gf-complete/src/neon/gf_w8_neon.c

303 lines
9.7 KiB
C

/*
* GF-Complete: A Comprehensive Open Source Library for Galois Field Arithmetic
* James S. Plank, Ethan L. Miller, Kevin M. Greenan,
* Benjamin A. Arnold, John A. Burnum, Adam W. Disney, Allen C. McBride.
*
* Copyright (c) 2014: Janne Grunau <j@jannau.net>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* - Neither the name of the University of Tennessee nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
* WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* gf_w8_neon.c
*
* Neon optimized routines for 8-bit Galois fields
*
*/
#include "gf_int.h"
#include "gf_w8.h"
#include <stdio.h>
#include <stdlib.h>
/* ARM NEON reducing macro for the carry free multiplication
* vmull_p8 is the carryless multiply operation. Here vshrn_n_u16 shifts
* the result to the right by 1 byte. This allows us to multiply
* the prim_poly by the leading bits of the result. We then xor the result
* of that operation back with the result. */
#define NEON_CFM_REDUCE(v, w, result, prim_poly, initial) \
do { \
if (initial) \
v = vshrn_n_u16 (vreinterpretq_u16_p16(result), 8); \
else \
v = veor_u8 (v, vshrn_n_u16 (vreinterpretq_u16_p16(result), 8)); \
w = vmull_p8 (prim_poly, vreinterpret_p8_u8(v)); \
result = vreinterpretq_p16_u16 (veorq_u16 (vreinterpretq_u16_p16(result), vreinterpretq_u16_p16(w))); \
} while (0)
static
inline
gf_val_32_t
gf_w8_neon_clm_multiply_x (gf_t *gf, gf_val_32_t a8, gf_val_32_t b8, int x)
{
gf_val_32_t rv = 0;
poly8x8_t a, b;
uint8x8_t v;
poly16x8_t result;
poly8x8_t prim_poly;
poly16x8_t w;
gf_internal_t * h = gf->scratch;
a = vdup_n_p8 (a8);
b = vdup_n_p8 (b8);
prim_poly = vdup_n_p8 ((uint32_t)(h->prim_poly & 0x1ffULL));
/* Do the initial multiply */
result = vmull_p8 (a, b);
/* Ben: Do prim_poly reduction twice. We are guaranteed that we will only
have to do the reduction at most twice, because (w-2)/z == 2. Where
z is equal to the number of zeros after the leading 1 */
NEON_CFM_REDUCE (v, w, result, prim_poly, 1);
NEON_CFM_REDUCE (v, w, result, prim_poly, 0);
if (x >= 3) {
NEON_CFM_REDUCE (v, w, result, prim_poly, 0);
}
if (x >= 4) {
NEON_CFM_REDUCE (v, w, result, prim_poly, 0);
}
/* Extracts 32 bit value from result. */
rv = (gf_val_32_t)vget_lane_u8 (vmovn_u16 (vreinterpretq_u16_p16 (result)), 0);
return rv;
}
#define CLM_MULTIPLY(x) \
static gf_val_32_t gf_w8_neon_clm_multiply_ ## x (gf_t *gf, gf_val_32_t a8, gf_val_32_t b8) \
{\
return gf_w8_neon_clm_multiply_x (gf, a8, b8, x);\
}
CLM_MULTIPLY(2)
CLM_MULTIPLY(3)
CLM_MULTIPLY(4)
static inline void
neon_clm_multiply_region_from_single_x(gf_t *gf, uint8_t *s8, uint8_t *d8,
gf_val_32_t val, uint8_t *d_end,
int xor, int x)
{
gf_internal_t * h = gf->scratch;
poly8x8_t a, b;
uint8x8_t c, v;
poly16x8_t result;
poly8x8_t prim_poly;
poly16x8_t w;
a = vdup_n_p8 (val);
prim_poly = vdup_n_p8 ((uint8_t)(h->prim_poly & 0xffULL));
while (d8 < d_end) {
b = vld1_p8 ((poly8_t *) s8);
if (xor)
c = vld1_u8 (d8);
result = vmull_p8 (a, b);
NEON_CFM_REDUCE(v, w, result, prim_poly, 1);
NEON_CFM_REDUCE (v, w, result, prim_poly, 0);
if (x >= 3) {
NEON_CFM_REDUCE (v, w, result, prim_poly, 0);
}
if (x >= 4) {
NEON_CFM_REDUCE (v, w, result, prim_poly, 0);
}
v = vmovn_u16 (vreinterpretq_u16_p16 (result));
if (xor)
v = veor_u8 (c, v);
vst1_u8 (d8, v);
d8 += 8;
s8 += 8;
}
}
#define CLM_MULT_REGION(x) \
static void \
gf_w8_neon_clm_multiply_region_from_single_ ## x (gf_t *gf, void *src, \
void *dest, \
gf_val_32_t val, int bytes, \
int xor) \
{ \
gf_region_data rd; \
uint8_t *s8; \
uint8_t *d8; \
\
if (val == 0) { gf_multby_zero(dest, bytes, xor); return; } \
if (val == 1) { gf_multby_one(src, dest, bytes, xor); return; } \
\
gf_set_region_data(&rd, gf, src, dest, bytes, val, xor, 16); \
gf_do_initial_region_alignment(&rd); \
s8 = (uint8_t *) rd.s_start; \
d8 = (uint8_t *) rd.d_start; \
\
if (xor) \
neon_clm_multiply_region_from_single_x (gf, s8, d8, val, rd.d_top, 1, x); \
else \
neon_clm_multiply_region_from_single_x (gf, s8, d8, val, rd.d_top, 0, x);\
gf_do_final_region_alignment(&rd); \
}
CLM_MULT_REGION(2)
CLM_MULT_REGION(3)
CLM_MULT_REGION(4)
int gf_w8_neon_cfm_init(gf_t *gf)
{
gf_internal_t *h;
h = (gf_internal_t *) gf->scratch;
if ((0xe0 & h->prim_poly) == 0){
SET_FUNCTION(gf,multiply,w32,gf_w8_neon_clm_multiply_2)
SET_FUNCTION(gf,multiply_region,w32,gf_w8_neon_clm_multiply_region_from_single_2)
}else if ((0xc0 & h->prim_poly) == 0){
SET_FUNCTION(gf,multiply,w32,gf_w8_neon_clm_multiply_3)
SET_FUNCTION(gf,multiply_region,w32,gf_w8_neon_clm_multiply_region_from_single_3)
}else if ((0x80 & h->prim_poly) == 0){
SET_FUNCTION(gf,multiply,w32,gf_w8_neon_clm_multiply_4)
SET_FUNCTION(gf,multiply_region,w32,gf_w8_neon_clm_multiply_region_from_single_4)
}else{
return 0;
}
return 1;
}
#ifndef ARCH_AARCH64
#define vqtbl1q_u8(tbl, v) vcombine_u8(vtbl2_u8(tbl, vget_low_u8(v)), \
vtbl2_u8(tbl, vget_high_u8(v)))
#endif
static
void
gf_w8_split_multiply_region_neon(gf_t *gf, void *src, void *dest, gf_val_32_t val, int bytes, int xor)
{
uint8_t *bh, *bl, *sptr, *dptr;
uint8x16_t r, va, vh, vl, loset;
#ifdef ARCH_AARCH64
uint8x16_t mth, mtl;
#else
uint8x8x2_t mth, mtl;
#endif
struct gf_w8_half_table_data *htd;
gf_region_data rd;
if (val == 0) { gf_multby_zero(dest, bytes, xor); return; }
if (val == 1) { gf_multby_one(src, dest, bytes, xor); return; }
htd = (struct gf_w8_half_table_data *) ((gf_internal_t *) (gf->scratch))->private;
gf_set_region_data(&rd, gf, src, dest, bytes, val, xor, 16);
gf_do_initial_region_alignment(&rd);
bh = (uint8_t *) htd->high;
bh += (val << 4);
bl = (uint8_t *) htd->low;
bl += (val << 4);
sptr = rd.s_start;
dptr = rd.d_start;
#ifdef ARCH_AARCH64
mth = vld1q_u8 (bh);
mtl = vld1q_u8 (bl);
#else
mth.val[0] = vld1_u8 (bh);
mtl.val[0] = vld1_u8 (bl);
mth.val[1] = vld1_u8 (bh + 8);
mtl.val[1] = vld1_u8 (bl + 8);
#endif
loset = vdupq_n_u8(0xf);
if (xor) {
while (sptr < (uint8_t *) rd.s_top) {
va = vld1q_u8 (sptr);
vh = vshrq_n_u8 (va, 4);
vl = vandq_u8 (va, loset);
va = vld1q_u8 (dptr);
vh = vqtbl1q_u8 (mth, vh);
vl = vqtbl1q_u8 (mtl, vl);
r = veorq_u8 (vh, vl);
vst1q_u8 (dptr, veorq_u8 (va, r));
dptr += 16;
sptr += 16;
}
} else {
while (sptr < (uint8_t *) rd.s_top) {
va = vld1q_u8 (sptr);
vh = vshrq_n_u8 (va, 4);
vl = vandq_u8 (va, loset);
#ifdef ARCH_AARCH64
vh = vqtbl1q_u8 (mth, vh);
vl = vqtbl1q_u8 (mtl, vl);
#else
vh = vcombine_u8 (vtbl2_u8 (mth, vget_low_u8 (vh)),
vtbl2_u8 (mth, vget_high_u8 (vh)));
vl = vcombine_u8 (vtbl2_u8 (mtl, vget_low_u8 (vl)),
vtbl2_u8 (mtl, vget_high_u8 (vl)));
#endif
r = veorq_u8 (vh, vl);
vst1q_u8(dptr, r);
dptr += 16;
sptr += 16;
}
}
gf_do_final_region_alignment(&rd);
}
void gf_w8_neon_split_init(gf_t *gf)
{
SET_FUNCTION(gf,multiply_region,w32,gf_w8_split_multiply_region_neon)
}