libnfs/lib/pdu.c

644 lines
19 KiB
C

/* -*- mode:c; tab-width:8; c-basic-offset:8; indent-tabs-mode:nil; -*- */
/*
Copyright (C) 2010 by Ronnie Sahlberg <ronniesahlberg@gmail.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#ifdef AROS
#include "aros_compat.h"
#endif
#ifdef PS2_EE
#include "ps2_compat.h"
#endif
#ifdef PS3_PPU
#include "ps3_compat.h"
#endif
#ifdef WIN32
#include <win32/win32_compat.h>
#endif
#ifdef HAVE_NETINET_IN_H
#include <netinet/in.h>
#endif
#ifdef HAVE_SYS_SOCKET_H
#include <sys/socket.h>
#endif
#ifdef HAVE_STRINGS_H
#include <strings.h>
#endif
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <errno.h>
#include "slist.h"
#include "libnfs-zdr.h"
#include "libnfs.h"
#include "libnfs-raw.h"
#include "libnfs-private.h"
void rpc_reset_queue(struct rpc_queue *q)
{
q->head = NULL;
q->tail = NULL;
}
/*
* Push to the tail end of the queue
*/
void rpc_enqueue(struct rpc_queue *q, struct rpc_pdu *pdu)
{
if (q->head == NULL)
q->head = pdu;
else
q->tail->next = pdu;
q->tail = pdu;
pdu->next = NULL;
}
/*
* Push to the front/head of the queue
*/
void rpc_return_to_queue(struct rpc_queue *q, struct rpc_pdu *pdu)
{
pdu->next = q->head;
q->head = pdu;
if (q->tail == NULL)
q->tail = pdu;
}
unsigned int rpc_hash_xid(uint32_t xid)
{
return (xid * 7919) % HASHES;
}
#define PAD_TO_8_BYTES(x) ((x + 0x07) & ~0x07)
static struct rpc_pdu *rpc_allocate_reply_pdu(struct rpc_context *rpc,
struct rpc_msg *res,
size_t alloc_hint)
{
struct rpc_pdu *pdu;
assert(rpc->magic == RPC_CONTEXT_MAGIC);
pdu = malloc(sizeof(struct rpc_pdu));
if (pdu == NULL) {
rpc_set_error(rpc, "Out of memory: Failed to allocate pdu structure");
return NULL;
}
memset(pdu, 0, sizeof(struct rpc_pdu));
pdu->flags = PDU_DISCARD_AFTER_SENDING;
pdu->xid = 0;
pdu->cb = NULL;
pdu->private_data = NULL;
pdu->zdr_decode_fn = NULL;
pdu->zdr_decode_bufsize = 0;
pdu->outdata.data = malloc(ZDR_ENCODEBUF_MINSIZE + alloc_hint);
if (pdu->outdata.data == NULL) {
rpc_set_error(rpc, "Out of memory: Failed to allocate encode buffer");
free(pdu);
return NULL;
}
zdrmem_create(&pdu->zdr, pdu->outdata.data, ZDR_ENCODEBUF_MINSIZE + alloc_hint, ZDR_ENCODE);
if (rpc->is_udp == 0) {
zdr_setpos(&pdu->zdr, 4); /* skip past the record marker */
}
if (zdr_replymsg(rpc, &pdu->zdr, res) == 0) {
rpc_set_error(rpc, "zdr_replymsg failed with %s",
rpc_get_error(rpc));
zdr_destroy(&pdu->zdr);
free(pdu->outdata.data);
free(pdu);
return NULL;
}
return pdu;
}
struct rpc_pdu *rpc_allocate_pdu2(struct rpc_context *rpc, int program, int version, int procedure, rpc_cb cb, void *private_data, zdrproc_t zdr_decode_fn, int zdr_decode_bufsize, size_t alloc_hint)
{
struct rpc_pdu *pdu;
struct rpc_msg msg;
int pdu_size;
assert(rpc->magic == RPC_CONTEXT_MAGIC);
/* Since we already know how much buffer we need for the decoding
* we can just piggyback in the same alloc as for the pdu.
*/
pdu_size = PAD_TO_8_BYTES(sizeof(struct rpc_pdu));
pdu_size += PAD_TO_8_BYTES(zdr_decode_bufsize);
pdu = malloc(pdu_size);
if (pdu == NULL) {
rpc_set_error(rpc, "Out of memory: Failed to allocate pdu structure");
return NULL;
}
memset(pdu, 0, pdu_size);
#ifdef HAVE_MULTITHREADING
nfs_mt_mutex_lock(&rpc->rpc_mutex);
#endif /* HAVE_MULTITHREADING */
pdu->xid = rpc->xid++;
#ifdef HAVE_MULTITHREADING
nfs_mt_mutex_unlock(&rpc->rpc_mutex);
#endif /* HAVE_MULTITHREADING */
pdu->cb = cb;
pdu->private_data = private_data;
pdu->zdr_decode_fn = zdr_decode_fn;
pdu->zdr_decode_bufsize = zdr_decode_bufsize;
pdu->outdata.data = malloc(ZDR_ENCODEBUF_MINSIZE + alloc_hint);
if (pdu->outdata.data == NULL) {
rpc_set_error(rpc, "Out of memory: Failed to allocate encode buffer");
free(pdu);
return NULL;
}
zdrmem_create(&pdu->zdr, pdu->outdata.data, ZDR_ENCODEBUF_MINSIZE + alloc_hint, ZDR_ENCODE);
if (rpc->is_udp == 0) {
zdr_setpos(&pdu->zdr, 4); /* skip past the record marker */
}
memset(&msg, 0, sizeof(struct rpc_msg));
msg.xid = pdu->xid;
msg.direction = CALL;
msg.body.cbody.rpcvers = RPC_MSG_VERSION;
msg.body.cbody.prog = program;
msg.body.cbody.vers = version;
msg.body.cbody.proc = procedure;
msg.body.cbody.cred = rpc->auth->ah_cred;
msg.body.cbody.verf = rpc->auth->ah_verf;
if (zdr_callmsg(rpc, &pdu->zdr, &msg) == 0) {
rpc_set_error(rpc, "zdr_callmsg failed with %s",
rpc_get_error(rpc));
zdr_destroy(&pdu->zdr);
free(pdu->outdata.data);
free(pdu);
return NULL;
}
return pdu;
}
struct rpc_pdu *rpc_allocate_pdu(struct rpc_context *rpc, int program, int version, int procedure, rpc_cb cb, void *private_data, zdrproc_t zdr_decode_fn, int zdr_decode_bufsize)
{
return rpc_allocate_pdu2(rpc, program, version, procedure, cb, private_data, zdr_decode_fn, zdr_decode_bufsize, 0);
}
void rpc_free_pdu(struct rpc_context *rpc, struct rpc_pdu *pdu)
{
assert(rpc->magic == RPC_CONTEXT_MAGIC);
free(pdu->outdata.data);
if (pdu->zdr_decode_buf != NULL) {
zdr_free(pdu->zdr_decode_fn, pdu->zdr_decode_buf);
}
zdr_destroy(&pdu->zdr);
free(pdu);
}
void rpc_set_next_xid(struct rpc_context *rpc, uint32_t xid)
{
#ifdef HAVE_MULTITHREADING
nfs_mt_mutex_lock(&rpc->rpc_mutex);
#endif /* HAVE_MULTITHREADING */
rpc->xid = xid;
#ifdef HAVE_MULTITHREADING
nfs_mt_mutex_unlock(&rpc->rpc_mutex);
#endif /* HAVE_MULTITHREADING */
}
int rpc_queue_pdu(struct rpc_context *rpc, struct rpc_pdu *pdu)
{
int size;
int32_t recordmarker;
assert(rpc->magic == RPC_CONTEXT_MAGIC);
if (rpc->timeout > 0) {
pdu->timeout = rpc_current_time() + rpc->timeout;
#ifndef HAVE_CLOCK_GETTIME
/* If we do not have GETTIME we fallback to time() which
* has 1s granularity for its timestamps.
* We thus need to bump the timeout by 1000ms
* so that the PDU will timeout within 1.0 - 2.0 seconds.
* Otherwise setting a 1s timeout would trigger within
* 0.001 - 1.0s.
*/
pdu->timeout += 1000;
#endif
} else {
pdu->timeout = 0;
}
size = zdr_getpos(&pdu->zdr);
/* for udp we dont queue, we just send it straight away */
if (rpc->is_udp != 0) {
unsigned int hash;
// XXX add a rpc->udp_dest_sock_size and get rid of sys/socket.h and netinet/in.h
if (sendto(rpc->fd, pdu->zdr.buf, size, MSG_DONTWAIT,
(struct sockaddr *)&rpc->udp_dest,
sizeof(rpc->udp_dest)) < 0) {
rpc_set_error(rpc, "Sendto failed with errno %s", strerror(errno));
rpc_free_pdu(rpc, pdu);
return -1;
}
hash = rpc_hash_xid(pdu->xid);
#ifdef HAVE_MULTITHREADING
nfs_mt_mutex_lock(&rpc->rpc_mutex);
#endif /* HAVE_MULTITHREADING */
rpc_enqueue(&rpc->waitpdu[hash], pdu);
rpc->waitpdu_len++;
#ifdef HAVE_MULTITHREADING
nfs_mt_mutex_unlock(&rpc->rpc_mutex);
#endif /* HAVE_MULTITHREADING */
return 0;
}
/* write recordmarker */
zdr_setpos(&pdu->zdr, 0);
recordmarker = (size - 4) | 0x80000000;
zdr_int(&pdu->zdr, &recordmarker);
pdu->outdata.size = size;
#ifdef HAVE_MULTITHREADING
nfs_mt_mutex_lock(&rpc->rpc_mutex);
#endif /* HAVE_MULTITHREADING */
rpc_enqueue(&rpc->outqueue, pdu);
#ifdef HAVE_MULTITHREADING
if (rpc->outqueue.head == pdu) {
nfs_mt_mutex_unlock(&rpc->rpc_mutex);
rpc_write_to_socket(rpc);
} else {
nfs_mt_mutex_unlock(&rpc->rpc_mutex);
}
#endif /* HAVE_MULTITHREADING */
return 0;
}
uint32_t rpc_get_pdu_size(char *buf)
{
uint32_t size;
size = ntohl(*(uint32_t *)(void *)buf);
return (size & 0x7fffffff) + 4;
}
static int rpc_process_reply(struct rpc_context *rpc, struct rpc_pdu *pdu, ZDR *zdr)
{
struct rpc_msg msg;
assert(rpc->magic == RPC_CONTEXT_MAGIC);
memset(&msg, 0, sizeof(struct rpc_msg));
msg.body.rbody.reply.areply.verf = _null_auth;
if (pdu->zdr_decode_bufsize > 0) {
pdu->zdr_decode_buf = (char *)pdu + PAD_TO_8_BYTES(sizeof(struct rpc_pdu));
}
msg.body.rbody.reply.areply.reply_data.results.where = pdu->zdr_decode_buf;
msg.body.rbody.reply.areply.reply_data.results.proc = pdu->zdr_decode_fn;
if (zdr_replymsg(rpc, zdr, &msg) == 0) {
rpc_set_error(rpc, "zdr_replymsg failed in rpc_process_reply: "
"%s", rpc_get_error(rpc));
pdu->cb(rpc, RPC_STATUS_ERROR, "Message rejected by server",
pdu->private_data);
if (pdu->zdr_decode_buf != NULL) {
pdu->zdr_decode_buf = NULL;
}
return 0;
}
if (msg.body.rbody.stat != MSG_ACCEPTED) {
pdu->cb(rpc, RPC_STATUS_ERROR, "RPC Packet not accepted by the server", pdu->private_data);
return 0;
}
switch (msg.body.rbody.reply.areply.stat) {
case SUCCESS:
pdu->cb(rpc, RPC_STATUS_SUCCESS, pdu->zdr_decode_buf, pdu->private_data);
break;
case PROG_UNAVAIL:
pdu->cb(rpc, RPC_STATUS_ERROR, "Server responded: Program not available", pdu->private_data);
break;
case PROG_MISMATCH:
pdu->cb(rpc, RPC_STATUS_ERROR, "Server responded: Program version mismatch", pdu->private_data);
break;
case PROC_UNAVAIL:
pdu->cb(rpc, RPC_STATUS_ERROR, "Server responded: Procedure not available", pdu->private_data);
break;
case GARBAGE_ARGS:
pdu->cb(rpc, RPC_STATUS_ERROR, "Server responded: Garbage arguments", pdu->private_data);
break;
case SYSTEM_ERR:
pdu->cb(rpc, RPC_STATUS_ERROR, "Server responded: System Error", pdu->private_data);
break;
default:
pdu->cb(rpc, RPC_STATUS_ERROR, "Unknown rpc response from server", pdu->private_data);
break;
}
return 0;
}
static int rpc_send_error_reply(struct rpc_context *rpc,
struct rpc_msg *call,
enum accept_stat err,
int min_vers, int max_vers)
{
struct rpc_pdu *pdu;
struct rpc_msg res;
assert(rpc->magic == RPC_CONTEXT_MAGIC);
memset(&res, 0, sizeof(struct rpc_msg));
res.xid = call->xid;
res.direction = REPLY;
res.body.rbody.stat = MSG_ACCEPTED;
res.body.rbody.reply.areply.reply_data.mismatch_info.low = min_vers;
res.body.rbody.reply.areply.reply_data.mismatch_info.high = max_vers;
res.body.rbody.reply.areply.verf = _null_auth;
res.body.rbody.reply.areply.stat = err;
if (rpc->is_udp) {
/* send the reply back to the client */
memcpy(&rpc->udp_dest, &rpc->udp_src, sizeof(rpc->udp_dest));
}
pdu = rpc_allocate_reply_pdu(rpc, &res, 0);
if (pdu == NULL) {
rpc_set_error(rpc, "Failed to send error_reply: %s",
rpc_get_error(rpc));
return -1;
}
rpc_queue_pdu(rpc, pdu);
return 0;
}
int rpc_send_reply(struct rpc_context *rpc,
struct rpc_msg *call,
void *reply,
zdrproc_t encode_fn,
int alloc_hint)
{
struct rpc_pdu *pdu;
struct rpc_msg res;
assert(rpc->magic == RPC_CONTEXT_MAGIC);
memset(&res, 0, sizeof(struct rpc_msg));
res.xid = call->xid;
res.direction = REPLY;
res.body.rbody.stat = MSG_ACCEPTED;
res.body.rbody.reply.areply.verf = _null_auth;
res.body.rbody.reply.areply.stat = SUCCESS;
res.body.rbody.reply.areply.reply_data.results.where = reply;
res.body.rbody.reply.areply.reply_data.results.proc = encode_fn;
if (rpc->is_udp) {
/* send the reply back to the client */
memcpy(&rpc->udp_dest, &rpc->udp_src, sizeof(rpc->udp_dest));
}
pdu = rpc_allocate_reply_pdu(rpc, &res, alloc_hint);
if (pdu == NULL) {
rpc_set_error(rpc, "Failed to send error_reply: %s",
rpc_get_error(rpc));
return -1;
}
rpc_queue_pdu(rpc, pdu);
return 0;
}
static int rpc_process_call(struct rpc_context *rpc, ZDR *zdr)
{
struct rpc_msg call;
struct rpc_endpoint *endpoint;
int i, min_version = 0, max_version = 0, found_program = 0;
assert(rpc->magic == RPC_CONTEXT_MAGIC);
memset(&call, 0, sizeof(struct rpc_msg));
if (zdr_callmsg(rpc, zdr, &call) == 0) {
rpc_set_error(rpc, "Failed to decode CALL message. %s",
rpc_get_error(rpc));
return rpc_send_error_reply(rpc, &call, GARBAGE_ARGS, 0, 0);
}
for (endpoint = rpc->endpoints; endpoint; endpoint = endpoint->next) {
if (call.body.cbody.prog == endpoint->program) {
if (!found_program) {
min_version = max_version = endpoint->version;
}
if (endpoint->version < min_version) {
min_version = endpoint->version;
}
if (endpoint->version > max_version) {
max_version = endpoint->version;
}
found_program = 1;
if (call.body.cbody.vers == endpoint->version) {
break;
}
}
}
if (endpoint == NULL) {
rpc_set_error(rpc, "No endpoint found for CALL "
"program:0x%08x version:%d\n",
(int)call.body.cbody.prog,
(int)call.body.cbody.vers);
if (!found_program) {
return rpc_send_error_reply(rpc, &call, PROG_UNAVAIL,
0, 0);
}
return rpc_send_error_reply(rpc, &call, PROG_MISMATCH,
min_version, max_version);
}
for (i = 0; i < endpoint->num_procs; i++) {
if (endpoint->procs[i].proc == call.body.cbody.proc) {
if (endpoint->procs[i].decode_buf_size) {
call.body.cbody.args = zdr_malloc(zdr, endpoint->procs[i].decode_buf_size);
}
if (!endpoint->procs[i].decode_fn(zdr, call.body.cbody.args)) {
rpc_set_error(rpc, "Failed to unmarshall "
"call payload");
return rpc_send_error_reply(rpc, &call, GARBAGE_ARGS, 0 ,0);
}
return endpoint->procs[i].func(rpc, &call, endpoint->procs[i].opaque);
}
}
return rpc_send_error_reply(rpc, &call, PROC_UNAVAIL, 0 ,0);
}
int rpc_process_pdu(struct rpc_context *rpc, char *buf, int size)
{
struct rpc_pdu *pdu, *prev_pdu;
struct rpc_queue *q;
ZDR zdr;
int pos;
int32_t recordmarker = 0;
unsigned int hash;
uint32_t xid;
char *reasbuf = NULL;
assert(rpc->magic == RPC_CONTEXT_MAGIC);
memset(&zdr, 0, sizeof(ZDR));
zdrmem_create(&zdr, buf, size, ZDR_DECODE);
if (rpc->is_udp == 0) {
if (zdr_int(&zdr, &recordmarker) == 0) {
rpc_set_error(rpc, "zdr_int reading recordmarker failed");
zdr_destroy(&zdr);
return -1;
}
if (!(recordmarker&0x80000000)) {
zdr_destroy(&zdr);
if (rpc_add_fragment(rpc, buf+4, size-4) != 0) {
rpc_set_error(rpc, "Failed to queue fragment for reassembly.");
return -1;
}
return 0;
}
}
/* reassembly */
if (recordmarker != 0 && rpc->fragments != NULL) {
struct rpc_fragment *fragment;
uint32_t total = size - 4;
char *ptr;
zdr_destroy(&zdr);
for (fragment = rpc->fragments; fragment; fragment = fragment->next) {
total += fragment->size;
if (total < fragment->size) {
rpc_set_error(rpc, "Fragments too large");
rpc_free_all_fragments(rpc);
return -1;
}
}
reasbuf = malloc(total);
if (reasbuf == NULL) {
rpc_set_error(rpc, "Failed to reassemble PDU");
rpc_free_all_fragments(rpc);
return -1;
}
ptr = reasbuf;
for (fragment = rpc->fragments; fragment; fragment = fragment->next) {
memcpy(ptr, fragment->data, fragment->size);
ptr += fragment->size;
}
memcpy(ptr, buf + 4, size - 4);
zdrmem_create(&zdr, reasbuf, total, ZDR_DECODE);
rpc_free_all_fragments(rpc);
}
if (rpc->is_server_context) {
int ret;
ret = rpc_process_call(rpc, &zdr);
zdr_destroy(&zdr);
if (reasbuf != NULL) {
free(reasbuf);
}
return ret;
}
pos = zdr_getpos(&zdr);
if (zdr_u_int(&zdr, &xid) == 0) {
rpc_set_error(rpc, "zdr_int reading xid failed");
zdr_destroy(&zdr);
if (reasbuf != NULL) {
free(reasbuf);
}
return -1;
}
zdr_setpos(&zdr, pos);
/* Look up the transaction in a hash table of our requests */
hash = rpc_hash_xid(xid);
#ifdef HAVE_MULTITHREADING
nfs_mt_mutex_lock(&rpc->rpc_mutex);
#endif /* HAVE_MULTITHREADING */
q = &rpc->waitpdu[hash];
/* Follow the hash chain. Linear traverse singly-linked list,
* but track previous entry for optimised removal */
prev_pdu = NULL;
for (pdu=q->head; pdu; pdu=pdu->next) {
if (pdu->xid != xid) {
prev_pdu = pdu;
continue;
}
if (rpc->is_udp == 0 || rpc->is_broadcast == 0) {
/* Singly-linked but we track head and tail */
if (pdu == q->head)
q->head = pdu->next;
if (pdu == q->tail)
q->tail = prev_pdu;
if (prev_pdu != NULL)
prev_pdu->next = pdu->next;
rpc->waitpdu_len--;
}
#ifdef HAVE_MULTITHREADING
nfs_mt_mutex_unlock(&rpc->rpc_mutex);
#endif /* HAVE_MULTITHREADING */
if (rpc_process_reply(rpc, pdu, &zdr) != 0) {
rpc_set_error(rpc, "rpc_procdess_reply failed");
}
zdr_destroy(&zdr);
if (rpc->is_udp == 0 || rpc->is_broadcast == 0) {
rpc_free_pdu(rpc, pdu);
}
if (reasbuf != NULL) {
free(reasbuf);
}
return 0;
}
#ifdef HAVE_MULTITHREADING
nfs_mt_mutex_unlock(&rpc->rpc_mutex);
#endif /* HAVE_MULTITHREADING */
zdr_destroy(&zdr);
if (reasbuf != NULL) {
free(reasbuf);
}
return 0;
}