accel/tcg: Honor atomicity of loads

Create ldst_atomicity.c.inc.

Not required for user-only code loads, because we've ensured that
the page is read-only before beginning to translate code.

Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
master
Richard Henderson 2022-10-29 16:01:04 +11:00
parent 37031fefc7
commit cdfac37be0
3 changed files with 716 additions and 51 deletions

View File

@ -1668,6 +1668,9 @@ tb_page_addr_t get_page_addr_code_hostp(CPUArchState *env, target_ulong addr,
return qemu_ram_addr_from_host_nofail(p);
}
/* Load/store with atomicity primitives. */
#include "ldst_atomicity.c.inc"
#ifdef CONFIG_PLUGIN
/*
* Perform a TLB lookup and populate the qemu_plugin_hwaddr structure.
@ -2035,35 +2038,7 @@ static void validate_memop(MemOpIdx oi, MemOp expected)
* specifically for reading instructions from system memory. It is
* called by the translation loop and in some helpers where the code
* is disassembled. It shouldn't be called directly by guest code.
*/
typedef uint64_t FullLoadHelper(CPUArchState *env, target_ulong addr,
MemOpIdx oi, uintptr_t retaddr);
static inline uint64_t QEMU_ALWAYS_INLINE
load_memop(const void *haddr, MemOp op)
{
switch (op) {
case MO_UB:
return ldub_p(haddr);
case MO_BEUW:
return lduw_be_p(haddr);
case MO_LEUW:
return lduw_le_p(haddr);
case MO_BEUL:
return (uint32_t)ldl_be_p(haddr);
case MO_LEUL:
return (uint32_t)ldl_le_p(haddr);
case MO_BEUQ:
return ldq_be_p(haddr);
case MO_LEUQ:
return ldq_le_p(haddr);
default:
qemu_build_not_reached();
}
}
/*
*
* For the benefit of TCG generated code, we want to avoid the
* complication of ABI-specific return type promotion and always
* return a value extended to the register size of the host. This is
@ -2119,17 +2094,139 @@ static uint64_t do_ld_bytes_beN(MMULookupPageData *p, uint64_t ret_be)
return ret_be;
}
/**
* do_ld_parts_beN
* @p: translation parameters
* @ret_be: accumulated data
*
* As do_ld_bytes_beN, but atomically on each aligned part.
*/
static uint64_t do_ld_parts_beN(MMULookupPageData *p, uint64_t ret_be)
{
void *haddr = p->haddr;
int size = p->size;
do {
uint64_t x;
int n;
/*
* Find minimum of alignment and size.
* This is slightly stronger than required by MO_ATOM_SUBALIGN, which
* would have only checked the low bits of addr|size once at the start,
* but is just as easy.
*/
switch (((uintptr_t)haddr | size) & 7) {
case 4:
x = cpu_to_be32(load_atomic4(haddr));
ret_be = (ret_be << 32) | x;
n = 4;
break;
case 2:
case 6:
x = cpu_to_be16(load_atomic2(haddr));
ret_be = (ret_be << 16) | x;
n = 2;
break;
default:
x = *(uint8_t *)haddr;
ret_be = (ret_be << 8) | x;
n = 1;
break;
case 0:
g_assert_not_reached();
}
haddr += n;
size -= n;
} while (size != 0);
return ret_be;
}
/**
* do_ld_parts_be4
* @p: translation parameters
* @ret_be: accumulated data
*
* As do_ld_bytes_beN, but with one atomic load.
* Four aligned bytes are guaranteed to cover the load.
*/
static uint64_t do_ld_whole_be4(MMULookupPageData *p, uint64_t ret_be)
{
int o = p->addr & 3;
uint32_t x = load_atomic4(p->haddr - o);
x = cpu_to_be32(x);
x <<= o * 8;
x >>= (4 - p->size) * 8;
return (ret_be << (p->size * 8)) | x;
}
/**
* do_ld_parts_be8
* @p: translation parameters
* @ret_be: accumulated data
*
* As do_ld_bytes_beN, but with one atomic load.
* Eight aligned bytes are guaranteed to cover the load.
*/
static uint64_t do_ld_whole_be8(CPUArchState *env, uintptr_t ra,
MMULookupPageData *p, uint64_t ret_be)
{
int o = p->addr & 7;
uint64_t x = load_atomic8_or_exit(env, ra, p->haddr - o);
x = cpu_to_be64(x);
x <<= o * 8;
x >>= (8 - p->size) * 8;
return (ret_be << (p->size * 8)) | x;
}
/*
* Wrapper for the above.
*/
static uint64_t do_ld_beN(CPUArchState *env, MMULookupPageData *p,
uint64_t ret_be, int mmu_idx,
MMUAccessType type, uintptr_t ra)
uint64_t ret_be, int mmu_idx, MMUAccessType type,
MemOp mop, uintptr_t ra)
{
MemOp atom;
unsigned tmp, half_size;
if (unlikely(p->flags & TLB_MMIO)) {
return do_ld_mmio_beN(env, p, ret_be, mmu_idx, type, ra);
} else {
}
/*
* It is a given that we cross a page and therefore there is no
* atomicity for the load as a whole, but subobjects may need attention.
*/
atom = mop & MO_ATOM_MASK;
switch (atom) {
case MO_ATOM_SUBALIGN:
return do_ld_parts_beN(p, ret_be);
case MO_ATOM_IFALIGN_PAIR:
case MO_ATOM_WITHIN16_PAIR:
tmp = mop & MO_SIZE;
tmp = tmp ? tmp - 1 : 0;
half_size = 1 << tmp;
if (atom == MO_ATOM_IFALIGN_PAIR
? p->size == half_size
: p->size >= half_size) {
if (!HAVE_al8_fast && p->size < 4) {
return do_ld_whole_be4(p, ret_be);
} else {
return do_ld_whole_be8(env, ra, p, ret_be);
}
}
/* fall through */
case MO_ATOM_IFALIGN:
case MO_ATOM_WITHIN16:
case MO_ATOM_NONE:
return do_ld_bytes_beN(p, ret_be);
default:
g_assert_not_reached();
}
}
@ -2153,7 +2250,7 @@ static uint16_t do_ld_2(CPUArchState *env, MMULookupPageData *p, int mmu_idx,
}
/* Perform the load host endian, then swap if necessary. */
ret = load_memop(p->haddr, MO_UW);
ret = load_atom_2(env, ra, p->haddr, memop);
if (memop & MO_BSWAP) {
ret = bswap16(ret);
}
@ -2170,7 +2267,7 @@ static uint32_t do_ld_4(CPUArchState *env, MMULookupPageData *p, int mmu_idx,
}
/* Perform the load host endian. */
ret = load_memop(p->haddr, MO_UL);
ret = load_atom_4(env, ra, p->haddr, memop);
if (memop & MO_BSWAP) {
ret = bswap32(ret);
}
@ -2187,7 +2284,7 @@ static uint64_t do_ld_8(CPUArchState *env, MMULookupPageData *p, int mmu_idx,
}
/* Perform the load host endian. */
ret = load_memop(p->haddr, MO_UQ);
ret = load_atom_8(env, ra, p->haddr, memop);
if (memop & MO_BSWAP) {
ret = bswap64(ret);
}
@ -2263,8 +2360,8 @@ static uint32_t do_ld4_mmu(CPUArchState *env, target_ulong addr, MemOpIdx oi,
return do_ld_4(env, &l.page[0], l.mmu_idx, access_type, l.memop, ra);
}
ret = do_ld_beN(env, &l.page[0], 0, l.mmu_idx, access_type, ra);
ret = do_ld_beN(env, &l.page[1], ret, l.mmu_idx, access_type, ra);
ret = do_ld_beN(env, &l.page[0], 0, l.mmu_idx, access_type, l.memop, ra);
ret = do_ld_beN(env, &l.page[1], ret, l.mmu_idx, access_type, l.memop, ra);
if ((l.memop & MO_BSWAP) == MO_LE) {
ret = bswap32(ret);
}
@ -2297,8 +2394,8 @@ static uint64_t do_ld8_mmu(CPUArchState *env, target_ulong addr, MemOpIdx oi,
return do_ld_8(env, &l.page[0], l.mmu_idx, access_type, l.memop, ra);
}
ret = do_ld_beN(env, &l.page[0], 0, l.mmu_idx, access_type, ra);
ret = do_ld_beN(env, &l.page[1], ret, l.mmu_idx, access_type, ra);
ret = do_ld_beN(env, &l.page[0], 0, l.mmu_idx, access_type, l.memop, ra);
ret = do_ld_beN(env, &l.page[1], ret, l.mmu_idx, access_type, l.memop, ra);
if ((l.memop & MO_BSWAP) == MO_LE) {
ret = bswap64(ret);
}

View File

@ -0,0 +1,566 @@
/*
* Routines common to user and system emulation of load/store.
*
* Copyright (c) 2022 Linaro, Ltd.
*
* SPDX-License-Identifier: GPL-2.0-or-later
*
* This work is licensed under the terms of the GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*/
#ifdef CONFIG_ATOMIC64
# define HAVE_al8 true
#else
# define HAVE_al8 false
#endif
#define HAVE_al8_fast (ATOMIC_REG_SIZE >= 8)
#if defined(CONFIG_ATOMIC128)
# define HAVE_al16_fast true
#else
# define HAVE_al16_fast false
#endif
/**
* required_atomicity:
*
* Return the lg2 bytes of atomicity required by @memop for @p.
* If the operation must be split into two operations to be
* examined separately for atomicity, return -lg2.
*/
static int required_atomicity(CPUArchState *env, uintptr_t p, MemOp memop)
{
MemOp atom = memop & MO_ATOM_MASK;
MemOp size = memop & MO_SIZE;
MemOp half = size ? size - 1 : 0;
unsigned tmp;
int atmax;
switch (atom) {
case MO_ATOM_NONE:
atmax = MO_8;
break;
case MO_ATOM_IFALIGN_PAIR:
size = half;
/* fall through */
case MO_ATOM_IFALIGN:
tmp = (1 << size) - 1;
atmax = p & tmp ? MO_8 : size;
break;
case MO_ATOM_WITHIN16:
tmp = p & 15;
atmax = (tmp + (1 << size) <= 16 ? size : MO_8);
break;
case MO_ATOM_WITHIN16_PAIR:
tmp = p & 15;
if (tmp + (1 << size) <= 16) {
atmax = size;
} else if (tmp + (1 << half) == 16) {
/*
* The pair exactly straddles the boundary.
* Both halves are naturally aligned and atomic.
*/
atmax = half;
} else {
/*
* One of the pair crosses the boundary, and is non-atomic.
* The other of the pair does not cross, and is atomic.
*/
atmax = -half;
}
break;
case MO_ATOM_SUBALIGN:
/*
* Examine the alignment of p to determine if there are subobjects
* that must be aligned. Note that we only really need ctz4() --
* any more sigificant bits are discarded by the immediately
* following comparison.
*/
tmp = ctz32(p);
atmax = MIN(size, tmp);
break;
default:
g_assert_not_reached();
}
/*
* Here we have the architectural atomicity of the operation.
* However, when executing in a serial context, we need no extra
* host atomicity in order to avoid racing. This reduction
* avoids looping with cpu_loop_exit_atomic.
*/
if (cpu_in_serial_context(env_cpu(env))) {
return MO_8;
}
return atmax;
}
/**
* load_atomic2:
* @pv: host address
*
* Atomically load 2 aligned bytes from @pv.
*/
static inline uint16_t load_atomic2(void *pv)
{
uint16_t *p = __builtin_assume_aligned(pv, 2);
return qatomic_read(p);
}
/**
* load_atomic4:
* @pv: host address
*
* Atomically load 4 aligned bytes from @pv.
*/
static inline uint32_t load_atomic4(void *pv)
{
uint32_t *p = __builtin_assume_aligned(pv, 4);
return qatomic_read(p);
}
/**
* load_atomic8:
* @pv: host address
*
* Atomically load 8 aligned bytes from @pv.
*/
static inline uint64_t load_atomic8(void *pv)
{
uint64_t *p = __builtin_assume_aligned(pv, 8);
qemu_build_assert(HAVE_al8);
return qatomic_read__nocheck(p);
}
/**
* load_atomic16:
* @pv: host address
*
* Atomically load 16 aligned bytes from @pv.
*/
static inline Int128 load_atomic16(void *pv)
{
#ifdef CONFIG_ATOMIC128
__uint128_t *p = __builtin_assume_aligned(pv, 16);
Int128Alias r;
r.u = qatomic_read__nocheck(p);
return r.s;
#else
qemu_build_not_reached();
#endif
}
/**
* load_atomic8_or_exit:
* @env: cpu context
* @ra: host unwind address
* @pv: host address
*
* Atomically load 8 aligned bytes from @pv.
* If this is not possible, longjmp out to restart serially.
*/
static uint64_t load_atomic8_or_exit(CPUArchState *env, uintptr_t ra, void *pv)
{
if (HAVE_al8) {
return load_atomic8(pv);
}
#ifdef CONFIG_USER_ONLY
/*
* If the page is not writable, then assume the value is immutable
* and requires no locking. This ignores the case of MAP_SHARED with
* another process, because the fallback start_exclusive solution
* provides no protection across processes.
*/
if (!page_check_range(h2g(pv), 8, PAGE_WRITE)) {
uint64_t *p = __builtin_assume_aligned(pv, 8);
return *p;
}
#endif
/* Ultimate fallback: re-execute in serial context. */
cpu_loop_exit_atomic(env_cpu(env), ra);
}
/**
* load_atomic16_or_exit:
* @env: cpu context
* @ra: host unwind address
* @pv: host address
*
* Atomically load 16 aligned bytes from @pv.
* If this is not possible, longjmp out to restart serially.
*/
static Int128 load_atomic16_or_exit(CPUArchState *env, uintptr_t ra, void *pv)
{
Int128 *p = __builtin_assume_aligned(pv, 16);
if (HAVE_al16_fast) {
return load_atomic16(p);
}
#ifdef CONFIG_USER_ONLY
/*
* We can only use cmpxchg to emulate a load if the page is writable.
* If the page is not writable, then assume the value is immutable
* and requires no locking. This ignores the case of MAP_SHARED with
* another process, because the fallback start_exclusive solution
* provides no protection across processes.
*/
if (!page_check_range(h2g(p), 16, PAGE_WRITE)) {
return *p;
}
#endif
/*
* In system mode all guest pages are writable, and for user-only
* we have just checked writability. Try cmpxchg.
*/
#if defined(CONFIG_CMPXCHG128)
/* Swap 0 with 0, with the side-effect of returning the old value. */
{
Int128Alias r;
r.u = __sync_val_compare_and_swap_16((__uint128_t *)p, 0, 0);
return r.s;
}
#endif
/* Ultimate fallback: re-execute in serial context. */
cpu_loop_exit_atomic(env_cpu(env), ra);
}
/**
* load_atom_extract_al4x2:
* @pv: host address
*
* Load 4 bytes from @p, from two sequential atomic 4-byte loads.
*/
static uint32_t load_atom_extract_al4x2(void *pv)
{
uintptr_t pi = (uintptr_t)pv;
int sh = (pi & 3) * 8;
uint32_t a, b;
pv = (void *)(pi & ~3);
a = load_atomic4(pv);
b = load_atomic4(pv + 4);
if (HOST_BIG_ENDIAN) {
return (a << sh) | (b >> (-sh & 31));
} else {
return (a >> sh) | (b << (-sh & 31));
}
}
/**
* load_atom_extract_al8x2:
* @pv: host address
*
* Load 8 bytes from @p, from two sequential atomic 8-byte loads.
*/
static uint64_t load_atom_extract_al8x2(void *pv)
{
uintptr_t pi = (uintptr_t)pv;
int sh = (pi & 7) * 8;
uint64_t a, b;
pv = (void *)(pi & ~7);
a = load_atomic8(pv);
b = load_atomic8(pv + 8);
if (HOST_BIG_ENDIAN) {
return (a << sh) | (b >> (-sh & 63));
} else {
return (a >> sh) | (b << (-sh & 63));
}
}
/**
* load_atom_extract_al8_or_exit:
* @env: cpu context
* @ra: host unwind address
* @pv: host address
* @s: object size in bytes, @s <= 4.
*
* Atomically load @s bytes from @p, when p % s != 0, and [p, p+s-1] does
* not cross an 8-byte boundary. This means that we can perform an atomic
* 8-byte load and extract.
* The value is returned in the low bits of a uint32_t.
*/
static uint32_t load_atom_extract_al8_or_exit(CPUArchState *env, uintptr_t ra,
void *pv, int s)
{
uintptr_t pi = (uintptr_t)pv;
int o = pi & 7;
int shr = (HOST_BIG_ENDIAN ? 8 - s - o : o) * 8;
pv = (void *)(pi & ~7);
return load_atomic8_or_exit(env, ra, pv) >> shr;
}
/**
* load_atom_extract_al16_or_exit:
* @env: cpu context
* @ra: host unwind address
* @p: host address
* @s: object size in bytes, @s <= 8.
*
* Atomically load @s bytes from @p, when p % 16 < 8
* and p % 16 + s > 8. I.e. does not cross a 16-byte
* boundary, but *does* cross an 8-byte boundary.
* This is the slow version, so we must have eliminated
* any faster load_atom_extract_al8_or_exit case.
*
* If this is not possible, longjmp out to restart serially.
*/
static uint64_t load_atom_extract_al16_or_exit(CPUArchState *env, uintptr_t ra,
void *pv, int s)
{
uintptr_t pi = (uintptr_t)pv;
int o = pi & 7;
int shr = (HOST_BIG_ENDIAN ? 16 - s - o : o) * 8;
Int128 r;
/*
* Note constraints above: p & 8 must be clear.
* Provoke SIGBUS if possible otherwise.
*/
pv = (void *)(pi & ~7);
r = load_atomic16_or_exit(env, ra, pv);
r = int128_urshift(r, shr);
return int128_getlo(r);
}
/**
* load_atom_extract_al16_or_al8:
* @p: host address
* @s: object size in bytes, @s <= 8.
*
* Load @s bytes from @p, when p % s != 0. If [p, p+s-1] does not
* cross an 16-byte boundary then the access must be 16-byte atomic,
* otherwise the access must be 8-byte atomic.
*/
static inline uint64_t load_atom_extract_al16_or_al8(void *pv, int s)
{
#if defined(CONFIG_ATOMIC128)
uintptr_t pi = (uintptr_t)pv;
int o = pi & 7;
int shr = (HOST_BIG_ENDIAN ? 16 - s - o : o) * 8;
__uint128_t r;
pv = (void *)(pi & ~7);
if (pi & 8) {
uint64_t *p8 = __builtin_assume_aligned(pv, 16, 8);
uint64_t a = qatomic_read__nocheck(p8);
uint64_t b = qatomic_read__nocheck(p8 + 1);
if (HOST_BIG_ENDIAN) {
r = ((__uint128_t)a << 64) | b;
} else {
r = ((__uint128_t)b << 64) | a;
}
} else {
__uint128_t *p16 = __builtin_assume_aligned(pv, 16, 0);
r = qatomic_read__nocheck(p16);
}
return r >> shr;
#else
qemu_build_not_reached();
#endif
}
/**
* load_atom_4_by_2:
* @pv: host address
*
* Load 4 bytes from @pv, with two 2-byte atomic loads.
*/
static inline uint32_t load_atom_4_by_2(void *pv)
{
uint32_t a = load_atomic2(pv);
uint32_t b = load_atomic2(pv + 2);
if (HOST_BIG_ENDIAN) {
return (a << 16) | b;
} else {
return (b << 16) | a;
}
}
/**
* load_atom_8_by_2:
* @pv: host address
*
* Load 8 bytes from @pv, with four 2-byte atomic loads.
*/
static inline uint64_t load_atom_8_by_2(void *pv)
{
uint32_t a = load_atom_4_by_2(pv);
uint32_t b = load_atom_4_by_2(pv + 4);
if (HOST_BIG_ENDIAN) {
return ((uint64_t)a << 32) | b;
} else {
return ((uint64_t)b << 32) | a;
}
}
/**
* load_atom_8_by_4:
* @pv: host address
*
* Load 8 bytes from @pv, with two 4-byte atomic loads.
*/
static inline uint64_t load_atom_8_by_4(void *pv)
{
uint32_t a = load_atomic4(pv);
uint32_t b = load_atomic4(pv + 4);
if (HOST_BIG_ENDIAN) {
return ((uint64_t)a << 32) | b;
} else {
return ((uint64_t)b << 32) | a;
}
}
/**
* load_atom_2:
* @p: host address
* @memop: the full memory op
*
* Load 2 bytes from @p, honoring the atomicity of @memop.
*/
static uint16_t load_atom_2(CPUArchState *env, uintptr_t ra,
void *pv, MemOp memop)
{
uintptr_t pi = (uintptr_t)pv;
int atmax;
if (likely((pi & 1) == 0)) {
return load_atomic2(pv);
}
if (HAVE_al16_fast) {
return load_atom_extract_al16_or_al8(pv, 2);
}
atmax = required_atomicity(env, pi, memop);
switch (atmax) {
case MO_8:
return lduw_he_p(pv);
case MO_16:
/* The only case remaining is MO_ATOM_WITHIN16. */
if (!HAVE_al8_fast && (pi & 3) == 1) {
/* Big or little endian, we want the middle two bytes. */
return load_atomic4(pv - 1) >> 8;
}
if ((pi & 15) != 7) {
return load_atom_extract_al8_or_exit(env, ra, pv, 2);
}
return load_atom_extract_al16_or_exit(env, ra, pv, 2);
default:
g_assert_not_reached();
}
}
/**
* load_atom_4:
* @p: host address
* @memop: the full memory op
*
* Load 4 bytes from @p, honoring the atomicity of @memop.
*/
static uint32_t load_atom_4(CPUArchState *env, uintptr_t ra,
void *pv, MemOp memop)
{
uintptr_t pi = (uintptr_t)pv;
int atmax;
if (likely((pi & 3) == 0)) {
return load_atomic4(pv);
}
if (HAVE_al16_fast) {
return load_atom_extract_al16_or_al8(pv, 4);
}
atmax = required_atomicity(env, pi, memop);
switch (atmax) {
case MO_8:
case MO_16:
case -MO_16:
/*
* For MO_ATOM_IFALIGN, this is more atomicity than required,
* but it's trivially supported on all hosts, better than 4
* individual byte loads (when the host requires alignment),
* and overlaps with the MO_ATOM_SUBALIGN case of p % 2 == 0.
*/
return load_atom_extract_al4x2(pv);
case MO_32:
if (!(pi & 4)) {
return load_atom_extract_al8_or_exit(env, ra, pv, 4);
}
return load_atom_extract_al16_or_exit(env, ra, pv, 4);
default:
g_assert_not_reached();
}
}
/**
* load_atom_8:
* @p: host address
* @memop: the full memory op
*
* Load 8 bytes from @p, honoring the atomicity of @memop.
*/
static uint64_t load_atom_8(CPUArchState *env, uintptr_t ra,
void *pv, MemOp memop)
{
uintptr_t pi = (uintptr_t)pv;
int atmax;
/*
* If the host does not support 8-byte atomics, wait until we have
* examined the atomicity parameters below.
*/
if (HAVE_al8 && likely((pi & 7) == 0)) {
return load_atomic8(pv);
}
if (HAVE_al16_fast) {
return load_atom_extract_al16_or_al8(pv, 8);
}
atmax = required_atomicity(env, pi, memop);
if (atmax == MO_64) {
if (!HAVE_al8 && (pi & 7) == 0) {
load_atomic8_or_exit(env, ra, pv);
}
return load_atom_extract_al16_or_exit(env, ra, pv, 8);
}
if (HAVE_al8_fast) {
return load_atom_extract_al8x2(pv);
}
switch (atmax) {
case MO_8:
return ldq_he_p(pv);
case MO_16:
return load_atom_8_by_2(pv);
case MO_32:
return load_atom_8_by_4(pv);
case -MO_32:
if (HAVE_al8) {
return load_atom_extract_al8x2(pv);
}
cpu_loop_exit_atomic(env_cpu(env), ra);
default:
g_assert_not_reached();
}
}

View File

@ -931,6 +931,8 @@ static void *cpu_mmu_lookup(CPUArchState *env, target_ulong addr,
return ret;
}
#include "ldst_atomicity.c.inc"
uint8_t cpu_ldb_mmu(CPUArchState *env, abi_ptr addr,
MemOpIdx oi, uintptr_t ra)
{
@ -953,10 +955,10 @@ uint16_t cpu_ldw_be_mmu(CPUArchState *env, abi_ptr addr,
validate_memop(oi, MO_BEUW);
haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_LOAD);
ret = lduw_be_p(haddr);
ret = load_atom_2(env, ra, haddr, get_memop(oi));
clear_helper_retaddr();
qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
return ret;
return cpu_to_be16(ret);
}
uint32_t cpu_ldl_be_mmu(CPUArchState *env, abi_ptr addr,
@ -967,10 +969,10 @@ uint32_t cpu_ldl_be_mmu(CPUArchState *env, abi_ptr addr,
validate_memop(oi, MO_BEUL);
haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_LOAD);
ret = ldl_be_p(haddr);
ret = load_atom_4(env, ra, haddr, get_memop(oi));
clear_helper_retaddr();
qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
return ret;
return cpu_to_be32(ret);
}
uint64_t cpu_ldq_be_mmu(CPUArchState *env, abi_ptr addr,
@ -981,10 +983,10 @@ uint64_t cpu_ldq_be_mmu(CPUArchState *env, abi_ptr addr,
validate_memop(oi, MO_BEUQ);
haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_LOAD);
ret = ldq_be_p(haddr);
ret = load_atom_8(env, ra, haddr, get_memop(oi));
clear_helper_retaddr();
qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
return ret;
return cpu_to_be64(ret);
}
uint16_t cpu_ldw_le_mmu(CPUArchState *env, abi_ptr addr,
@ -995,10 +997,10 @@ uint16_t cpu_ldw_le_mmu(CPUArchState *env, abi_ptr addr,
validate_memop(oi, MO_LEUW);
haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_LOAD);
ret = lduw_le_p(haddr);
ret = load_atom_2(env, ra, haddr, get_memop(oi));
clear_helper_retaddr();
qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
return ret;
return cpu_to_le16(ret);
}
uint32_t cpu_ldl_le_mmu(CPUArchState *env, abi_ptr addr,
@ -1009,10 +1011,10 @@ uint32_t cpu_ldl_le_mmu(CPUArchState *env, abi_ptr addr,
validate_memop(oi, MO_LEUL);
haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_LOAD);
ret = ldl_le_p(haddr);
ret = load_atom_4(env, ra, haddr, get_memop(oi));
clear_helper_retaddr();
qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
return ret;
return cpu_to_le32(ret);
}
uint64_t cpu_ldq_le_mmu(CPUArchState *env, abi_ptr addr,
@ -1023,10 +1025,10 @@ uint64_t cpu_ldq_le_mmu(CPUArchState *env, abi_ptr addr,
validate_memop(oi, MO_LEUQ);
haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_LOAD);
ret = ldq_le_p(haddr);
ret = load_atom_8(env, ra, haddr, get_memop(oi));
clear_helper_retaddr();
qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
return ret;
return cpu_to_le64(ret);
}
Int128 cpu_ld16_be_mmu(CPUArchState *env, abi_ptr addr,