target-arm: A64: Implement AdvSIMD reciprocal estimate insns URECPE, FRECPE

Implement URECPE and FRECPE instructions in both scalar and vector forms.
The actual reciprocal estimate function is shared with the A32/T32 Neon
code. However in A64 we aren't using the Neon "standard FPSCR value"
so extra checks are necessary to handle non-squashed denormal inputs
which can never happen for A32/T32. Calling conventions for the helpers
are thus modified to pass the fpst directly; we mark the helpers as
TCG_CALL_NO_RWG since we're changing the declarations anyway.

Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Message-id: 1394822294-14837-21-git-send-email-peter.maydell@linaro.org
master
Alex Bennée 2014-03-17 16:31:52 +00:00 committed by Peter Maydell
parent 7baeabce1d
commit b6d4443a7b
4 changed files with 197 additions and 44 deletions

View File

@ -4520,16 +4520,21 @@ float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
* int->float conversions at run-time. */
#define float64_256 make_float64(0x4070000000000000LL)
#define float64_512 make_float64(0x4080000000000000LL)
#define float32_maxnorm make_float32(0x7f7fffff)
#define float64_maxnorm make_float64(0x7fefffffffffffffLL)
/* The algorithm that must be used to calculate the estimate
* is specified by the ARM ARM.
/* Reciprocal functions
*
* The algorithm that must be used to calculate the estimate
* is specified by the ARM ARM, see FPRecipEstimate()
*/
static float64 recip_estimate(float64 a, CPUARMState *env)
static float64 recip_estimate(float64 a, float_status *real_fp_status)
{
/* These calculations mustn't set any fp exception flags,
* so we use a local copy of the fp_status.
*/
float_status dummy_status = env->vfp.standard_fp_status;
float_status dummy_status = *real_fp_status;
float_status *s = &dummy_status;
/* q = (int)(a * 512.0) */
float64 q = float64_mul(float64_512, a, s);
@ -4550,45 +4555,167 @@ static float64 recip_estimate(float64 a, CPUARMState *env)
return float64_div(int64_to_float64(q_int, s), float64_256, s);
}
float32 HELPER(recpe_f32)(float32 a, CPUARMState *env)
/* Common wrapper to call recip_estimate */
static float64 call_recip_estimate(float64 num, int off, float_status *fpst)
{
float_status *s = &env->vfp.standard_fp_status;
float64 f64;
uint32_t val32 = float32_val(a);
uint64_t val64 = float64_val(num);
uint64_t frac = extract64(val64, 0, 52);
int64_t exp = extract64(val64, 52, 11);
uint64_t sbit;
float64 scaled, estimate;
int result_exp;
int a_exp = (val32 & 0x7f800000) >> 23;
int sign = val32 & 0x80000000;
if (float32_is_any_nan(a)) {
if (float32_is_signaling_nan(a)) {
float_raise(float_flag_invalid, s);
/* Generate the scaled number for the estimate function */
if (exp == 0) {
if (extract64(frac, 51, 1) == 0) {
exp = -1;
frac = extract64(frac, 0, 50) << 2;
} else {
frac = extract64(frac, 0, 51) << 1;
}
return float32_default_nan;
} else if (float32_is_infinity(a)) {
return float32_set_sign(float32_zero, float32_is_neg(a));
} else if (float32_is_zero_or_denormal(a)) {
if (!float32_is_zero(a)) {
float_raise(float_flag_input_denormal, s);
}
float_raise(float_flag_divbyzero, s);
return float32_set_sign(float32_infinity, float32_is_neg(a));
} else if (a_exp >= 253) {
float_raise(float_flag_underflow, s);
return float32_set_sign(float32_zero, float32_is_neg(a));
}
f64 = make_float64((0x3feULL << 52)
| ((int64_t)(val32 & 0x7fffff) << 29));
/* scaled = '0' : '01111111110' : fraction<51:44> : Zeros(44); */
scaled = make_float64((0x3feULL << 52)
| extract64(frac, 44, 8) << 44);
result_exp = 253 - a_exp;
estimate = recip_estimate(scaled, fpst);
f64 = recip_estimate(f64, env);
/* Build new result */
val64 = float64_val(estimate);
sbit = 0x8000000000000000ULL & val64;
exp = off - exp;
frac = extract64(val64, 0, 52);
val32 = sign
| ((result_exp & 0xff) << 23)
| ((float64_val(f64) >> 29) & 0x7fffff);
return make_float32(val32);
if (exp == 0) {
frac = 1ULL << 51 | extract64(frac, 1, 51);
} else if (exp == -1) {
frac = 1ULL << 50 | extract64(frac, 2, 50);
exp = 0;
}
return make_float64(sbit | (exp << 52) | frac);
}
static bool round_to_inf(float_status *fpst, bool sign_bit)
{
switch (fpst->float_rounding_mode) {
case float_round_nearest_even: /* Round to Nearest */
return true;
case float_round_up: /* Round to +Inf */
return !sign_bit;
case float_round_down: /* Round to -Inf */
return sign_bit;
case float_round_to_zero: /* Round to Zero */
return false;
}
g_assert_not_reached();
}
float32 HELPER(recpe_f32)(float32 input, void *fpstp)
{
float_status *fpst = fpstp;
float32 f32 = float32_squash_input_denormal(input, fpst);
uint32_t f32_val = float32_val(f32);
uint32_t f32_sbit = 0x80000000ULL & f32_val;
int32_t f32_exp = extract32(f32_val, 23, 8);
uint32_t f32_frac = extract32(f32_val, 0, 23);
float64 f64, r64;
uint64_t r64_val;
int64_t r64_exp;
uint64_t r64_frac;
if (float32_is_any_nan(f32)) {
float32 nan = f32;
if (float32_is_signaling_nan(f32)) {
float_raise(float_flag_invalid, fpst);
nan = float32_maybe_silence_nan(f32);
}
if (fpst->default_nan_mode) {
nan = float32_default_nan;
}
return nan;
} else if (float32_is_infinity(f32)) {
return float32_set_sign(float32_zero, float32_is_neg(f32));
} else if (float32_is_zero(f32)) {
float_raise(float_flag_divbyzero, fpst);
return float32_set_sign(float32_infinity, float32_is_neg(f32));
} else if ((f32_val & ~(1ULL << 31)) < (1ULL << 21)) {
/* Abs(value) < 2.0^-128 */
float_raise(float_flag_overflow | float_flag_inexact, fpst);
if (round_to_inf(fpst, f32_sbit)) {
return float32_set_sign(float32_infinity, float32_is_neg(f32));
} else {
return float32_set_sign(float32_maxnorm, float32_is_neg(f32));
}
} else if (f32_exp >= 253 && fpst->flush_to_zero) {
float_raise(float_flag_underflow, fpst);
return float32_set_sign(float32_zero, float32_is_neg(f32));
}
f64 = make_float64(((int64_t)(f32_exp) << 52) | (int64_t)(f32_frac) << 29);
r64 = call_recip_estimate(f64, 253, fpst);
r64_val = float64_val(r64);
r64_exp = extract64(r64_val, 52, 11);
r64_frac = extract64(r64_val, 0, 52);
/* result = sign : result_exp<7:0> : fraction<51:29>; */
return make_float32(f32_sbit |
(r64_exp & 0xff) << 23 |
extract64(r64_frac, 29, 24));
}
float64 HELPER(recpe_f64)(float64 input, void *fpstp)
{
float_status *fpst = fpstp;
float64 f64 = float64_squash_input_denormal(input, fpst);
uint64_t f64_val = float64_val(f64);
uint64_t f64_sbit = 0x8000000000000000ULL & f64_val;
int64_t f64_exp = extract64(f64_val, 52, 11);
float64 r64;
uint64_t r64_val;
int64_t r64_exp;
uint64_t r64_frac;
/* Deal with any special cases */
if (float64_is_any_nan(f64)) {
float64 nan = f64;
if (float64_is_signaling_nan(f64)) {
float_raise(float_flag_invalid, fpst);
nan = float64_maybe_silence_nan(f64);
}
if (fpst->default_nan_mode) {
nan = float64_default_nan;
}
return nan;
} else if (float64_is_infinity(f64)) {
return float64_set_sign(float64_zero, float64_is_neg(f64));
} else if (float64_is_zero(f64)) {
float_raise(float_flag_divbyzero, fpst);
return float64_set_sign(float64_infinity, float64_is_neg(f64));
} else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) {
/* Abs(value) < 2.0^-1024 */
float_raise(float_flag_overflow | float_flag_inexact, fpst);
if (round_to_inf(fpst, f64_sbit)) {
return float64_set_sign(float64_infinity, float64_is_neg(f64));
} else {
return float64_set_sign(float64_maxnorm, float64_is_neg(f64));
}
} else if (f64_exp >= 1023 && fpst->flush_to_zero) {
float_raise(float_flag_underflow, fpst);
return float64_set_sign(float64_zero, float64_is_neg(f64));
}
r64 = call_recip_estimate(f64, 2045, fpst);
r64_val = float64_val(r64);
r64_exp = extract64(r64_val, 52, 11);
r64_frac = extract64(r64_val, 0, 52);
/* result = sign : result_exp<10:0> : fraction<51:0> */
return make_float64(f64_sbit |
((r64_exp & 0x7ff) << 52) |
r64_frac);
}
/* The algorithm that must be used to calculate the estimate
@ -4697,8 +4824,9 @@ float32 HELPER(rsqrte_f32)(float32 a, CPUARMState *env)
return make_float32(val);
}
uint32_t HELPER(recpe_u32)(uint32_t a, CPUARMState *env)
uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp)
{
float_status *s = fpstp;
float64 f64;
if ((a & 0x80000000) == 0) {
@ -4708,7 +4836,7 @@ uint32_t HELPER(recpe_u32)(uint32_t a, CPUARMState *env)
f64 = make_float64((0x3feULL << 52)
| ((int64_t)(a & 0x7fffffff) << 21));
f64 = recip_estimate (f64, env);
f64 = recip_estimate(f64, s);
return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
}

View File

@ -167,9 +167,10 @@ DEF_HELPER_4(vfp_muladds, f32, f32, f32, f32, ptr)
DEF_HELPER_3(recps_f32, f32, f32, f32, env)
DEF_HELPER_3(rsqrts_f32, f32, f32, f32, env)
DEF_HELPER_2(recpe_f32, f32, f32, env)
DEF_HELPER_FLAGS_2(recpe_f32, TCG_CALL_NO_RWG, f32, f32, ptr)
DEF_HELPER_FLAGS_2(recpe_f64, TCG_CALL_NO_RWG, f64, f64, ptr)
DEF_HELPER_2(rsqrte_f32, f32, f32, env)
DEF_HELPER_2(recpe_u32, i32, i32, env)
DEF_HELPER_2(recpe_u32, i32, i32, ptr)
DEF_HELPER_2(rsqrte_u32, i32, i32, env)
DEF_HELPER_5(neon_tbl, i32, env, i32, i32, i32, i32)

View File

@ -7140,6 +7140,9 @@ static void handle_2misc_reciprocal(DisasContext *s, int opcode,
for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
read_vec_element(s, tcg_op, rn, pass, MO_64);
switch (opcode) {
case 0x3d: /* FRECPE */
gen_helper_recpe_f64(tcg_res, tcg_op, fpst);
break;
case 0x3f: /* FRECPX */
gen_helper_frecpx_f64(tcg_res, tcg_op, fpst);
break;
@ -7169,6 +7172,12 @@ static void handle_2misc_reciprocal(DisasContext *s, int opcode,
read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
switch (opcode) {
case 0x3c: /* URECPE */
gen_helper_recpe_u32(tcg_res, tcg_op, fpst);
break;
case 0x3d: /* FRECPE */
gen_helper_recpe_f32(tcg_res, tcg_op, fpst);
break;
case 0x3f: /* FRECPX */
gen_helper_frecpx_f32(tcg_res, tcg_op, fpst);
break;
@ -7247,6 +7256,7 @@ static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn)
handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size);
return;
}
case 0x3d: /* FRECPE */
case 0x3f: /* FRECPX */
handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd);
return;
@ -7267,7 +7277,6 @@ static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn)
is_fcvt = true;
rmode = FPROUNDING_TIEAWAY;
break;
case 0x3d: /* FRECPE */
case 0x56: /* FCVTXN, FCVTXN2 */
case 0x7d: /* FRSQRTE */
unsupported_encoding(s, insn);
@ -9205,6 +9214,15 @@ static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn)
return;
}
break;
case 0x3c: /* URECPE */
if (size == 3) {
unallocated_encoding(s);
return;
}
/* fall through */
case 0x3d: /* FRECPE */
handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd);
return;
case 0x16: /* FCVTN, FCVTN2 */
/* handle_2misc_narrow does a 2*size -> size operation, but these
* instructions encode the source size rather than dest size.
@ -9238,8 +9256,6 @@ static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn)
return;
}
break;
case 0x3c: /* URECPE */
case 0x3d: /* FRECPE */
case 0x56: /* FCVTXN, FCVTXN2 */
case 0x7c: /* URSQRTE */
case 0x7d: /* FRSQRTE */

View File

@ -6682,14 +6682,22 @@ static int disas_neon_data_insn(CPUARMState * env, DisasContext *s, uint32_t ins
break;
}
case NEON_2RM_VRECPE:
gen_helper_recpe_u32(tmp, tmp, cpu_env);
{
TCGv_ptr fpstatus = get_fpstatus_ptr(1);
gen_helper_recpe_u32(tmp, tmp, fpstatus);
tcg_temp_free_ptr(fpstatus);
break;
}
case NEON_2RM_VRSQRTE:
gen_helper_rsqrte_u32(tmp, tmp, cpu_env);
break;
case NEON_2RM_VRECPE_F:
gen_helper_recpe_f32(cpu_F0s, cpu_F0s, cpu_env);
{
TCGv_ptr fpstatus = get_fpstatus_ptr(1);
gen_helper_recpe_f32(cpu_F0s, cpu_F0s, fpstatus);
tcg_temp_free_ptr(fpstatus);
break;
}
case NEON_2RM_VRSQRTE_F:
gen_helper_rsqrte_f32(cpu_F0s, cpu_F0s, cpu_env);
break;