/* * * Copyright (c) 2013, James S. Plank and Kevin Greenan * All rights reserved. * * Jerasure - A C/C++ Library for a Variety of Reed-Solomon and RAID-6 Erasure * Coding Techniques * * Revision 2.0: Galois Field backend now links to GF-Complete * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * - Neither the name of the University of Tennessee nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY * WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* revised by S. Simmerman 2/25/08 */ #include #include #include #include "jerasure.h" #include "cauchy.h" #define talloc(type, num) (type *) malloc(sizeof(type)*(num)) usage(char *s) { fprintf(stderr, "usage: cauchy_04 k m w - Scheduled CRS coding example with a good matrix in GF(2^w).\n"); fprintf(stderr, " \n"); fprintf(stderr, " k+m must be <= 2^w. It sets up a Cauchy distribution matrix using \n"); fprintf(stderr, " cauchy_good_coding_matrix(), then it encodes\n"); fprintf(stderr, " k devices of w*%d bytes using smart bit-matrix scheduling.\n", sizeof(long)); fprintf(stderr, " It decodes using bit-matrix scheduling as well.\n"); fprintf(stderr, " \n"); fprintf(stderr, "This demonstrates: cauchy_original_coding_matrix()\n"); fprintf(stderr, " cauchy_n_ones()\n"); fprintf(stderr, " jerasure_smart_bitmatrix_to_schedule()\n"); fprintf(stderr, " jerasure_schedule_encode()\n"); fprintf(stderr, " jerasure_schedule_decode_lazy()\n"); fprintf(stderr, " jerasure_print_matrix()\n"); fprintf(stderr, " jerasure_get_stats()\n"); if (s != NULL) fprintf(stderr, "%s\n", s); exit(1); } static void print_data_and_coding(int k, int m, int w, int psize, char **data, char **coding) { int i, j, x, n, sp; long l; if(k > m) n = k; else n = m; sp = psize * 2 + (psize/4) + 12; printf("%-*sCoding\n", sp, "Data"); for(i = 0; i < n; i++) { for (j = 0; j < w; j++) { if(i < k) { if(j==0) printf("D%-2d p%-2d:", i,j); else printf(" p%-2d:", j); for(x = 0; x < psize; x +=4) { memcpy(&l, data[i]+j*psize+x, sizeof(long)); printf(" %08lx", l); } printf(" "); } else printf("%*s", sp, ""); if(i < m) { if(j==0) printf("C%-2d p%-2d:", i,j); else printf(" p%-2d:", j); for(x = 0; x < psize; x +=4) { memcpy(&l, coding[i]+j*psize+x, sizeof(long)); printf(" %08lx", l); } } printf("\n"); } } printf("\n"); } int main(int argc, char **argv) { long l; int k, w, i, j, m; int *matrix, *bitmatrix; char **data, **coding, **ptrs; int **smart; int no; int *erasures, *erased; double stats[3]; if (argc != 4) usage(NULL); if (sscanf(argv[1], "%d", &k) == 0 || k <= 0) usage("Bad k"); if (sscanf(argv[2], "%d", &m) == 0 || m <= 0) usage("Bad m"); if (sscanf(argv[3], "%d", &w) == 0 || w <= 0 || w > 32) usage("Bad w"); if (w < 30 && (k+m) > (1 << w)) usage("k + m is too big"); matrix = cauchy_good_general_coding_matrix(k, m, w); if (matrix == NULL) { usage("couldn't make coding matrix"); } no = 0; for (i = 0; i < k*m; i++) { no += cauchy_n_ones(matrix[i], w); } printf("Matrix has %d ones\n\n", no); jerasure_print_matrix(matrix, m, k, w); printf("\n"); bitmatrix = jerasure_matrix_to_bitmatrix(k, m, w, matrix); smart = jerasure_smart_bitmatrix_to_schedule(k, m, w, bitmatrix); srand48(0); data = talloc(char *, k); for (i = 0; i < k; i++) { data[i] = talloc(char, sizeof(long)*w); for (j = 0; j < w; j++) { l = lrand48(); memcpy(data[i]+j*sizeof(long), &l, sizeof(long)); } } coding = talloc(char *, m); for (i = 0; i < m; i++) { coding[i] = talloc(char, sizeof(long)*w); } jerasure_schedule_encode(k, m, w, smart, data, coding, w*sizeof(long), sizeof(long)); jerasure_get_stats(stats); printf("Smart Encoding Complete: - %.0lf XOR'd bytes\n\n", stats[0]); print_data_and_coding(k, m, w, sizeof(long), data, coding); erasures = talloc(int, (m+1)); erased = talloc(int, (k+m)); for (i = 0; i < m+k; i++) erased[i] = 0; for (i = 0; i < m; ) { erasures[i] = lrand48()%(k+m); if (erased[erasures[i]] == 0) { erased[erasures[i]] = 1; bzero((erasures[i] < k) ? data[erasures[i]] : coding[erasures[i]-k], sizeof(long)*w); i++; } } erasures[i] = -1; printf("Erased %d random pieces of data/coding:\n\n", m); print_data_and_coding(k, m, w, sizeof(long), data, coding); jerasure_schedule_decode_lazy(k, m, w, bitmatrix, erasures, data, coding, w*sizeof(long), sizeof(long), 1); jerasure_get_stats(stats); printf("State of the system after decoding: %.0lf XOR'd bytes\n\n", stats[0]); print_data_and_coding(k, m, w, sizeof(long), data, coding); return 0; }