gf-complete/include/gf_complete.h

193 lines
6.3 KiB
C

/*
* GF-Complete: A Comprehensive Open Source Library for Galois Field Arithmetic
* James S. Plank, Ethan L. Miller, Kevin M. Greenan,
* Benjamin A. Arnold, John A. Burnum, Adam W. Disney, Allen C. McBride.
*
* gf_complete.h
*
* The main include file for gf_complete.
*/
#ifndef _GF_COMPLETE_H_
#define _GF_COMPLETE_H_
#include <stdint.h>
#ifdef INTEL_SSE4
#include <nmmintrin.h>
#endif
#ifdef INTEL_SSSE3
#include <tmmintrin.h>
#endif
#ifdef INTEL_SSE2
#include <emmintrin.h>
#endif
#ifdef INTEL_SSE4_PCLMUL
#include <wmmintrin.h>
#endif
/* These are the different ways to perform multiplication.
Not all are implemented for all values of w.
See the paper for an explanation of how they work. */
typedef enum {GF_MULT_DEFAULT,
GF_MULT_SHIFT,
GF_MULT_CARRY_FREE,
GF_MULT_GROUP,
GF_MULT_BYTWO_p,
GF_MULT_BYTWO_b,
GF_MULT_TABLE,
GF_MULT_LOG_TABLE,
GF_MULT_LOG_ZERO,
GF_MULT_LOG_ZERO_EXT,
GF_MULT_SPLIT_TABLE,
GF_MULT_COMPOSITE } gf_mult_type_t;
/* These are the different ways to optimize region
operations. They are bits because you can compose them.
Certain optimizations only apply to certain gf_mult_type_t's.
Again, please see documentation for how to use these */
#define GF_REGION_DEFAULT (0x0)
#define GF_REGION_DOUBLE_TABLE (0x1)
#define GF_REGION_QUAD_TABLE (0x2)
#define GF_REGION_LAZY (0x4)
#define GF_REGION_SSE (0x8)
#define GF_REGION_NOSSE (0x10)
#define GF_REGION_ALTMAP (0x20)
#define GF_REGION_CAUCHY (0x40)
typedef uint32_t gf_region_type_t;
/* These are different ways to implement division.
Once again, it's best to use "DEFAULT". However,
there are times when you may want to experiment
with the others. */
typedef enum { GF_DIVIDE_DEFAULT,
GF_DIVIDE_MATRIX,
GF_DIVIDE_EUCLID } gf_division_type_t;
/* We support w=4,8,16,32,64 and 128 with their own data types and
operations for multiplication, division, etc. We also support
a "gen" type so that you can do general gf arithmetic for any
value of w from 1 to 32. You can perform a "region" operation
on these if you use "CAUCHY" as the mapping.
*/
typedef uint32_t gf_val_32_t;
typedef uint64_t gf_val_64_t;
typedef uint64_t *gf_val_128_t;
extern int _gf_errno;
extern void gf_error();
typedef struct gf *GFP;
typedef union gf_func_a_b {
gf_val_32_t (*w32) (GFP gf, gf_val_32_t a, gf_val_32_t b);
gf_val_64_t (*w64) (GFP gf, gf_val_64_t a, gf_val_64_t b);
void (*w128)(GFP gf, gf_val_128_t a, gf_val_128_t b, gf_val_128_t c);
} gf_func_a_b;
typedef union {
gf_val_32_t (*w32) (GFP gf, gf_val_32_t a);
gf_val_64_t (*w64) (GFP gf, gf_val_64_t a);
void (*w128)(GFP gf, gf_val_128_t a, gf_val_128_t b);
} gf_func_a;
typedef union {
void (*w32) (GFP gf, void *src, void *dest, gf_val_32_t val, int bytes, int add);
void (*w64) (GFP gf, void *src, void *dest, gf_val_64_t val, int bytes, int add);
void (*w128)(GFP gf, void *src, void *dest, gf_val_128_t val, int bytes, int add);
} gf_region;
typedef union {
gf_val_32_t (*w32) (GFP gf, void *start, int bytes, int index);
gf_val_64_t (*w64) (GFP gf, void *start, int bytes, int index);
void (*w128)(GFP gf, void *start, int bytes, int index, gf_val_128_t rv);
} gf_extract;
typedef struct gf {
gf_func_a_b multiply;
gf_func_a_b divide;
gf_func_a inverse;
gf_region multiply_region;
gf_extract extract_word;
void *scratch;
} gf_t;
/* Initializes the GF to defaults. Pass it a pointer to a gf_t.
Returns 0 on failure, 1 on success. */
extern int gf_init_easy(GFP gf, int w);
/* Initializes the GF changing the defaults.
Returns 0 on failure, 1 on success.
Pass it a pointer to a gf_t.
For mult_type and divide_type, use one of gf_mult_type_t gf_divide_type_t .
For region_type, OR together the GF_REGION_xxx's defined above.
Use 0 as prim_poly for defaults. Otherwise, the leading 1 is optional.
Use NULL for scratch_memory to have init_hard allocate memory. Otherwise,
use gf_scratch_size() to determine how big scratch_memory has to be.
*/
extern int gf_init_hard(GFP gf,
int w,
int mult_type,
int region_type,
int divide_type,
uint64_t prim_poly,
int arg1,
int arg2,
GFP base_gf,
void *scratch_memory);
/* Determines the size for scratch_memory.
Returns 0 on failure and non-zero on success. */
extern int gf_scratch_size(int w,
int mult_type,
int region_type,
int divide_type,
int arg1,
int arg2);
/* This reports the gf_scratch_size of a gf_t that has already been created */
extern int gf_size(GFP gf);
/* Frees scratch memory if gf_init_easy/gf_init_hard called malloc.
If recursive = 1, then it calls itself recursively on base_gf. */
extern int gf_free(GFP gf, int recursive);
/* This is support for inline single multiplications and divisions.
I know it's yucky, but if you've got to be fast, you've got to be fast.
We support inlining for w=4, w=8 and w=16.
To use inline multiplication and division with w=4 or 8, you should use the
default gf_t, or one with a single table. Otherwise, gf_w4/8_get_mult_table()
will return NULL. Similarly, with w=16, the gf_t must be LOG */
uint8_t *gf_w4_get_mult_table(GFP gf);
uint8_t *gf_w4_get_div_table(GFP gf);
#define GF_W4_INLINE_MULTDIV(table, a, b) (table[((a)<<4)|(b)])
uint8_t *gf_w8_get_mult_table(GFP gf);
uint8_t *gf_w8_get_div_table(GFP gf);
#define GF_W8_INLINE_MULTDIV(table, a, b) (table[(((uint32_t) (a))<<8)|(b)])
uint16_t *gf_w16_get_log_table(GFP gf);
uint16_t *gf_w16_get_mult_alog_table(GFP gf);
uint16_t *gf_w16_get_div_alog_table(GFP gf);
#define GF_W16_INLINE_MULT(log, alog, a, b) ((a) == 0 || (b) == 0) ? 0 : (alog[(uint32_t)log[a]+(uint32_t)log[b]])
#define GF_W16_INLINE_DIV(log, alog, a, b) ((a) == 0 || (b) == 0) ? 0 : (alog[(int)log[a]-(int)log[b]])
#endif