diff --git a/docs/specs/fw_cfg.txt b/docs/specs/fw_cfg.txt index d5dee4bcd3..536909a4b2 100644 --- a/docs/specs/fw_cfg.txt +++ b/docs/specs/fw_cfg.txt @@ -76,6 +76,13 @@ increasing address order, similar to memcpy(). Selector Register IOport: 0x510 Data Register IOport: 0x511 +DMA Address IOport: 0x514 + +=== ARM Register Locations === + +Selector Register address: Base + 8 (2 bytes) +Data Register address: Base + 0 (8 bytes) +DMA Address address: Base + 16 (8 bytes) == Firmware Configuration Items == @@ -86,11 +93,12 @@ by selecting the "signature" item using key 0x0000 (FW_CFG_SIGNATURE), and reading four bytes from the data register. If the fw_cfg device is present, the four bytes read will contain the characters "QEMU". -=== Revision (Key 0x0001, FW_CFG_ID) === +=== Revision / feature bitmap (Key 0x0001, FW_CFG_ID) === -A 32-bit little-endian unsigned int, this item is used as an interface -revision number, and is currently set to 1 by QEMU when fw_cfg is -initialized. +A 32-bit little-endian unsigned int, this item is used to check for enabled +features. + - Bit 0: traditional interface. Always set. + - Bit 1: DMA interface. === File Directory (Key 0x0019, FW_CFG_FILE_DIR) === @@ -132,6 +140,55 @@ Selector Reg. Range Usage In practice, the number of allowed firmware configuration items is given by the value of FW_CFG_MAX_ENTRY (see fw_cfg.h). += Guest-side DMA Interface = + +If bit 1 of the feature bitmap is set, the DMA interface is present. This does +not replace the existing fw_cfg interface, it is an add-on. This interface +can be used through the 64-bit wide address register. + +The address register is in big-endian format. The value for the register is 0 +at startup and after an operation. A write to the least significant half (at +offset 4) triggers an operation. This means that operations with 32-bit +addresses can be triggered with just one write, whereas operations with +64-bit addresses can be triggered with one 64-bit write or two 32-bit writes, +starting with the most significant half (at offset 0). + +In this register, the physical address of a FWCfgDmaAccess structure in RAM +should be written. This is the format of the FWCfgDmaAccess structure: + +typedef struct FWCfgDmaAccess { + uint32_t control; + uint32_t length; + uint64_t address; +} FWCfgDmaAccess; + +The fields of the structure are in big endian mode, and the field at the lowest +address is the "control" field. + +The "control" field has the following bits: + - Bit 0: Error + - Bit 1: Read + - Bit 2: Skip + - Bit 3: Select. The upper 16 bits are the selected index. + +When an operation is triggered, if the "control" field has bit 3 set, the +upper 16 bits are interpreted as an index of a firmware configuration item. +This has the same effect as writing the selector register. + +If the "control" field has bit 1 set, a read operation will be performed. +"length" bytes for the current selector and offset will be copied into the +physical RAM address specified by the "address" field. + +If the "control" field has bit 2 set (and not bit 1), a skip operation will be +performed. The offset for the current selector will be advanced "length" bytes. + +To check the result, read the "control" field: + error bit set -> something went wrong. + all bits cleared -> transfer finished successfully. + otherwise -> transfer still in progress (doesn't happen + today due to implementation not being async, + but may in the future). + = Host-side API = The following functions are available to the QEMU programmer for adding