_table_data {
short log_tbl[GF_FIELD_SIZE]; /* Make this signed, so that we can divide easily */
uint8_t antilog_tbl[255*3];
uint8_t inv_tbl[GF_FIELD_SIZE];
uint8_t *div_tbl;
};
struct gf_w8_composite_data {
uint8_t *mult_table;
};
/* Don't change the order of these relative to gf_w8_half_table_data */
struct gf_w8_default_data {
uint8_t high[GF_FIELD_SIZE][GF_HALF_SIZE];
uint8_t low[GF_FIELD_SIZE][GF_HALF_SIZE];
uint8_t divtable[GF_FIELD_SIZE][GF_FIELD_SIZE];
uint8_t multtable[GF_FIELD_SIZE][GF_FIELD_SIZE];
};
struct gf_w8_half_table_data {
uint8_t high[GF_FIELD_SIZE][GF_HALF_SIZE];
uint8_t low[GF_FIELD_SIZE][GF_HALF_SIZE];
};
struct gf_w8_single_table_data {
uint8_t divtable[GF_FIELD_SIZE][GF_FIELD_SIZE];
uint8_t multtable[GF_FIELD_SIZE][GF_FIELD_SIZE];
};
struct gf_w8_double_table_data {
uint8_t div[GF_FIELD_SIZE][GF_FIELD_SIZE];
uint16_t mult[GF_FIELD_SIZE][GF_FIELD_SIZE*GF_FIELD_SIZE];
};
struct gf_w8_double_table_lazy_data {
uint8_t div[GF_FIELD_SIZE][GF_FIELD_SIZE];
uint8_t smult[GF_FIELD_SIZE][GF_FIELD_SIZE];
uint16_t mult[GF_FIELD_SIZE*GF_FIELD_SIZE];
};
struct gf_w4_logtable_data {
uint8_t log_tbl[GF_BASE_FIELD_SIZE];
uint8_t antilog_tbl[GF_BASE_FIELD_SIZE * 2];
uint8_t *antilog_tbl_div;
};
struct gf_w4_single_table_data {
uint8_t div[GF_BASE_FIELD_SIZE][GF_BASE_FIELD_SIZE];
uint8_t mult[GF_BASE_FIELD_SIZE][GF_BASE_FIELD_SIZE];
};
struct gf_w8_bytwo_data {
uint64_t prim_poly;
uint64_t mask1;
uint64_t mask2;
};
int gf_w8_neon_cfm_init(gf_t *gf);
void gf_w8_neon_split_init(gf_t *gf);
#endif /* GF_COMPLETE_GF_W8_H */

View File

@ -11,7 +11,8 @@ libgf_complete_la_SOURCES = gf.c gf_method.c gf_wgen.c gf_w4.c gf_w8.c gf_w16.c
gf_w64.c gf_w128.c gf_rand.c gf_general.c
if HAVE_NEON
libgf_complete_la_SOURCES += neon/gf_w4_neon.c
libgf_complete_la_SOURCES += neon/gf_w4_neon.c \
neon/gf_w8_neon.c
endif
libgf_complete_la_LDFLAGS = -version-info 1:0:0

View File

@ -217,6 +217,11 @@ int gf_error_check(int w, int mult_type, int region_type, int divide_type,
pclmul = 1;
#endif
#ifdef ARM_NEON
pclmul = 1;
sse3 = 1;
#endif
if (w < 1 || (w > 32 && w != 64 && w != 128)) { _gf_errno = GF_E_BAD___W; return 0; }

View File

@ -9,88 +9,10 @@
*/
#include "gf_int.h"
#include "gf_w8.h"
#include <stdio.h>
#include <stdlib.h>
#define GF_FIELD_WIDTH (8)
#define GF_FIELD_SIZE (1 << GF_FIELD_WIDTH)
#define GF_HALF_SIZE (1 << (GF_FIELD_WIDTH/2))
#define GF_MULT_GROUP_SIZE GF_FIELD_SIZE-1
#define GF_BASE_FIELD_WIDTH (4)
#define GF_BASE_FIELD_SIZE (1 << GF_BASE_FIELD_WIDTH)
struct gf_w8_logtable_data {
uint8_t log_tbl[GF_FIELD_SIZE];
uint8_t antilog_tbl[GF_FIELD_SIZE * 2];
uint8_t inv_tbl[GF_FIELD_SIZE];
};
struct gf_w8_logzero_table_data {
short log_tbl[GF_FIELD_SIZE]; /* Make this signed, so that we can divide easily */
uint8_t antilog_tbl[512+512+1];
uint8_t *div_tbl;
uint8_t *inv_tbl;
};
struct gf_w8_logzero_small_table_data {
short log_tbl[GF_FIELD_SIZE]; /* Make this signed, so that we can divide easily */
uint8_t antilog_tbl[255*3];
uint8_t inv_tbl[GF_FIELD_SIZE];
uint8_t *div_tbl;
};
struct gf_w8_composite_data {
uint8_t *mult_table;
};
/* Don't change the order of these relative to gf_w8_half_table_data */
struct gf_w8_default_data {
uint8_t high[GF_FIELD_SIZE][GF_HALF_SIZE];
uint8_t low[GF_FIELD_SIZE][GF_HALF_SIZE];
uint8_t divtable[GF_FIELD_SIZE][GF_FIELD_SIZE];
uint8_t multtable[GF_FIELD_SIZE][GF_FIELD_SIZE];
};
struct gf_w8_half_table_data {
uint8_t high[GF_FIELD_SIZE][GF_HALF_SIZE];
uint8_t low[GF_FIELD_SIZE][GF_HALF_SIZE];
};
struct gf_w8_single_table_data {
uint8_t divtable[GF_FIELD_SIZE][GF_FIELD_SIZE];
uint8_t multtable[GF_FIELD_SIZE][GF_FIELD_SIZE];
};
struct gf_w8_double_table_data {
uint8_t div[GF_FIELD_SIZE][GF_FIELD_SIZE];
uint16_t mult[GF_FIELD_SIZE][GF_FIELD_SIZE*GF_FIELD_SIZE];
};
struct gf_w8_double_table_lazy_data {
uint8_t div[GF_FIELD_SIZE][GF_FIELD_SIZE];
uint8_t smult[GF_FIELD_SIZE][GF_FIELD_SIZE];
uint16_t mult[GF_FIELD_SIZE*GF_FIELD_SIZE];
};
struct gf_w4_logtable_data {
uint8_t log_tbl[GF_BASE_FIELD_SIZE];
uint8_t antilog_tbl[GF_BASE_FIELD_SIZE * 2];
uint8_t *antilog_tbl_div;
};
struct gf_w4_single_table_data {
uint8_t div[GF_BASE_FIELD_SIZE][GF_BASE_FIELD_SIZE];
uint8_t mult[GF_BASE_FIELD_SIZE][GF_BASE_FIELD_SIZE];
};
struct gf_w8_bytwo_data {
uint64_t prim_poly;
uint64_t mask1;
uint64_t mask2;
};
#define AB2(ip, am1 ,am2, b, t1, t2) {\
t1 = (b << 1) & am1;\
t2 = b & am2; \
@ -603,6 +525,8 @@ int gf_w8_cfm_init(gf_t *gf)
return 0;
}
return 1;
#elif defined(ARM_NEON)
return gf_w8_neon_cfm_init(gf);
#endif
return 0;
@ -938,7 +862,7 @@ gf_w8_default_multiply(gf_t *gf, gf_val_32_t a, gf_val_32_t b)
return (ftd->multtable[a][b]);
}
#ifdef INTEL_SSSE3
#if defined(INTEL_SSSE3) || defined(ARM_NEON)
static
gf_val_32_t
gf_w8_default_divide(gf_t *gf, gf_val_32_t a, gf_val_32_t b)
@ -1179,11 +1103,15 @@ int gf_w8_split_init(gf_t *gf)
gf->multiply.w32 = gf_w8_split_multiply;
#ifdef INTEL_SSSE3
#if defined(INTEL_SSSE3) || defined(ARM_NEON)
if (h->region_type & GF_REGION_NOSIMD)
gf->multiply_region.w32 = gf_w8_split_multiply_region;
else
#if defined(INTEL_SSSE3)
gf->multiply_region.w32 = gf_w8_split_multiply_region_sse;
#elif defined(ARM_NEON)
gf_w8_neon_split_init(gf);
#endif
#else
gf->multiply_region.w32 = gf_w8_split_multiply_region;
if(h->region_type & GF_REGION_SIMD)
@ -1205,17 +1133,17 @@ int gf_w8_table_init(gf_t *gf)
struct gf_w8_double_table_data *dtd = NULL;
struct gf_w8_double_table_lazy_data *ltd = NULL;
struct gf_w8_default_data *dd = NULL;
int a, b, c, prod, scase, issse;
int a, b, c, prod, scase, use_simd;
h = (gf_internal_t *) gf->scratch;
#ifdef INTEL_SSSE3
issse = 1;
#if defined(INTEL_SSSE3) || defined(ARM_NEON)
use_simd = 1;
#else
issse = 0;
use_simd = 0;
#endif
if (h->mult_type == GF_MULT_DEFAULT && issse) {
if (h->mult_type == GF_MULT_DEFAULT && use_simd) {
dd = (struct gf_w8_default_data *)h->private;
scase = 3;
bzero(dd->high, sizeof(uint8_t) * GF_FIELD_SIZE * GF_HALF_SIZE);
@ -1290,10 +1218,14 @@ int gf_w8_table_init(gf_t *gf)
gf->multiply_region.w32 = gf_w8_double_table_multiply_region;
break;
case 3:
#ifdef INTEL_SSSE3
#if defined(INTEL_SSSE3) || defined(ARM_NEON)
gf->divide.w32 = gf_w8_default_divide;
gf->multiply.w32 = gf_w8_default_multiply;
#if defined(INTEL_SSSE3)
gf->multiply_region.w32 = gf_w8_split_multiply_region_sse;
#elif defined(ARM_NEON)
gf_w8_neon_split_init(gf);
#endif
#endif
break;
}
@ -2296,7 +2228,7 @@ int gf_w8_scratch_size(int mult_type, int region_type, int divide_type, int arg1
switch(mult_type)
{
case GF_MULT_DEFAULT:
#ifdef INTEL_SSSE3
#if defined(INTEL_SSSE3) || defined(ARM_NEON)
return sizeof(gf_internal_t) + sizeof(struct gf_w8_default_data) + 64;
#endif
return sizeof(gf_internal_t) + sizeof(struct gf_w8_single_table_data) + 64;

302
src/neon/gf_w8_neon.c Normal file
View File

@ -0,0 +1,302 @@
/*
* GF-Complete: A Comprehensive Open Source Library for Galois Field Arithmetic
* James S. Plank, Ethan L. Miller, Kevin M. Greenan,
* Benjamin A. Arnold, John A. Burnum, Adam W. Disney, Allen C. McBride.
*
* Copyright (c) 2014: Janne Grunau <j@jannau.net>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* - Neither the name of the University of Tennessee nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
* WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* gf_w8_neon.c
*
* Neon optimized routines for 8-bit Galois fields
*
*/
#include "gf_int.h"
#include "gf_w8.h"
#include <stdio.h>
#include <stdlib.h>
/* ARM NEON reducing macro for the carry free multiplication
* vmull_p8 is the carryless multiply operation. Here vshrn_n_u16 shifts
* the result to the right by 1 byte. This allows us to multiply
* the prim_poly by the leading bits of the result. We then xor the result
* of that operation back with the result. */
#define NEON_CFM_REDUCE(v, w, result, prim_poly, initial) \
do { \
if (initial) \
v = vshrn_n_u16 (vreinterpretq_u16_p16(result), 8); \
else \
v = veor_u8 (v, vshrn_n_u16 (vreinterpretq_u16_p16(result), 8)); \
w = vmull_p8 (prim_poly, vreinterpret_p8_u8(v)); \
result = vreinterpretq_p16_u16 (veorq_u16 (vreinterpretq_u16_p16(result), vreinterpretq_u16_p16(w))); \
} while (0)
static
inline
gf_val_32_t
gf_w8_neon_clm_multiply_x (gf_t *gf, gf_val_32_t a8, gf_val_32_t b8, int x)
{
gf_val_32_t rv = 0;
poly8x8_t a, b;
uint8x8_t v;
poly16x8_t result;
poly8x8_t prim_poly;
poly16x8_t w;
gf_internal_t * h = gf->scratch;
a = vdup_n_p8 (a8);
b = vdup_n_p8 (b8);
prim_poly = vdup_n_p8 ((uint32_t)(h->prim_poly & 0x1ffULL));
/* Do the initial multiply */
result = vmull_p8 (a, b);
/* Ben: Do prim_poly reduction twice. We are guaranteed that we will only
have to do the reduction at most twice, because (w-2)/z == 2. Where
z is equal to the number of zeros after the leading 1 */
NEON_CFM_REDUCE (v, w, result, prim_poly, 1);
NEON_CFM_REDUCE (v, w, result, prim_poly, 0);
if (x >= 3) {
NEON_CFM_REDUCE (v, w, result, prim_poly, 0);
}
if (x >= 4) {
NEON_CFM_REDUCE (v, w, result, prim_poly, 0);
}
/* Extracts 32 bit value from result. */
rv = (gf_val_32_t)vget_lane_u8 (vmovn_u16 (vreinterpretq_u16_p16 (result)), 0);
return rv;
}
#define CLM_MULTIPLY(x) \
static gf_val_32_t gf_w8_neon_clm_multiply_ ## x (gf_t *gf, gf_val_32_t a8, gf_val_32_t b8) \
{\
return gf_w8_neon_clm_multiply_x (gf, a8, b8, x);\
}
CLM_MULTIPLY(2)
CLM_MULTIPLY(3)
CLM_MULTIPLY(4)
static inline void
neon_clm_multiply_region_from_single_x(gf_t *gf, uint8_t *s8, uint8_t *d8,
gf_val_32_t val, uint8_t *d_end,
int xor, int x)
{
gf_internal_t * h = gf->scratch;
poly8x8_t a, b;
uint8x8_t c, v;
poly16x8_t result;
poly8x8_t prim_poly;
poly16x8_t w;
a = vdup_n_p8 (val);
prim_poly = vdup_n_p8 ((uint8_t)(h->prim_poly & 0xffULL));
while (d8 < d_end) {
b = vld1_p8 ((poly8_t *) s8);
if (xor)
c = vld1_u8 (d8);
result = vmull_p8 (a, b);
NEON_CFM_REDUCE(v, w, result, prim_poly, 1);
NEON_CFM_REDUCE (v, w, result, prim_poly, 0);
if (x >= 3) {
NEON_CFM_REDUCE (v, w, result, prim_poly, 0);
}
if (x >= 4) {
NEON_CFM_REDUCE (v, w, result, prim_poly, 0);
}
v = vmovn_u16 (vreinterpretq_u16_p16 (result));
if (xor)
v = veor_u8 (c, v);
vst1_u8 (d8, v);
d8 += 8;
s8 += 8;
}
}
#define CLM_MULT_REGION(x) \
static void \
gf_w8_neon_clm_multiply_region_from_single_ ## x (gf_t *gf, void *src, \
void *dest, \
gf_val_32_t val, int bytes, \
int xor) \
{ \
gf_region_data rd; \
uint8_t *s8; \
uint8_t *d8; \
\
if (val == 0) { gf_multby_zero(dest, bytes, xor); return; } \
if (val == 1) { gf_multby_one(src, dest, bytes, xor); return; } \
\
gf_set_region_data(&rd, gf, src, dest, bytes, val, xor, 16); \
gf_do_initial_region_alignment(&rd); \
s8 = (uint8_t *) rd.s_start; \
d8 = (uint8_t *) rd.d_start; \
\
if (xor) \
neon_clm_multiply_region_from_single_x (gf, s8, d8, val, rd.d_top, 1, x); \
else \
neon_clm_multiply_region_from_single_x (gf, s8, d8, val, rd.d_top, 0, x);\
gf_do_final_region_alignment(&rd); \
}
CLM_MULT_REGION(2)
CLM_MULT_REGION(3)
CLM_MULT_REGION(4)
int gf_w8_neon_cfm_init(gf_t *gf)
{
gf_internal_t *h;
h = (gf_internal_t *) gf->scratch;
if ((0xe0 & h->prim_poly) == 0){
gf->multiply.w32 = gf_w8_neon_clm_multiply_2;
gf->multiply_region.w32 = gf_w8_neon_clm_multiply_region_from_single_2;
}else if ((0xc0 & h->prim_poly) == 0){
gf->multiply.w32 = gf_w8_neon_clm_multiply_3;
gf->multiply_region.w32 = gf_w8_neon_clm_multiply_region_from_single_3;
}else if ((0x80 & h->prim_poly) == 0){
gf->multiply.w32 = gf_w8_neon_clm_multiply_4;
gf->multiply_region.w32 = gf_w8_neon_clm_multiply_region_from_single_4;
}else{
return 0;
}
return 1;
}
#ifndef ARCH_AARCH64
#define vqtbl1q_u8(tbl, v) vcombine_u8(vtbl2_u8(tbl, vget_low_u8(v)), \
vtbl2_u8(tbl, vget_high_u8(v)))
#endif
static
void
gf_w8_split_multiply_region_neon(gf_t *gf, void *src, void *dest, gf_val_32_t val, int bytes, int xor)
{
uint8_t *bh, *bl, *sptr, *dptr;
uint8x16_t r, va, vh, vl, loset;
#ifdef ARCH_AARCH64
uint8x16_t mth, mtl;
#else
uint8x8x2_t mth, mtl;
#endif
struct gf_w8_half_table_data *htd;
gf_region_data rd;
if (val == 0) { gf_multby_zero(dest, bytes, xor); return; }
if (val == 1) { gf_multby_one(src, dest, bytes, xor); return; }
htd = (struct gf_w8_half_table_data *) ((gf_internal_t *) (gf->scratch))->private;
gf_set_region_data(&rd, gf, src, dest, bytes, val, xor, 16);
gf_do_initial_region_alignment(&rd);
bh = (uint8_t *) htd->high;
bh += (val << 4);
bl = (uint8_t *) htd->low;
bl += (val << 4);
sptr = rd.s_start;
dptr = rd.d_start;
#ifdef ARCH_AARCH64
mth = vld1q_u8 (bh);
mtl = vld1q_u8 (bl);
#else
mth.val[0] = vld1_u8 (bh);
mtl.val[0] = vld1_u8 (bl);
mth.val[1] = vld1_u8 (bh + 8);
mtl.val[1] = vld1_u8 (bl + 8);
#endif
loset = vdupq_n_u8(0xf);
if (xor) {
while (sptr < (uint8_t *) rd.s_top) {
va = vld1q_u8 (sptr);
vh = vshrq_n_u8 (va, 4);
vl = vandq_u8 (va, loset);
va = vld1q_u8 (dptr);
vh = vqtbl1q_u8 (mth, vh);
vl = vqtbl1q_u8 (mtl, vl);
r = veorq_u8 (vh, vl);
vst1q_u8 (dptr, veorq_u8 (va, r));
dptr += 16;
sptr += 16;
}
} else {
while (sptr < (uint8_t *) rd.s_top) {
va = vld1q_u8 (sptr);
vh = vshrq_n_u8 (va, 4);
vl = vandq_u8 (va, loset);
#ifdef ARCH_AARCH64
vh = vqtbl1q_u8 (mth, vh);
vl = vqtbl1q_u8 (mtl, vl);
#else
vh = vcombine_u8 (vtbl2_u8 (mth, vget_low_u8 (vh)),
vtbl2_u8 (mth, vget_high_u8 (vh)));
vl = vcombine_u8 (vtbl2_u8 (mtl, vget_low_u8 (vl)),
vtbl2_u8 (mtl, vget_high_u8 (vl)));
#endif
r = veorq_u8 (vh, vl);
vst1q_u8(dptr, r);
dptr += 16;
sptr += 16;
}
}
gf_do_final_region_alignment(&rd);
}
void gf_w8_neon_split_init(gf_t *gf)
{
gf->multiply_region.w32 = gf_w8_split_multiply_region_neon;
}