kwin/libkwineffects/kwineffects.cpp

1931 lines
48 KiB
C++

/*
KWin - the KDE window manager
This file is part of the KDE project.
SPDX-FileCopyrightText: 2006 Lubos Lunak <l.lunak@kde.org>
SPDX-FileCopyrightText: 2009 Lucas Murray <lmurray@undefinedfire.com>
SPDX-FileCopyrightText: 2018 Vlad Zahorodnii <vlad.zahorodnii@kde.org>
SPDX-License-Identifier: GPL-2.0-or-later
*/
#include "kwineffects.h"
#include "config-kwin.h"
#ifdef KWIN_HAVE_XRENDER_COMPOSITING
#include "kwinxrenderutils.h"
#endif
#include <QVariant>
#include <QList>
#include <QTimeLine>
#include <QFontMetrics>
#include <QPainter>
#include <QPixmap>
#include <QVector2D>
#include <QGraphicsRotation>
#include <QGraphicsScale>
#include <QtMath>
#include <ksharedconfig.h>
#include <kconfiggroup.h>
#include <KWaylandServer/surface_interface.h>
#ifdef KWIN_HAVE_XRENDER_COMPOSITING
#include <xcb/xfixes.h>
#endif
#if defined(__SSE2__)
# include <emmintrin.h>
#endif
namespace KWin
{
void WindowPrePaintData::setTranslucent()
{
mask |= Effect::PAINT_WINDOW_TRANSLUCENT;
mask &= ~Effect::PAINT_WINDOW_OPAQUE;
clip = QRegion(); // cannot clip, will be transparent
}
void WindowPrePaintData::setTransformed()
{
mask |= Effect::PAINT_WINDOW_TRANSFORMED;
}
class PaintDataPrivate {
public:
QGraphicsScale scale;
QVector3D translation;
QGraphicsRotation rotation;
};
PaintData::PaintData()
: d(new PaintDataPrivate())
{
}
PaintData::~PaintData()
{
delete d;
}
qreal PaintData::xScale() const
{
return d->scale.xScale();
}
qreal PaintData::yScale() const
{
return d->scale.yScale();
}
qreal PaintData::zScale() const
{
return d->scale.zScale();
}
void PaintData::setScale(const QVector2D &scale)
{
d->scale.setXScale(scale.x());
d->scale.setYScale(scale.y());
}
void PaintData::setScale(const QVector3D &scale)
{
d->scale.setXScale(scale.x());
d->scale.setYScale(scale.y());
d->scale.setZScale(scale.z());
}
void PaintData::setXScale(qreal scale)
{
d->scale.setXScale(scale);
}
void PaintData::setYScale(qreal scale)
{
d->scale.setYScale(scale);
}
void PaintData::setZScale(qreal scale)
{
d->scale.setZScale(scale);
}
const QGraphicsScale &PaintData::scale() const
{
return d->scale;
}
void PaintData::setXTranslation(qreal translate)
{
d->translation.setX(translate);
}
void PaintData::setYTranslation(qreal translate)
{
d->translation.setY(translate);
}
void PaintData::setZTranslation(qreal translate)
{
d->translation.setZ(translate);
}
void PaintData::translate(qreal x, qreal y, qreal z)
{
translate(QVector3D(x, y, z));
}
void PaintData::translate(const QVector3D &t)
{
d->translation += t;
}
qreal PaintData::xTranslation() const
{
return d->translation.x();
}
qreal PaintData::yTranslation() const
{
return d->translation.y();
}
qreal PaintData::zTranslation() const
{
return d->translation.z();
}
const QVector3D &PaintData::translation() const
{
return d->translation;
}
qreal PaintData::rotationAngle() const
{
return d->rotation.angle();
}
QVector3D PaintData::rotationAxis() const
{
return d->rotation.axis();
}
QVector3D PaintData::rotationOrigin() const
{
return d->rotation.origin();
}
void PaintData::setRotationAngle(qreal angle)
{
d->rotation.setAngle(angle);
}
void PaintData::setRotationAxis(Qt::Axis axis)
{
d->rotation.setAxis(axis);
}
void PaintData::setRotationAxis(const QVector3D &axis)
{
d->rotation.setAxis(axis);
}
void PaintData::setRotationOrigin(const QVector3D &origin)
{
d->rotation.setOrigin(origin);
}
class WindowPaintDataPrivate {
public:
qreal opacity;
qreal saturation;
qreal brightness;
int screen;
qreal crossFadeProgress;
QMatrix4x4 pMatrix;
QMatrix4x4 mvMatrix;
QMatrix4x4 screenProjectionMatrix;
};
WindowPaintData::WindowPaintData(EffectWindow *w)
: WindowPaintData(w, QMatrix4x4())
{
}
WindowPaintData::WindowPaintData(EffectWindow* w, const QMatrix4x4 &screenProjectionMatrix)
: PaintData()
, shader(nullptr)
, d(new WindowPaintDataPrivate())
{
d->screenProjectionMatrix = screenProjectionMatrix;
quads = w->buildQuads();
setOpacity(w->opacity());
setSaturation(1.0);
setBrightness(1.0);
setScreen(0);
setCrossFadeProgress(1.0);
}
WindowPaintData::WindowPaintData(const WindowPaintData &other)
: PaintData()
, quads(other.quads)
, shader(other.shader)
, d(new WindowPaintDataPrivate())
{
setXScale(other.xScale());
setYScale(other.yScale());
setZScale(other.zScale());
translate(other.translation());
setRotationOrigin(other.rotationOrigin());
setRotationAxis(other.rotationAxis());
setRotationAngle(other.rotationAngle());
setOpacity(other.opacity());
setSaturation(other.saturation());
setBrightness(other.brightness());
setScreen(other.screen());
setCrossFadeProgress(other.crossFadeProgress());
setProjectionMatrix(other.projectionMatrix());
setModelViewMatrix(other.modelViewMatrix());
d->screenProjectionMatrix = other.d->screenProjectionMatrix;
}
WindowPaintData::~WindowPaintData()
{
delete d;
}
qreal WindowPaintData::opacity() const
{
return d->opacity;
}
qreal WindowPaintData::saturation() const
{
return d->saturation;
}
qreal WindowPaintData::brightness() const
{
return d->brightness;
}
int WindowPaintData::screen() const
{
return d->screen;
}
void WindowPaintData::setOpacity(qreal opacity)
{
d->opacity = opacity;
}
void WindowPaintData::setSaturation(qreal saturation) const
{
d->saturation = saturation;
}
void WindowPaintData::setBrightness(qreal brightness)
{
d->brightness = brightness;
}
void WindowPaintData::setScreen(int screen) const
{
d->screen = screen;
}
qreal WindowPaintData::crossFadeProgress() const
{
return d->crossFadeProgress;
}
void WindowPaintData::setCrossFadeProgress(qreal factor)
{
d->crossFadeProgress = qBound(qreal(0.0), factor, qreal(1.0));
}
qreal WindowPaintData::multiplyOpacity(qreal factor)
{
d->opacity *= factor;
return d->opacity;
}
qreal WindowPaintData::multiplySaturation(qreal factor)
{
d->saturation *= factor;
return d->saturation;
}
qreal WindowPaintData::multiplyBrightness(qreal factor)
{
d->brightness *= factor;
return d->brightness;
}
void WindowPaintData::setProjectionMatrix(const QMatrix4x4 &matrix)
{
d->pMatrix = matrix;
}
QMatrix4x4 WindowPaintData::projectionMatrix() const
{
return d->pMatrix;
}
QMatrix4x4 &WindowPaintData::rprojectionMatrix()
{
return d->pMatrix;
}
void WindowPaintData::setModelViewMatrix(const QMatrix4x4 &matrix)
{
d->mvMatrix = matrix;
}
QMatrix4x4 WindowPaintData::modelViewMatrix() const
{
return d->mvMatrix;
}
QMatrix4x4 &WindowPaintData::rmodelViewMatrix()
{
return d->mvMatrix;
}
WindowPaintData &WindowPaintData::operator*=(qreal scale)
{
this->setXScale(this->xScale() * scale);
this->setYScale(this->yScale() * scale);
this->setZScale(this->zScale() * scale);
return *this;
}
WindowPaintData &WindowPaintData::operator*=(const QVector2D &scale)
{
this->setXScale(this->xScale() * scale.x());
this->setYScale(this->yScale() * scale.y());
return *this;
}
WindowPaintData &WindowPaintData::operator*=(const QVector3D &scale)
{
this->setXScale(this->xScale() * scale.x());
this->setYScale(this->yScale() * scale.y());
this->setZScale(this->zScale() * scale.z());
return *this;
}
WindowPaintData &WindowPaintData::operator+=(const QPointF &translation)
{
return this->operator+=(QVector3D(translation));
}
WindowPaintData &WindowPaintData::operator+=(const QPoint &translation)
{
return this->operator+=(QVector3D(translation));
}
WindowPaintData &WindowPaintData::operator+=(const QVector2D &translation)
{
return this->operator+=(QVector3D(translation));
}
WindowPaintData &WindowPaintData::operator+=(const QVector3D &translation)
{
translate(translation);
return *this;
}
QMatrix4x4 WindowPaintData::screenProjectionMatrix() const
{
return d->screenProjectionMatrix;
}
class ScreenPaintData::Private
{
public:
QMatrix4x4 projectionMatrix;
QRect outputGeometry;
qreal screenScale;
};
ScreenPaintData::ScreenPaintData()
: PaintData()
, d(new Private())
{
}
ScreenPaintData::ScreenPaintData(const QMatrix4x4 &projectionMatrix, const QRect &outputGeometry, const qreal screenScale)
: PaintData()
, d(new Private())
{
d->projectionMatrix = projectionMatrix;
d->outputGeometry = outputGeometry;
d->screenScale = screenScale;
}
ScreenPaintData::~ScreenPaintData() = default;
ScreenPaintData::ScreenPaintData(const ScreenPaintData &other)
: PaintData()
, d(new Private())
{
translate(other.translation());
setXScale(other.xScale());
setYScale(other.yScale());
setZScale(other.zScale());
setRotationOrigin(other.rotationOrigin());
setRotationAxis(other.rotationAxis());
setRotationAngle(other.rotationAngle());
d->projectionMatrix = other.d->projectionMatrix;
d->outputGeometry = other.d->outputGeometry;
}
ScreenPaintData &ScreenPaintData::operator=(const ScreenPaintData &rhs)
{
setXScale(rhs.xScale());
setYScale(rhs.yScale());
setZScale(rhs.zScale());
setXTranslation(rhs.xTranslation());
setYTranslation(rhs.yTranslation());
setZTranslation(rhs.zTranslation());
setRotationOrigin(rhs.rotationOrigin());
setRotationAxis(rhs.rotationAxis());
setRotationAngle(rhs.rotationAngle());
d->projectionMatrix = rhs.d->projectionMatrix;
d->outputGeometry = rhs.d->outputGeometry;
return *this;
}
ScreenPaintData &ScreenPaintData::operator*=(qreal scale)
{
setXScale(this->xScale() * scale);
setYScale(this->yScale() * scale);
setZScale(this->zScale() * scale);
return *this;
}
ScreenPaintData &ScreenPaintData::operator*=(const QVector2D &scale)
{
setXScale(this->xScale() * scale.x());
setYScale(this->yScale() * scale.y());
return *this;
}
ScreenPaintData &ScreenPaintData::operator*=(const QVector3D &scale)
{
setXScale(this->xScale() * scale.x());
setYScale(this->yScale() * scale.y());
setZScale(this->zScale() * scale.z());
return *this;
}
ScreenPaintData &ScreenPaintData::operator+=(const QPointF &translation)
{
return this->operator+=(QVector3D(translation));
}
ScreenPaintData &ScreenPaintData::operator+=(const QPoint &translation)
{
return this->operator+=(QVector3D(translation));
}
ScreenPaintData &ScreenPaintData::operator+=(const QVector2D &translation)
{
return this->operator+=(QVector3D(translation));
}
ScreenPaintData &ScreenPaintData::operator+=(const QVector3D &translation)
{
translate(translation);
return *this;
}
QMatrix4x4 ScreenPaintData::projectionMatrix() const
{
return d->projectionMatrix;
}
QRect ScreenPaintData::outputGeometry() const
{
return d->outputGeometry;
}
qreal ScreenPaintData::screenScale() const
{
return d->screenScale;
}
//****************************************
// Effect
//****************************************
Effect::Effect()
{
}
Effect::~Effect()
{
}
void Effect::reconfigure(ReconfigureFlags)
{
}
void* Effect::proxy()
{
return nullptr;
}
void Effect::windowInputMouseEvent(QEvent*)
{
}
void Effect::grabbedKeyboardEvent(QKeyEvent*)
{
}
bool Effect::borderActivated(ElectricBorder)
{
return false;
}
void Effect::prePaintScreen(ScreenPrePaintData& data, int time)
{
effects->prePaintScreen(data, time);
}
void Effect::paintScreen(int mask, const QRegion &region, ScreenPaintData& data)
{
effects->paintScreen(mask, region, data);
}
void Effect::postPaintScreen()
{
effects->postPaintScreen();
}
void Effect::prePaintWindow(EffectWindow* w, WindowPrePaintData& data, int time)
{
effects->prePaintWindow(w, data, time);
}
void Effect::paintWindow(EffectWindow* w, int mask, QRegion region, WindowPaintData& data)
{
effects->paintWindow(w, mask, region, data);
}
void Effect::postPaintWindow(EffectWindow* w)
{
effects->postPaintWindow(w);
}
void Effect::paintEffectFrame(KWin::EffectFrame* frame, const QRegion &region, double opacity, double frameOpacity)
{
effects->paintEffectFrame(frame, region, opacity, frameOpacity);
}
bool Effect::provides(Feature)
{
return false;
}
bool Effect::isActive() const
{
return true;
}
QString Effect::debug(const QString &) const
{
return QString();
}
void Effect::drawWindow(EffectWindow* w, int mask, const QRegion &region, WindowPaintData& data)
{
effects->drawWindow(w, mask, region, data);
}
void Effect::buildQuads(EffectWindow* w, WindowQuadList& quadList)
{
effects->buildQuads(w, quadList);
}
void Effect::setPositionTransformations(WindowPaintData& data, QRect& region, EffectWindow* w,
const QRect& r, Qt::AspectRatioMode aspect)
{
QSize size = w->size();
size.scale(r.size(), aspect);
data.setXScale(size.width() / double(w->width()));
data.setYScale(size.height() / double(w->height()));
int width = int(w->width() * data.xScale());
int height = int(w->height() * data.yScale());
int x = r.x() + (r.width() - width) / 2;
int y = r.y() + (r.height() - height) / 2;
region = QRect(x, y, width, height);
data.setXTranslation(x - w->x());
data.setYTranslation(y - w->y());
}
QPoint Effect::cursorPos()
{
return effects->cursorPos();
}
double Effect::animationTime(const KConfigGroup& cfg, const QString& key, int defaultTime)
{
int time = cfg.readEntry(key, 0);
return time != 0 ? time : qMax(defaultTime * effects->animationTimeFactor(), 1.);
}
double Effect::animationTime(int defaultTime)
{
// at least 1ms, otherwise 0ms times can break some things
return qMax(defaultTime * effects->animationTimeFactor(), 1.);
}
int Effect::requestedEffectChainPosition() const
{
return 0;
}
xcb_connection_t *Effect::xcbConnection() const
{
return effects->xcbConnection();
}
xcb_window_t Effect::x11RootWindow() const
{
return effects->x11RootWindow();
}
bool Effect::touchDown(qint32 id, const QPointF &pos, quint32 time)
{
Q_UNUSED(id)
Q_UNUSED(pos)
Q_UNUSED(time)
return false;
}
bool Effect::touchMotion(qint32 id, const QPointF &pos, quint32 time)
{
Q_UNUSED(id)
Q_UNUSED(pos)
Q_UNUSED(time)
return false;
}
bool Effect::touchUp(qint32 id, quint32 time)
{
Q_UNUSED(id)
Q_UNUSED(time)
return false;
}
bool Effect::perform(Feature feature, const QVariantList &arguments)
{
Q_UNUSED(feature)
Q_UNUSED(arguments)
return false;
}
//****************************************
// EffectFactory
//****************************************
EffectPluginFactory::EffectPluginFactory()
{
}
EffectPluginFactory::~EffectPluginFactory()
{
}
bool EffectPluginFactory::enabledByDefault() const
{
return true;
}
bool EffectPluginFactory::isSupported() const
{
return true;
}
//****************************************
// EffectsHandler
//****************************************
EffectsHandler::EffectsHandler(CompositingType type)
: compositing_type(type)
{
if (compositing_type == NoCompositing)
return;
KWin::effects = this;
}
EffectsHandler::~EffectsHandler()
{
// All effects should already be unloaded by Impl dtor
Q_ASSERT(loaded_effects.count() == 0);
KWin::effects = nullptr;
}
CompositingType EffectsHandler::compositingType() const
{
return compositing_type;
}
bool EffectsHandler::isOpenGLCompositing() const
{
return compositing_type & OpenGLCompositing;
}
EffectsHandler* effects = nullptr;
//****************************************
// EffectWindow
//****************************************
class Q_DECL_HIDDEN EffectWindow::Private
{
public:
Private(EffectWindow *q);
EffectWindow *q;
};
EffectWindow::Private::Private(EffectWindow *q)
: q(q)
{
}
EffectWindow::EffectWindow(QObject *parent)
: QObject(parent)
, d(new Private(this))
{
}
EffectWindow::~EffectWindow()
{
}
bool EffectWindow::isOnActivity(const QString &activity) const
{
const QStringList _activities = activities();
return _activities.isEmpty() || _activities.contains(activity);
}
bool EffectWindow::isOnAllActivities() const
{
return activities().isEmpty();
}
void EffectWindow::setMinimized(bool min)
{
if (min) {
minimize();
} else {
unminimize();
}
}
bool EffectWindow::isOnCurrentActivity() const
{
return isOnActivity(effects->currentActivity());
}
bool EffectWindow::isOnCurrentDesktop() const
{
return isOnDesktop(effects->currentDesktop());
}
bool EffectWindow::isOnDesktop(int d) const
{
const QVector<uint> ds = desktops();
return ds.isEmpty() || ds.contains(d);
}
bool EffectWindow::isOnAllDesktops() const
{
return desktops().isEmpty();
}
bool EffectWindow::hasDecoration() const
{
return contentsRect() != QRect(0, 0, width(), height());
}
bool EffectWindow::isVisible() const
{
return !isMinimized()
&& isOnCurrentDesktop()
&& isOnCurrentActivity();
}
//****************************************
// EffectWindowGroup
//****************************************
EffectWindowGroup::~EffectWindowGroup()
{
}
/***************************************************************
WindowQuad
***************************************************************/
WindowQuad WindowQuad::makeSubQuad(double x1, double y1, double x2, double y2) const
{
Q_ASSERT(x1 < x2 && y1 < y2 && x1 >= left() && x2 <= right() && y1 >= top() && y2 <= bottom());
#if !defined(QT_NO_DEBUG)
if (isTransformed())
qFatal("Splitting quads is allowed only in pre-paint calls!");
#endif
WindowQuad ret(*this);
// vertices are clockwise starting from topleft
ret.verts[ 0 ].px = x1;
ret.verts[ 3 ].px = x1;
ret.verts[ 1 ].px = x2;
ret.verts[ 2 ].px = x2;
ret.verts[ 0 ].py = y1;
ret.verts[ 1 ].py = y1;
ret.verts[ 2 ].py = y2;
ret.verts[ 3 ].py = y2;
// original x/y are supposed to be the same, no transforming is done here
ret.verts[ 0 ].ox = x1;
ret.verts[ 3 ].ox = x1;
ret.verts[ 1 ].ox = x2;
ret.verts[ 2 ].ox = x2;
ret.verts[ 0 ].oy = y1;
ret.verts[ 1 ].oy = y1;
ret.verts[ 2 ].oy = y2;
ret.verts[ 3 ].oy = y2;
const double my_u0 = verts[0].tx;
const double my_u1 = verts[2].tx;
const double my_v0 = verts[0].ty;
const double my_v1 = verts[2].ty;
const double width = right() - left();
const double height = bottom() - top();
const double texWidth = my_u1 - my_u0;
const double texHeight = my_v1 - my_v0;
if (!uvAxisSwapped()) {
const double u0 = (x1 - left()) / width * texWidth + my_u0;
const double u1 = (x2 - left()) / width * texWidth + my_u0;
const double v0 = (y1 - top()) / height * texHeight + my_v0;
const double v1 = (y2 - top()) / height * texHeight + my_v0;
ret.verts[0].tx = u0;
ret.verts[3].tx = u0;
ret.verts[1].tx = u1;
ret.verts[2].tx = u1;
ret.verts[0].ty = v0;
ret.verts[1].ty = v0;
ret.verts[2].ty = v1;
ret.verts[3].ty = v1;
} else {
const double u0 = (y1 - top()) / height * texWidth + my_u0;
const double u1 = (y2 - top()) / height * texWidth + my_u0;
const double v0 = (x1 - left()) / width * texHeight + my_v0;
const double v1 = (x2 - left()) / width * texHeight + my_v0;
ret.verts[0].tx = u0;
ret.verts[1].tx = u0;
ret.verts[2].tx = u1;
ret.verts[3].tx = u1;
ret.verts[0].ty = v0;
ret.verts[3].ty = v0;
ret.verts[1].ty = v1;
ret.verts[2].ty = v1;
}
ret.setUVAxisSwapped(uvAxisSwapped());
return ret;
}
bool WindowQuad::smoothNeeded() const
{
// smoothing is needed if the width or height of the quad does not match the original size
double width = verts[ 1 ].ox - verts[ 0 ].ox;
double height = verts[ 2 ].oy - verts[ 1 ].oy;
return(verts[ 1 ].px - verts[ 0 ].px != width || verts[ 2 ].px - verts[ 3 ].px != width
|| verts[ 2 ].py - verts[ 1 ].py != height || verts[ 3 ].py - verts[ 0 ].py != height);
}
/***************************************************************
WindowQuadList
***************************************************************/
WindowQuadList WindowQuadList::splitAtX(double x) const
{
WindowQuadList ret;
ret.reserve(count());
for (const WindowQuad & quad : *this) {
#if !defined(QT_NO_DEBUG)
if (quad.isTransformed())
qFatal("Splitting quads is allowed only in pre-paint calls!");
#endif
bool wholeleft = true;
bool wholeright = true;
for (int i = 0;
i < 4;
++i) {
if (quad[ i ].x() < x)
wholeright = false;
if (quad[ i ].x() > x)
wholeleft = false;
}
if (wholeleft || wholeright) { // is whole in one split part
ret.append(quad);
continue;
}
if (quad.top() == quad.bottom() || quad.left() == quad.right()) { // quad has no size
ret.append(quad);
continue;
}
ret.append(quad.makeSubQuad(quad.left(), quad.top(), x, quad.bottom()));
ret.append(quad.makeSubQuad(x, quad.top(), quad.right(), quad.bottom()));
}
return ret;
}
WindowQuadList WindowQuadList::splitAtY(double y) const
{
WindowQuadList ret;
ret.reserve(count());
for (const WindowQuad & quad : *this) {
#if !defined(QT_NO_DEBUG)
if (quad.isTransformed())
qFatal("Splitting quads is allowed only in pre-paint calls!");
#endif
bool wholetop = true;
bool wholebottom = true;
for (int i = 0;
i < 4;
++i) {
if (quad[ i ].y() < y)
wholebottom = false;
if (quad[ i ].y() > y)
wholetop = false;
}
if (wholetop || wholebottom) { // is whole in one split part
ret.append(quad);
continue;
}
if (quad.top() == quad.bottom() || quad.left() == quad.right()) { // quad has no size
ret.append(quad);
continue;
}
ret.append(quad.makeSubQuad(quad.left(), quad.top(), quad.right(), y));
ret.append(quad.makeSubQuad(quad.left(), y, quad.right(), quad.bottom()));
}
return ret;
}
WindowQuadList WindowQuadList::makeGrid(int maxQuadSize) const
{
if (empty())
return *this;
// Find the bounding rectangle
double left = first().left();
double right = first().right();
double top = first().top();
double bottom = first().bottom();
foreach (const WindowQuad &quad, *this) {
#if !defined(QT_NO_DEBUG)
if (quad.isTransformed())
qFatal("Splitting quads is allowed only in pre-paint calls!");
#endif
left = qMin(left, quad.left());
right = qMax(right, quad.right());
top = qMin(top, quad.top());
bottom = qMax(bottom, quad.bottom());
}
WindowQuadList ret;
for (const WindowQuad &quad : *this) {
const double quadLeft = quad.left();
const double quadRight = quad.right();
const double quadTop = quad.top();
const double quadBottom = quad.bottom();
// sanity check, see BUG 390953
if (quadLeft == quadRight || quadTop == quadBottom) {
ret.append(quad);
continue;
}
// Compute the top-left corner of the first intersecting grid cell
const double xBegin = left + qFloor((quadLeft - left) / maxQuadSize) * maxQuadSize;
const double yBegin = top + qFloor((quadTop - top) / maxQuadSize) * maxQuadSize;
// Loop over all intersecting cells and add sub-quads
for (double y = yBegin; y < quadBottom; y += maxQuadSize) {
const double y0 = qMax(y, quadTop);
const double y1 = qMin(quadBottom, y + maxQuadSize);
for (double x = xBegin; x < quadRight; x += maxQuadSize) {
const double x0 = qMax(x, quadLeft);
const double x1 = qMin(quadRight, x + maxQuadSize);
ret.append(quad.makeSubQuad(x0, y0, x1, y1));
}
}
}
return ret;
}
WindowQuadList WindowQuadList::makeRegularGrid(int xSubdivisions, int ySubdivisions) const
{
if (empty())
return *this;
// Find the bounding rectangle
double left = first().left();
double right = first().right();
double top = first().top();
double bottom = first().bottom();
for (const WindowQuad &quad : *this) {
#if !defined(QT_NO_DEBUG)
if (quad.isTransformed())
qFatal("Splitting quads is allowed only in pre-paint calls!");
#endif
left = qMin(left, quad.left());
right = qMax(right, quad.right());
top = qMin(top, quad.top());
bottom = qMax(bottom, quad.bottom());
}
double xIncrement = (right - left) / xSubdivisions;
double yIncrement = (bottom - top) / ySubdivisions;
WindowQuadList ret;
for (const WindowQuad &quad : *this) {
const double quadLeft = quad.left();
const double quadRight = quad.right();
const double quadTop = quad.top();
const double quadBottom = quad.bottom();
// sanity check, see BUG 390953
if (quadLeft == quadRight || quadTop == quadBottom) {
ret.append(quad);
continue;
}
// Compute the top-left corner of the first intersecting grid cell
const double xBegin = left + qFloor((quadLeft - left) / xIncrement) * xIncrement;
const double yBegin = top + qFloor((quadTop - top) / yIncrement) * yIncrement;
// Loop over all intersecting cells and add sub-quads
for (double y = yBegin; y < quadBottom; y += yIncrement) {
const double y0 = qMax(y, quadTop);
const double y1 = qMin(quadBottom, y + yIncrement);
for (double x = xBegin; x < quadRight; x += xIncrement) {
const double x0 = qMax(x, quadLeft);
const double x1 = qMin(quadRight, x + xIncrement);
ret.append(quad.makeSubQuad(x0, y0, x1, y1));
}
}
}
return ret;
}
#ifndef GL_TRIANGLES
# define GL_TRIANGLES 0x0004
#endif
#ifndef GL_QUADS
# define GL_QUADS 0x0007
#endif
void WindowQuadList::makeInterleavedArrays(unsigned int type, GLVertex2D *vertices, const QMatrix4x4 &textureMatrix) const
{
// Since we know that the texture matrix just scales and translates
// we can use this information to optimize the transformation
const QVector2D coeff(textureMatrix(0, 0), textureMatrix(1, 1));
const QVector2D offset(textureMatrix(0, 3), textureMatrix(1, 3));
GLVertex2D *vertex = vertices;
Q_ASSERT(type == GL_QUADS || type == GL_TRIANGLES);
switch (type)
{
case GL_QUADS:
#if defined(__SSE2__)
if (!(intptr_t(vertex) & 0xf)) {
for (const WindowQuad &quad : *this) {
alignas(16) GLVertex2D v[4];
for (int j = 0; j < 4; j++) {
const WindowVertex &wv = quad[j];
v[j].position = QVector2D(wv.x(), wv.y());
v[j].texcoord = QVector2D(wv.u(), wv.v()) * coeff + offset;
}
const __m128i *srcP = reinterpret_cast<const __m128i *>(&v);
__m128i *dstP = reinterpret_cast<__m128i *>(vertex);
_mm_stream_si128(&dstP[0], _mm_load_si128(&srcP[0])); // Top-left
_mm_stream_si128(&dstP[1], _mm_load_si128(&srcP[1])); // Top-right
_mm_stream_si128(&dstP[2], _mm_load_si128(&srcP[2])); // Bottom-right
_mm_stream_si128(&dstP[3], _mm_load_si128(&srcP[3])); // Bottom-left
vertex += 4;
}
} else
#endif // __SSE2__
{
for (const WindowQuad &quad : *this) {
for (int j = 0; j < 4; j++) {
const WindowVertex &wv = quad[j];
GLVertex2D v;
v.position = QVector2D(wv.x(), wv.y());
v.texcoord = QVector2D(wv.u(), wv.v()) * coeff + offset;
*(vertex++) = v;
}
}
}
break;
case GL_TRIANGLES:
#if defined(__SSE2__)
if (!(intptr_t(vertex) & 0xf)) {
for (const WindowQuad &quad : *this) {
alignas(16) GLVertex2D v[4];
for (int j = 0; j < 4; j++) {
const WindowVertex &wv = quad[j];
v[j].position = QVector2D(wv.x(), wv.y());
v[j].texcoord = QVector2D(wv.u(), wv.v()) * coeff + offset;
}
const __m128i *srcP = reinterpret_cast<const __m128i *>(&v);
__m128i *dstP = reinterpret_cast<__m128i *>(vertex);
__m128i src[4];
src[0] = _mm_load_si128(&srcP[0]); // Top-left
src[1] = _mm_load_si128(&srcP[1]); // Top-right
src[2] = _mm_load_si128(&srcP[2]); // Bottom-right
src[3] = _mm_load_si128(&srcP[3]); // Bottom-left
// First triangle
_mm_stream_si128(&dstP[0], src[1]); // Top-right
_mm_stream_si128(&dstP[1], src[0]); // Top-left
_mm_stream_si128(&dstP[2], src[3]); // Bottom-left
// Second triangle
_mm_stream_si128(&dstP[3], src[3]); // Bottom-left
_mm_stream_si128(&dstP[4], src[2]); // Bottom-right
_mm_stream_si128(&dstP[5], src[1]); // Top-right
vertex += 6;
}
} else
#endif // __SSE2__
{
for (const WindowQuad &quad : *this) {
GLVertex2D v[4]; // Four unique vertices / quad
for (int j = 0; j < 4; j++) {
const WindowVertex &wv = quad[j];
v[j].position = QVector2D(wv.x(), wv.y());
v[j].texcoord = QVector2D(wv.u(), wv.v()) * coeff + offset;
}
// First triangle
*(vertex++) = v[1]; // Top-right
*(vertex++) = v[0]; // Top-left
*(vertex++) = v[3]; // Bottom-left
// Second triangle
*(vertex++) = v[3]; // Bottom-left
*(vertex++) = v[2]; // Bottom-right
*(vertex++) = v[1]; // Top-right
}
}
break;
default:
break;
}
}
void WindowQuadList::makeArrays(float **vertices, float **texcoords, const QSizeF &size, bool yInverted) const
{
*vertices = new float[count() * 6 * 2];
*texcoords = new float[count() * 6 * 2];
float *vpos = *vertices;
float *tpos = *texcoords;
// Note: The positions in a WindowQuad are stored in clockwise order
const int index[] = { 1, 0, 3, 3, 2, 1 };
for (const WindowQuad &quad : *this) {
for (int j = 0; j < 6; j++) {
const WindowVertex &wv = quad[index[j]];
*vpos++ = wv.x();
*vpos++ = wv.y();
*tpos++ = wv.u() / size.width();
*tpos++ = yInverted ? (wv.v() / size.height()) : (1.0 - wv.v() / size.height());
}
}
}
WindowQuadList WindowQuadList::select(WindowQuadType type) const
{
foreach (const WindowQuad & q, *this) {
if (q.type() != type) { // something else than ones to select, make a copy and filter
WindowQuadList ret;
foreach (const WindowQuad & q, *this) {
if (q.type() == type)
ret.append(q);
}
return ret;
}
}
return *this; // nothing to filter out
}
WindowQuadList WindowQuadList::filterOut(WindowQuadType type) const
{
for (const WindowQuad & q : *this) {
if (q.type() == type) { // something to filter out, make a copy and filter
WindowQuadList ret;
foreach (const WindowQuad & q, *this) {
if (q.type() != type)
ret.append(q);
}
return ret;
}
}
return *this; // nothing to filter out
}
bool WindowQuadList::smoothNeeded() const
{
return std::any_of(constBegin(), constEnd(), [] (const WindowQuad & q) { return q.smoothNeeded(); });
}
bool WindowQuadList::isTransformed() const
{
return std::any_of(constBegin(), constEnd(), [] (const WindowQuad & q) { return q.isTransformed(); });
}
/***************************************************************
PaintClipper
***************************************************************/
QStack< QRegion >* PaintClipper::areas = nullptr;
PaintClipper::PaintClipper(const QRegion& allowed_area)
: area(allowed_area)
{
push(area);
}
PaintClipper::~PaintClipper()
{
pop(area);
}
void PaintClipper::push(const QRegion& allowed_area)
{
if (allowed_area == infiniteRegion()) // don't push these
return;
if (areas == nullptr)
areas = new QStack< QRegion >;
areas->push(allowed_area);
}
void PaintClipper::pop(const QRegion& allowed_area)
{
if (allowed_area == infiniteRegion())
return;
Q_ASSERT(areas != nullptr);
Q_ASSERT(areas->top() == allowed_area);
areas->pop();
if (areas->isEmpty()) {
delete areas;
areas = nullptr;
}
}
bool PaintClipper::clip()
{
return areas != nullptr;
}
QRegion PaintClipper::paintArea()
{
Q_ASSERT(areas != nullptr); // can be called only with clip() == true
const QSize &s = effects->virtualScreenSize();
QRegion ret(0, 0, s.width(), s.height());
for (const QRegion & r : qAsConst(*areas)) {
ret &= r;
}
return ret;
}
struct PaintClipper::Iterator::Data {
Data() : index(0) {}
int index;
QRegion region;
};
PaintClipper::Iterator::Iterator()
: data(new Data)
{
if (clip() && effects->isOpenGLCompositing()) {
data->region = paintArea();
data->index = -1;
next(); // move to the first one
}
#ifdef KWIN_HAVE_XRENDER_COMPOSITING
if (clip() && effects->compositingType() == XRenderCompositing) {
XFixesRegion region(paintArea());
xcb_xfixes_set_picture_clip_region(connection(), effects->xrenderBufferPicture(), region, 0, 0);
}
#endif
}
PaintClipper::Iterator::~Iterator()
{
#ifdef KWIN_HAVE_XRENDER_COMPOSITING
if (clip() && effects->compositingType() == XRenderCompositing)
xcb_xfixes_set_picture_clip_region(connection(), effects->xrenderBufferPicture(), XCB_XFIXES_REGION_NONE, 0, 0);
#endif
delete data;
}
bool PaintClipper::Iterator::isDone()
{
if (!clip())
return data->index == 1; // run once
if (effects->isOpenGLCompositing())
return data->index >= data->region.rectCount(); // run once per each area
#ifdef KWIN_HAVE_XRENDER_COMPOSITING
if (effects->compositingType() == XRenderCompositing)
return data->index == 1; // run once
#endif
abort();
}
void PaintClipper::Iterator::next()
{
data->index++;
}
QRect PaintClipper::Iterator::boundingRect() const
{
if (!clip())
return infiniteRegion();
if (effects->isOpenGLCompositing())
return *(data->region.begin() + data->index);
#ifdef KWIN_HAVE_XRENDER_COMPOSITING
if (effects->compositingType() == XRenderCompositing)
return data->region.boundingRect();
#endif
abort();
return infiniteRegion();
}
/***************************************************************
Motion1D
***************************************************************/
Motion1D::Motion1D(double initial, double strength, double smoothness)
: Motion<double>(initial, strength, smoothness)
{
}
Motion1D::Motion1D(const Motion1D &other)
: Motion<double>(other)
{
}
Motion1D::~Motion1D()
{
}
/***************************************************************
Motion2D
***************************************************************/
Motion2D::Motion2D(QPointF initial, double strength, double smoothness)
: Motion<QPointF>(initial, strength, smoothness)
{
}
Motion2D::Motion2D(const Motion2D &other)
: Motion<QPointF>(other)
{
}
Motion2D::~Motion2D()
{
}
/***************************************************************
WindowMotionManager
***************************************************************/
WindowMotionManager::WindowMotionManager(bool useGlobalAnimationModifier)
: m_useGlobalAnimationModifier(useGlobalAnimationModifier)
{
// TODO: Allow developer to modify motion attributes
} // TODO: What happens when the window moves by an external force?
WindowMotionManager::~WindowMotionManager()
{
}
void WindowMotionManager::manage(EffectWindow *w)
{
if (m_managedWindows.contains(w))
return;
double strength = 0.08;
double smoothness = 4.0;
if (m_useGlobalAnimationModifier && effects->animationTimeFactor()) {
// If the factor is == 0 then we just skip the calculation completely
strength = 0.08 / effects->animationTimeFactor();
smoothness = effects->animationTimeFactor() * 4.0;
}
WindowMotion &motion = m_managedWindows[ w ];
motion.translation.setStrength(strength);
motion.translation.setSmoothness(smoothness);
motion.scale.setStrength(strength * 1.33);
motion.scale.setSmoothness(smoothness / 2.0);
motion.translation.setValue(w->pos());
motion.scale.setValue(QPointF(1.0, 1.0));
}
void WindowMotionManager::unmanage(EffectWindow *w)
{
m_movingWindowsSet.remove(w);
m_managedWindows.remove(w);
}
void WindowMotionManager::unmanageAll()
{
m_managedWindows.clear();
m_movingWindowsSet.clear();
}
void WindowMotionManager::calculate(int time)
{
if (!effects->animationTimeFactor()) {
// Just skip it completely if the user wants no animation
m_movingWindowsSet.clear();
QHash<EffectWindow*, WindowMotion>::iterator it = m_managedWindows.begin();
for (; it != m_managedWindows.end(); ++it) {
WindowMotion *motion = &it.value();
motion->translation.finish();
motion->scale.finish();
}
}
QHash<EffectWindow*, WindowMotion>::iterator it = m_managedWindows.begin();
for (; it != m_managedWindows.end(); ++it) {
WindowMotion *motion = &it.value();
int stopped = 0;
// TODO: What happens when distance() == 0 but we are still moving fast?
// TODO: Motion needs to be calculated from the window's center
Motion2D *trans = &motion->translation;
if (trans->distance().isNull())
++stopped;
else {
// Still moving
trans->calculate(time);
const short fx = trans->target().x() <= trans->startValue().x() ? -1 : 1;
const short fy = trans->target().y() <= trans->startValue().y() ? -1 : 1;
if (trans->distance().x()*fx/0.5 < 1.0 && trans->velocity().x()*fx/0.2 < 1.0 &&
trans->distance().y()*fy/0.5 < 1.0 && trans->velocity().y()*fy/0.2 < 1.0) {
// Hide tiny oscillations
motion->translation.finish();
++stopped;
}
}
Motion2D *scale = &motion->scale;
if (scale->distance().isNull())
++stopped;
else {
// Still scaling
scale->calculate(time);
const short fx = scale->target().x() < 1.0 ? -1 : 1;
const short fy = scale->target().y() < 1.0 ? -1 : 1;
if (scale->distance().x()*fx/0.001 < 1.0 && scale->velocity().x()*fx/0.05 < 1.0 &&
scale->distance().y()*fy/0.001 < 1.0 && scale->velocity().y()*fy/0.05 < 1.0) {
// Hide tiny oscillations
motion->scale.finish();
++stopped;
}
}
// We just finished this window's motion
if (stopped == 2)
m_movingWindowsSet.remove(it.key());
}
}
void WindowMotionManager::reset()
{
QHash<EffectWindow*, WindowMotion>::iterator it = m_managedWindows.begin();
for (; it != m_managedWindows.end(); ++it) {
WindowMotion *motion = &it.value();
EffectWindow *window = it.key();
motion->translation.setTarget(window->pos());
motion->translation.finish();
motion->scale.setTarget(QPointF(1.0, 1.0));
motion->scale.finish();
}
}
void WindowMotionManager::reset(EffectWindow *w)
{
QHash<EffectWindow*, WindowMotion>::iterator it = m_managedWindows.find(w);
if (it == m_managedWindows.end())
return;
WindowMotion *motion = &it.value();
motion->translation.setTarget(w->pos());
motion->translation.finish();
motion->scale.setTarget(QPointF(1.0, 1.0));
motion->scale.finish();
}
void WindowMotionManager::apply(EffectWindow *w, WindowPaintData &data)
{
QHash<EffectWindow*, WindowMotion>::iterator it = m_managedWindows.find(w);
if (it == m_managedWindows.end())
return;
// TODO: Take into account existing scale so that we can work with multiple managers (E.g. Present windows + grid)
WindowMotion *motion = &it.value();
data += (motion->translation.value() - QPointF(w->x(), w->y()));
data *= QVector2D(motion->scale.value());
}
void WindowMotionManager::moveWindow(EffectWindow *w, QPoint target, double scale, double yScale)
{
QHash<EffectWindow*, WindowMotion>::iterator it = m_managedWindows.find(w);
if (it == m_managedWindows.end())
abort(); // Notify the effect author that they did something wrong
WindowMotion *motion = &it.value();
if (yScale == 0.0)
yScale = scale;
QPointF scalePoint(scale, yScale);
if (motion->translation.value() == target && motion->scale.value() == scalePoint)
return; // Window already at that position
motion->translation.setTarget(target);
motion->scale.setTarget(scalePoint);
m_movingWindowsSet << w;
}
QRectF WindowMotionManager::transformedGeometry(EffectWindow *w) const
{
QHash<EffectWindow*, WindowMotion>::const_iterator it = m_managedWindows.constFind(w);
if (it == m_managedWindows.end())
return w->geometry();
const WindowMotion *motion = &it.value();
QRectF geometry(w->geometry());
// TODO: Take into account existing scale so that we can work with multiple managers (E.g. Present windows + grid)
geometry.moveTo(motion->translation.value());
geometry.setWidth(geometry.width() * motion->scale.value().x());
geometry.setHeight(geometry.height() * motion->scale.value().y());
return geometry;
}
void WindowMotionManager::setTransformedGeometry(EffectWindow *w, const QRectF &geometry)
{
QHash<EffectWindow*, WindowMotion>::iterator it = m_managedWindows.find(w);
if (it == m_managedWindows.end())
return;
WindowMotion *motion = &it.value();
motion->translation.setValue(geometry.topLeft());
motion->scale.setValue(QPointF(geometry.width() / qreal(w->width()), geometry.height() / qreal(w->height())));
}
QRectF WindowMotionManager::targetGeometry(EffectWindow *w) const
{
QHash<EffectWindow*, WindowMotion>::const_iterator it = m_managedWindows.constFind(w);
if (it == m_managedWindows.end())
return w->geometry();
const WindowMotion *motion = &it.value();
QRectF geometry(w->geometry());
// TODO: Take into account existing scale so that we can work with multiple managers (E.g. Present windows + grid)
geometry.moveTo(motion->translation.target());
geometry.setWidth(geometry.width() * motion->scale.target().x());
geometry.setHeight(geometry.height() * motion->scale.target().y());
return geometry;
}
EffectWindow* WindowMotionManager::windowAtPoint(QPoint point, bool useStackingOrder) const
{
Q_UNUSED(useStackingOrder);
// TODO: Stacking order uses EffectsHandler::stackingOrder() then filters by m_managedWindows
QHash< EffectWindow*, WindowMotion >::ConstIterator it = m_managedWindows.constBegin();
while (it != m_managedWindows.constEnd()) {
if (transformedGeometry(it.key()).contains(point))
return it.key();
++it;
}
return nullptr;
}
/***************************************************************
EffectFramePrivate
***************************************************************/
class EffectFramePrivate
{
public:
EffectFramePrivate();
~EffectFramePrivate();
bool crossFading;
qreal crossFadeProgress;
QMatrix4x4 screenProjectionMatrix;
};
EffectFramePrivate::EffectFramePrivate()
: crossFading(false)
, crossFadeProgress(1.0)
{
}
EffectFramePrivate::~EffectFramePrivate()
{
}
/***************************************************************
EffectFrame
***************************************************************/
EffectFrame::EffectFrame()
: d(new EffectFramePrivate)
{
}
EffectFrame::~EffectFrame()
{
delete d;
}
qreal EffectFrame::crossFadeProgress() const
{
return d->crossFadeProgress;
}
void EffectFrame::setCrossFadeProgress(qreal progress)
{
d->crossFadeProgress = progress;
}
bool EffectFrame::isCrossFade() const
{
return d->crossFading;
}
void EffectFrame::enableCrossFade(bool enable)
{
d->crossFading = enable;
}
QMatrix4x4 EffectFrame::screenProjectionMatrix() const
{
return d->screenProjectionMatrix;
}
void EffectFrame::setScreenProjectionMatrix(const QMatrix4x4 &spm)
{
d->screenProjectionMatrix = spm;
}
/***************************************************************
TimeLine
***************************************************************/
class Q_DECL_HIDDEN TimeLine::Data : public QSharedData
{
public:
std::chrono::milliseconds duration;
Direction direction;
QEasingCurve easingCurve;
std::chrono::milliseconds elapsed = std::chrono::milliseconds::zero();
bool done = false;
RedirectMode sourceRedirectMode = RedirectMode::Relaxed;
RedirectMode targetRedirectMode = RedirectMode::Strict;
};
TimeLine::TimeLine(std::chrono::milliseconds duration, Direction direction)
: d(new Data)
{
Q_ASSERT(duration > std::chrono::milliseconds::zero());
d->duration = duration;
d->direction = direction;
}
TimeLine::TimeLine(const TimeLine &other)
: d(other.d)
{
}
TimeLine::~TimeLine() = default;
qreal TimeLine::progress() const
{
return static_cast<qreal>(d->elapsed.count()) / d->duration.count();
}
qreal TimeLine::value() const
{
const qreal t = progress();
return d->easingCurve.valueForProgress(
d->direction == Backward ? 1.0 - t : t);
}
void TimeLine::update(std::chrono::milliseconds delta)
{
Q_ASSERT(delta >= std::chrono::milliseconds::zero());
if (d->done) {
return;
}
d->elapsed += delta;
if (d->elapsed >= d->duration) {
d->done = true;
d->elapsed = d->duration;
}
}
std::chrono::milliseconds TimeLine::elapsed() const
{
return d->elapsed;
}
void TimeLine::setElapsed(std::chrono::milliseconds elapsed)
{
Q_ASSERT(elapsed >= std::chrono::milliseconds::zero());
if (elapsed == d->elapsed) {
return;
}
reset();
update(elapsed);
}
std::chrono::milliseconds TimeLine::duration() const
{
return d->duration;
}
void TimeLine::setDuration(std::chrono::milliseconds duration)
{
Q_ASSERT(duration > std::chrono::milliseconds::zero());
if (duration == d->duration) {
return;
}
d->elapsed = std::chrono::milliseconds(qRound(progress() * duration.count()));
d->duration = duration;
if (d->elapsed == d->duration) {
d->done = true;
}
}
TimeLine::Direction TimeLine::direction() const
{
return d->direction;
}
void TimeLine::setDirection(TimeLine::Direction direction)
{
if (d->direction == direction) {
return;
}
d->direction = direction;
if (d->elapsed > std::chrono::milliseconds::zero()
|| d->sourceRedirectMode == RedirectMode::Strict) {
d->elapsed = d->duration - d->elapsed;
}
if (d->done && d->targetRedirectMode == RedirectMode::Relaxed) {
d->done = false;
}
if (d->elapsed >= d->duration) {
d->done = true;
}
}
void TimeLine::toggleDirection()
{
setDirection(d->direction == Forward ? Backward : Forward);
}
QEasingCurve TimeLine::easingCurve() const
{
return d->easingCurve;
}
void TimeLine::setEasingCurve(const QEasingCurve &easingCurve)
{
d->easingCurve = easingCurve;
}
void TimeLine::setEasingCurve(QEasingCurve::Type type)
{
d->easingCurve.setType(type);
}
bool TimeLine::running() const
{
return d->elapsed != std::chrono::milliseconds::zero()
&& d->elapsed != d->duration;
}
bool TimeLine::done() const
{
return d->done;
}
void TimeLine::reset()
{
d->elapsed = std::chrono::milliseconds::zero();
d->done = false;
}
TimeLine::RedirectMode TimeLine::sourceRedirectMode() const
{
return d->sourceRedirectMode;
}
void TimeLine::setSourceRedirectMode(RedirectMode mode)
{
d->sourceRedirectMode = mode;
}
TimeLine::RedirectMode TimeLine::targetRedirectMode() const
{
return d->targetRedirectMode;
}
void TimeLine::setTargetRedirectMode(RedirectMode mode)
{
d->targetRedirectMode = mode;
}
TimeLine &TimeLine::operator=(const TimeLine &other)
{
d = other.d;
return *this;
}
} // namespace
#include "moc_kwinglobals.cpp"