target/arm: Use softmmu tlbs for page table walking

So far, limit the change to S1_ptw_translate, arm_ldl_ptw, and
arm_ldq_ptw.  Use probe_access_full to find the host address,
and if so use a host load.  If the probe fails, we've got our
fault info already.  On the off chance that page tables are not
in RAM, continue to use the address_space_ld* functions.

Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20221011031911.2408754-11-richard.henderson@linaro.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
master
Richard Henderson 2022-10-10 20:18:57 -07:00 committed by Peter Maydell
parent 4e7a2c9860
commit f3639a64f6
3 changed files with 144 additions and 74 deletions

View File

@ -225,6 +225,8 @@ typedef struct CPUARMTBFlags {
target_ulong flags2;
} CPUARMTBFlags;
typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
typedef struct CPUArchState {
/* Regs for current mode. */
uint32_t regs[16];
@ -715,6 +717,9 @@ typedef struct CPUArchState {
struct CPUBreakpoint *cpu_breakpoint[16];
struct CPUWatchpoint *cpu_watchpoint[16];
/* Optional fault info across tlb lookup. */
ARMMMUFaultInfo *tlb_fi;
/* Fields up to this point are cleared by a CPU reset */
struct {} end_reset_fields;

View File

@ -9,6 +9,7 @@
#include "qemu/osdep.h"
#include "qemu/log.h"
#include "qemu/range.h"
#include "exec/exec-all.h"
#include "cpu.h"
#include "internals.h"
#include "idau.h"
@ -21,6 +22,7 @@ typedef struct S1Translate {
bool out_secure;
bool out_be;
hwaddr out_phys;
void *out_host;
} S1Translate;
static bool get_phys_addr_lpae(CPUARMState *env, S1Translate *ptw,
@ -200,7 +202,7 @@ static bool regime_translation_disabled(CPUARMState *env, ARMMMUIdx mmu_idx,
return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
}
static bool ptw_attrs_are_device(uint64_t hcr, ARMCacheAttrs cacheattrs)
static bool S2_attrs_are_device(uint64_t hcr, uint8_t attrs)
{
/*
* For an S1 page table walk, the stage 1 attributes are always
@ -211,11 +213,10 @@ static bool ptw_attrs_are_device(uint64_t hcr, ARMCacheAttrs cacheattrs)
* With HCR_EL2.FWB == 1 this is when descriptor bit [4] is 0, ie
* when cacheattrs.attrs bit [2] is 0.
*/
assert(cacheattrs.is_s2_format);
if (hcr & HCR_FWB) {
return (cacheattrs.attrs & 0x4) == 0;
return (attrs & 0x4) == 0;
} else {
return (cacheattrs.attrs & 0xc) == 0;
return (attrs & 0xc) == 0;
}
}
@ -224,32 +225,65 @@ static bool S1_ptw_translate(CPUARMState *env, S1Translate *ptw,
hwaddr addr, ARMMMUFaultInfo *fi)
{
bool is_secure = ptw->in_secure;
ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
ARMMMUIdx s2_mmu_idx = is_secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2;
bool s2_phys = false;
uint8_t pte_attrs;
bool pte_secure;
if (arm_mmu_idx_is_stage1_of_2(ptw->in_mmu_idx) &&
!regime_translation_disabled(env, s2_mmu_idx, is_secure)) {
GetPhysAddrResult s2 = {};
S1Translate s2ptw = {
.in_mmu_idx = s2_mmu_idx,
.in_secure = is_secure,
.in_debug = ptw->in_debug,
};
uint64_t hcr;
int ret;
if (!arm_mmu_idx_is_stage1_of_2(mmu_idx)
|| regime_translation_disabled(env, s2_mmu_idx, is_secure)) {
s2_mmu_idx = is_secure ? ARMMMUIdx_Phys_S : ARMMMUIdx_Phys_NS;
s2_phys = true;
}
ret = get_phys_addr_lpae(env, &s2ptw, addr, MMU_DATA_LOAD,
false, &s2, fi);
if (ret) {
assert(fi->type != ARMFault_None);
fi->s2addr = addr;
fi->stage2 = true;
fi->s1ptw = true;
fi->s1ns = !is_secure;
return false;
if (unlikely(ptw->in_debug)) {
/*
* From gdbstub, do not use softmmu so that we don't modify the
* state of the cpu at all, including softmmu tlb contents.
*/
if (s2_phys) {
ptw->out_phys = addr;
pte_attrs = 0;
pte_secure = is_secure;
} else {
S1Translate s2ptw = {
.in_mmu_idx = s2_mmu_idx,
.in_secure = is_secure,
.in_debug = true,
};
GetPhysAddrResult s2 = { };
if (!get_phys_addr_lpae(env, &s2ptw, addr, MMU_DATA_LOAD,
false, &s2, fi)) {
goto fail;
}
ptw->out_phys = s2.f.phys_addr;
pte_attrs = s2.cacheattrs.attrs;
pte_secure = s2.f.attrs.secure;
}
ptw->out_host = NULL;
} else {
CPUTLBEntryFull *full;
int flags;
hcr = arm_hcr_el2_eff_secstate(env, is_secure);
if ((hcr & HCR_PTW) && ptw_attrs_are_device(hcr, s2.cacheattrs)) {
env->tlb_fi = fi;
flags = probe_access_full(env, addr, MMU_DATA_LOAD,
arm_to_core_mmu_idx(s2_mmu_idx),
true, &ptw->out_host, &full, 0);
env->tlb_fi = NULL;
if (unlikely(flags & TLB_INVALID_MASK)) {
goto fail;
}
ptw->out_phys = full->phys_addr;
pte_attrs = full->pte_attrs;
pte_secure = full->attrs.secure;
}
if (!s2_phys) {
uint64_t hcr = arm_hcr_el2_eff_secstate(env, is_secure);
if ((hcr & HCR_PTW) && S2_attrs_are_device(hcr, pte_attrs)) {
/*
* PTW set and S1 walk touched S2 Device memory:
* generate Permission fault.
@ -261,25 +295,23 @@ static bool S1_ptw_translate(CPUARMState *env, S1Translate *ptw,
fi->s1ns = !is_secure;
return false;
}
if (arm_is_secure_below_el3(env)) {
/* Check if page table walk is to secure or non-secure PA space. */
if (is_secure) {
is_secure = !(env->cp15.vstcr_el2 & VSTCR_SW);
} else {
is_secure = !(env->cp15.vtcr_el2 & VTCR_NSW);
}
} else {
assert(!is_secure);
}
addr = s2.f.phys_addr;
}
ptw->out_secure = is_secure;
ptw->out_phys = addr;
ptw->out_be = regime_translation_big_endian(env, ptw->in_mmu_idx);
/* Check if page table walk is to secure or non-secure PA space. */
ptw->out_secure = (is_secure
&& !(pte_secure
? env->cp15.vstcr_el2 & VSTCR_SW
: env->cp15.vtcr_el2 & VTCR_NSW));
ptw->out_be = regime_translation_big_endian(env, mmu_idx);
return true;
fail:
assert(fi->type != ARMFault_None);
fi->s2addr = addr;
fi->stage2 = true;
fi->s1ptw = true;
fi->s1ns = !is_secure;
return false;
}
/* All loads done in the course of a page table walk go through here. */
@ -287,56 +319,78 @@ static uint32_t arm_ldl_ptw(CPUARMState *env, S1Translate *ptw, hwaddr addr,
ARMMMUFaultInfo *fi)
{
CPUState *cs = env_cpu(env);
MemTxAttrs attrs = {};
MemTxResult result = MEMTX_OK;
AddressSpace *as;
uint32_t data;
if (!S1_ptw_translate(env, ptw, addr, fi)) {
/* Failure. */
assert(fi->s1ptw);
return 0;
}
addr = ptw->out_phys;
attrs.secure = ptw->out_secure;
as = arm_addressspace(cs, attrs);
if (ptw->out_be) {
data = address_space_ldl_be(as, addr, attrs, &result);
if (likely(ptw->out_host)) {
/* Page tables are in RAM, and we have the host address. */
if (ptw->out_be) {
data = ldl_be_p(ptw->out_host);
} else {
data = ldl_le_p(ptw->out_host);
}
} else {
data = address_space_ldl_le(as, addr, attrs, &result);
/* Page tables are in MMIO. */
MemTxAttrs attrs = { .secure = ptw->out_secure };
AddressSpace *as = arm_addressspace(cs, attrs);
MemTxResult result = MEMTX_OK;
if (ptw->out_be) {
data = address_space_ldl_be(as, ptw->out_phys, attrs, &result);
} else {
data = address_space_ldl_le(as, ptw->out_phys, attrs, &result);
}
if (unlikely(result != MEMTX_OK)) {
fi->type = ARMFault_SyncExternalOnWalk;
fi->ea = arm_extabort_type(result);
return 0;
}
}
if (result == MEMTX_OK) {
return data;
}
fi->type = ARMFault_SyncExternalOnWalk;
fi->ea = arm_extabort_type(result);
return 0;
return data;
}
static uint64_t arm_ldq_ptw(CPUARMState *env, S1Translate *ptw, hwaddr addr,
ARMMMUFaultInfo *fi)
{
CPUState *cs = env_cpu(env);
MemTxAttrs attrs = {};
MemTxResult result = MEMTX_OK;
AddressSpace *as;
uint64_t data;
if (!S1_ptw_translate(env, ptw, addr, fi)) {
/* Failure. */
assert(fi->s1ptw);
return 0;
}
addr = ptw->out_phys;
attrs.secure = ptw->out_secure;
as = arm_addressspace(cs, attrs);
if (ptw->out_be) {
data = address_space_ldq_be(as, addr, attrs, &result);
if (likely(ptw->out_host)) {
/* Page tables are in RAM, and we have the host address. */
if (ptw->out_be) {
data = ldq_be_p(ptw->out_host);
} else {
data = ldq_le_p(ptw->out_host);
}
} else {
data = address_space_ldq_le(as, addr, attrs, &result);
/* Page tables are in MMIO. */
MemTxAttrs attrs = { .secure = ptw->out_secure };
AddressSpace *as = arm_addressspace(cs, attrs);
MemTxResult result = MEMTX_OK;
if (ptw->out_be) {
data = address_space_ldq_be(as, ptw->out_phys, attrs, &result);
} else {
data = address_space_ldq_le(as, ptw->out_phys, attrs, &result);
}
if (unlikely(result != MEMTX_OK)) {
fi->type = ARMFault_SyncExternalOnWalk;
fi->ea = arm_extabort_type(result);
return 0;
}
}
if (result == MEMTX_OK) {
return data;
}
fi->type = ARMFault_SyncExternalOnWalk;
fi->ea = arm_extabort_type(result);
return 0;
return data;
}
static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,

View File

@ -208,10 +208,21 @@ bool arm_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
bool probe, uintptr_t retaddr)
{
ARMCPU *cpu = ARM_CPU(cs);
ARMMMUFaultInfo fi = {};
GetPhysAddrResult res = {};
ARMMMUFaultInfo local_fi, *fi;
int ret;
/*
* Allow S1_ptw_translate to see any fault generated here.
* Since this may recurse, read and clear.
*/
fi = cpu->env.tlb_fi;
if (fi) {
cpu->env.tlb_fi = NULL;
} else {
fi = memset(&local_fi, 0, sizeof(local_fi));
}
/*
* Walk the page table and (if the mapping exists) add the page
* to the TLB. On success, return true. Otherwise, if probing,
@ -220,7 +231,7 @@ bool arm_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
*/
ret = get_phys_addr(&cpu->env, address, access_type,
core_to_arm_mmu_idx(&cpu->env, mmu_idx),
&res, &fi);
&res, fi);
if (likely(!ret)) {
/*
* Map a single [sub]page. Regions smaller than our declared
@ -242,7 +253,7 @@ bool arm_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
} else {
/* now we have a real cpu fault */
cpu_restore_state(cs, retaddr, true);
arm_deliver_fault(cpu, address, access_type, mmu_idx, &fi);
arm_deliver_fault(cpu, address, access_type, mmu_idx, fi);
}
}
#else