/* Examples/jerasure_05.c Jerasure - A C/C++ Library for a Variety of Reed-Solomon and RAID-6 Erasure Coding Techniques Revision 1.2A May 24, 2011 James S. Plank Department of Electrical Engineering and Computer Science University of Tennessee Knoxville, TN 37996 plank@cs.utk.edu Copyright (c) 2011, James S. Plank All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: - Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. - Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. - Neither the name of the University of Tennessee nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* revised by S. Simmerman 2/25/08 */ #include #include #include #include "jerasure.h" #define talloc(type, num) (type *) malloc(sizeof(type)*(num)) usage(char *s) { fprintf(stderr, "usage: jerasure_05 k m w size - Does a simple Reed-Solomon coding example in GF(2^w).\n"); fprintf(stderr, " \n"); fprintf(stderr, " k+m must be <= 2^w. w can be 8, 16 or 32.\n"); fprintf(stderr, " It sets up a Cauchy distribution matrix and encodes\n"); fprintf(stderr, " k devices of size bytes with it. Then it decodes.\n", sizeof(long)); fprintf(stderr, " After that, it decodes device 0 by using jerasure_make_decoding_matrix()\n"); fprintf(stderr, " and jerasure_matrix_dotprod().\n"); fprintf(stderr, " \n"); fprintf(stderr, "This demonstrates: jerasure_matrix_encode()\n"); fprintf(stderr, " jerasure_matrix_decode()\n"); fprintf(stderr, " jerasure_print_matrix()\n"); fprintf(stderr, " jerasure_make_decoding_matrix()\n"); fprintf(stderr, " jerasure_matrix_dotprod()\n"); if (s != NULL) fprintf(stderr, "\n%s\n\n", s); exit(1); } static void print_data_and_coding(int k, int m, int w, int size, char **data, char **coding) { int i, j, x; int n, sp; long l; if(k > m) n = k; else n = m; sp = size * 2 + size/(w/8) + 8; printf("%-*sCoding\n", sp, "Data"); for(i = 0; i < n; i++) { if(i < k) { printf("D%-2d:", i); for(j=0;j< size; j+=(w/8)) { printf(" "); for(x=0;x < w/8;x++){ printf("%02x", (unsigned char)data[i][j+x]); } } printf(" "); } else printf("%*s", sp, ""); if(i < m) { printf("C%-2d:", i); for(j=0;j< size; j+=(w/8)) { printf(" "); for(x=0;x < w/8;x++){ printf("%02x", (unsigned char)coding[i][j+x]); } } } printf("\n"); } printf("\n"); } int main(int argc, char **argv) { long l; int k, m, w, size; int i, j; int *matrix; char **data, **coding; int *erasures, *erased; int *decoding_matrix, *dm_ids; if (argc != 5) usage(NULL); if (sscanf(argv[1], "%d", &k) == 0 || k <= 0) usage("Bad k"); if (sscanf(argv[2], "%d", &m) == 0 || m <= 0) usage("Bad m"); if (sscanf(argv[3], "%d", &w) == 0 || (w != 8 && w != 16 && w != 32)) usage("Bad w"); if (w < 32 && k + m > (1 << w)) usage("k + m must be <= 2 ^ w"); if (sscanf(argv[4], "%d", &size) == 0 || size % sizeof(long) != 0) usage("size must be multiple of sizeof(long)"); matrix = talloc(int, m*k); for (i = 0; i < m; i++) { for (j = 0; j < k; j++) { matrix[i*k+j] = galois_single_divide(1, i ^ (m + j), w); } } printf("The Coding Matrix (the last m rows of the Distribution Matrix):\n\n"); jerasure_print_matrix(matrix, m, k, w); printf("\n"); srand48(0); data = talloc(char *, k); for (i = 0; i < k; i++) { data[i] = talloc(char, size); for(j = 0; j < size; j+=sizeof(long)) { l = lrand48(); memcpy(data[i] + j, &l, sizeof(long)); } } coding = talloc(char *, m); for (i = 0; i < m; i++) { coding[i] = talloc(char, size); } jerasure_matrix_encode(k, m, w, matrix, data, coding, size); printf("Encoding Complete:\n\n"); print_data_and_coding(k, m, w, size, data, coding); erasures = talloc(int, (m+1)); erased = talloc(int, (k+m)); for (i = 0; i < m+k; i++) erased[i] = 0; l = 0; for (i = 0; i < m; ) { erasures[i] = lrand48()%(k+m); if (erased[erasures[i]] == 0) { erased[erasures[i]] = 1; bzero((erasures[i] < k) ? data[erasures[i]] : coding[erasures[i]-k], size); i++; } } erasures[i] = -1; printf("Erased %d random devices:\n\n", m); print_data_and_coding(k, m, w, size, data, coding); i = jerasure_matrix_decode(k, m, w, matrix, 0, erasures, data, coding, size); printf("State of the system after decoding:\n\n"); print_data_and_coding(k, m, w, size, data, coding); decoding_matrix = talloc(int, k*k); dm_ids = talloc(int, k); for (i = 0; i < m; i++) erased[i] = 1; for (; i < k+m; i++) erased[i] = 0; jerasure_make_decoding_matrix(k, m, w, matrix, erased, decoding_matrix, dm_ids); printf("Suppose we erase the first %d devices. Here is the decoding matrix:\n\n", m); jerasure_print_matrix(decoding_matrix, k, k, w); printf("\n"); printf("And dm_ids:\n\n"); jerasure_print_matrix(dm_ids, 1, k, w); bzero(data[0], size); jerasure_matrix_dotprod(k, w, decoding_matrix, dm_ids, 0, data, coding, size); printf("\nAfter calling jerasure_matrix_dotprod, we calculate the value of device #0 to be:\n\n"); printf("D0 :"); for(i=0;i< size; i+=(w/8)) { printf(" "); for(j=0;j < w/8;j++){ printf("%02x", (unsigned char)data[0][i+j]); } } printf("\n\n"); return 0; }