/* Examples/cauchy_02.c Jerasure - A C/C++ Library for a Variety of Reed-Solomon and RAID-6 Erasure Coding Techniques Revision 1.2A May 24, 2011 James S. Plank Department of Electrical Engineering and Computer Science University of Tennessee Knoxville, TN 37996 plank@cs.utk.edu Copyright (c) 2011, James S. Plank All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: - Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. - Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. - Neither the name of the University of Tennessee nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* revised by S. Simmerman 2/25/08 */ #include #include #include #include "jerasure.h" #include "cauchy.h" #define talloc(type, num) (type *) malloc(sizeof(type)*(num)) usage(char *s) { fprintf(stderr, "usage: cauchy_02 k m w - Scheduled CRS coding example with the original matrix in GF(2^w).\n"); fprintf(stderr, " \n"); fprintf(stderr, " k+m must be <= 2^w. It sets up a Cauchy distribution matrix using the original\n"); fprintf(stderr, " Cauchy Distribution matrix construction algorithm, then it encodes\n"); fprintf(stderr, " k devices of w*%d bytes using smart bit-matrix scheduling.\n", sizeof(long)); fprintf(stderr, " It decodes using bit-matrix scheduling as well.\n"); fprintf(stderr, " \n"); fprintf(stderr, "This demonstrates: cauchy_original_coding_matrix()\n"); fprintf(stderr, " cauchy_xy_coding_matrix()\n"); fprintf(stderr, " cauchy_n_ones()\n"); fprintf(stderr, " jerasure_smart_bitmatrix_to_schedule()\n"); fprintf(stderr, " jerasure_schedule_encode()\n"); fprintf(stderr, " jerasure_schedule_decode_lazy()\n"); fprintf(stderr, " jerasure_print_matrix()\n"); fprintf(stderr, " jerasure_get_stats()\n"); if (s != NULL) fprintf(stderr, "%s\n", s); exit(1); } static void print_data_and_coding(int k, int m, int w, int psize, char **data, char **coding) { int i, j, x, n, sp; long l; if(k > m) n = k; else n = m; sp = psize * 2 + (psize/4) + 12; printf("%-*sCoding\n", sp, "Data"); for(i = 0; i < n; i++) { for (j = 0; j < w; j++) { if(i < k) { if(j==0) printf("D%-2d p%-2d:", i,j); else printf(" p%-2d:", j); for(x = 0; x < psize; x +=4) { memcpy(&l, data[i]+j*psize+x, sizeof(long)); printf(" %08lx", l); } printf(" "); } else printf("%*s", sp, ""); if(i < m) { if(j==0) printf("C%-2d p%-2d:", i,j); else printf(" p%-2d:", j); for(x = 0; x < psize; x +=4) { memcpy(&l, coding[i]+j*psize+x, sizeof(long)); printf(" %08lx", l); } } printf("\n"); } } printf("\n"); } int main(int argc, char **argv) { long l; int k, w, i, j, m; int *matrix, *bitmatrix, *m2, *x, *y; char **data, **coding, **ptrs; int **smart; int no; int *erasures, *erased; double stats[3]; if (argc != 4) usage(NULL); if (sscanf(argv[1], "%d", &k) == 0 || k <= 0) usage("Bad k"); if (sscanf(argv[2], "%d", &m) == 0 || m <= 0) usage("Bad m"); if (sscanf(argv[3], "%d", &w) == 0 || w <= 0 || w > 32) usage("Bad w"); if (w < 30 && (k+m) > (1 << w)) usage("k + m is too big"); matrix = cauchy_original_coding_matrix(k, m, w); if (matrix == NULL) { usage("couldn't make coding matrix"); } no = 0; for (i = 0; i < k*m; i++) { no += cauchy_n_ones(matrix[i], w); } printf("Matrix has %d ones\n\n", no); jerasure_print_matrix(matrix, m, k, w); printf("\n", no); bitmatrix = jerasure_matrix_to_bitmatrix(k, m, w, matrix); smart = jerasure_smart_bitmatrix_to_schedule(k, m, w, bitmatrix); srand48(0); data = talloc(char *, k); for (i = 0; i < k; i++) { data[i] = talloc(char, sizeof(long)*w); for (j = 0; j < w; j++) { l = lrand48(); memcpy(data[i]+j*sizeof(long), &l, sizeof(long)); } } coding = talloc(char *, m); for (i = 0; i < m; i++) { coding[i] = talloc(char, sizeof(long)*w); } jerasure_schedule_encode(k, m, w, smart, data, coding, w*sizeof(long), sizeof(long)); jerasure_get_stats(stats); printf("Smart Encoding Complete: - %.0lf XOR'd bytes\n\n", stats[0]); print_data_and_coding(k, m, w, sizeof(long), data, coding); erasures = talloc(int, (m+1)); erased = talloc(int, (k+m)); for (i = 0; i < m+k; i++) erased[i] = 0; for (i = 0; i < m; ) { erasures[i] = lrand48()%(k+m); if (erased[erasures[i]] == 0) { erased[erasures[i]] = 1; bzero((erasures[i] < k) ? data[erasures[i]] : coding[erasures[i]-k], sizeof(long)*w); i++; } } erasures[i] = -1; printf("Erased %d random devices:\n\n", m); print_data_and_coding(k, m, w, sizeof(long), data, coding); jerasure_schedule_decode_lazy(k, m, w, bitmatrix, erasures, data, coding, w*sizeof(long), sizeof(long), 1); jerasure_get_stats(stats); printf("State of the system after decoding: %.0lf XOR'd bytes\n\n", stats[0]); print_data_and_coding(k, m, w, sizeof(long), data, coding); x = talloc(int, m); y = talloc(int, k); if (x == NULL || y == NULL) { perror("malloc"); exit(1); } for (i = 0; i < m; i++) x[i] = i; for (i = 0; i < k; i++) y[i] = m+i; m2 = cauchy_xy_coding_matrix(k, m, w, x, y); if (memcmp(matrix, m2, sizeof(int)*k*m) != 0) { printf("Error -- the matrices made by original and xy don't match\n"); exit(1); } else { printf("Generated the identical matrix using cauchy_xy_coding_matrix()\n"); } return 0; }