/* * SPDX-License-Identifier: GPL-2.0-or-later * Copyright (C) 2024 IBM Corp. * * ASPEED APB-OPB FSI interface * IBM On-chip Peripheral Bus */ #include "qemu/osdep.h" #include "qemu/log.h" #include "qom/object.h" #include "qapi/error.h" #include "trace.h" #include "hw/fsi/aspeed_apb2opb.h" #include "hw/qdev-core.h" #define TO_REG(x) (x >> 2) #define APB2OPB_VERSION TO_REG(0x00) #define APB2OPB_TRIGGER TO_REG(0x04) #define APB2OPB_CONTROL TO_REG(0x08) #define APB2OPB_CONTROL_OFF BE_GENMASK(31, 13) #define APB2OPB_OPB2FSI TO_REG(0x0c) #define APB2OPB_OPB2FSI_OFF BE_GENMASK(31, 22) #define APB2OPB_OPB0_SEL TO_REG(0x10) #define APB2OPB_OPB1_SEL TO_REG(0x28) #define APB2OPB_OPB_SEL_EN BIT(0) #define APB2OPB_OPB0_MODE TO_REG(0x14) #define APB2OPB_OPB1_MODE TO_REG(0x2c) #define APB2OPB_OPB_MODE_RD BIT(0) #define APB2OPB_OPB0_XFER TO_REG(0x18) #define APB2OPB_OPB1_XFER TO_REG(0x30) #define APB2OPB_OPB_XFER_FULL BIT(1) #define APB2OPB_OPB_XFER_HALF BIT(0) #define APB2OPB_OPB0_ADDR TO_REG(0x1c) #define APB2OPB_OPB0_WRITE_DATA TO_REG(0x20) #define APB2OPB_OPB1_ADDR TO_REG(0x34) #define APB2OPB_OPB1_WRITE_DATA TO_REG(0x38) #define APB2OPB_IRQ_STS TO_REG(0x48) #define APB2OPB_IRQ_STS_OPB1_TX_ACK BIT(17) #define APB2OPB_IRQ_STS_OPB0_TX_ACK BIT(16) #define APB2OPB_OPB0_WRITE_WORD_ENDIAN TO_REG(0x4c) #define APB2OPB_OPB0_WRITE_WORD_ENDIAN_BE 0x0011101b #define APB2OPB_OPB0_WRITE_BYTE_ENDIAN TO_REG(0x50) #define APB2OPB_OPB0_WRITE_BYTE_ENDIAN_BE 0x0c330f3f #define APB2OPB_OPB1_WRITE_WORD_ENDIAN TO_REG(0x54) #define APB2OPB_OPB1_WRITE_BYTE_ENDIAN TO_REG(0x58) #define APB2OPB_OPB0_READ_BYTE_ENDIAN TO_REG(0x5c) #define APB2OPB_OPB1_READ_BYTE_ENDIAN TO_REG(0x60) #define APB2OPB_OPB0_READ_WORD_ENDIAN_BE 0x00030b1b #define APB2OPB_OPB0_READ_DATA TO_REG(0x84) #define APB2OPB_OPB1_READ_DATA TO_REG(0x90) /* * The following magic values came from AST2600 data sheet * The register values are defined under section "FSI controller" * as initial values. */ static const uint32_t aspeed_apb2opb_reset[ASPEED_APB2OPB_NR_REGS] = { [APB2OPB_VERSION] = 0x000000a1, [APB2OPB_OPB0_WRITE_WORD_ENDIAN] = 0x0044eee4, [APB2OPB_OPB0_WRITE_BYTE_ENDIAN] = 0x0055aaff, [APB2OPB_OPB1_WRITE_WORD_ENDIAN] = 0x00117717, [APB2OPB_OPB1_WRITE_BYTE_ENDIAN] = 0xffaa5500, [APB2OPB_OPB0_READ_BYTE_ENDIAN] = 0x0044eee4, [APB2OPB_OPB1_READ_BYTE_ENDIAN] = 0x00117717 }; static void fsi_opb_fsi_master_address(FSIMasterState *fsi, hwaddr addr) { memory_region_transaction_begin(); memory_region_set_address(&fsi->iomem, addr); memory_region_transaction_commit(); } static void fsi_opb_opb2fsi_address(FSIMasterState *fsi, hwaddr addr) { memory_region_transaction_begin(); memory_region_set_address(&fsi->opb2fsi, addr); memory_region_transaction_commit(); } static uint64_t fsi_aspeed_apb2opb_read(void *opaque, hwaddr addr, unsigned size) { AspeedAPB2OPBState *s = ASPEED_APB2OPB(opaque); unsigned int reg = TO_REG(addr); trace_fsi_aspeed_apb2opb_read(addr, size); if (reg >= ASPEED_APB2OPB_NR_REGS) { qemu_log_mask(LOG_GUEST_ERROR, "%s: Out of bounds read: 0x%"HWADDR_PRIx" for %u\n", __func__, addr, size); return 0; } return s->regs[reg]; } static MemTxResult fsi_aspeed_apb2opb_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs, uint32_t *data, uint32_t size, bool is_write) { MemTxResult res; if (is_write) { switch (size) { case 4: address_space_stl_le(as, addr, *data, attrs, &res); break; case 2: address_space_stw_le(as, addr, *data, attrs, &res); break; case 1: address_space_stb(as, addr, *data, attrs, &res); break; default: g_assert_not_reached(); } } else { switch (size) { case 4: *data = address_space_ldl_le(as, addr, attrs, &res); break; case 2: *data = address_space_lduw_le(as, addr, attrs, &res); break; case 1: *data = address_space_ldub(as, addr, attrs, &res); break; default: g_assert_not_reached(); } } return res; } static void fsi_aspeed_apb2opb_write(void *opaque, hwaddr addr, uint64_t data, unsigned size) { AspeedAPB2OPBState *s = ASPEED_APB2OPB(opaque); unsigned int reg = TO_REG(addr); trace_fsi_aspeed_apb2opb_write(addr, size, data); if (reg >= ASPEED_APB2OPB_NR_REGS) { qemu_log_mask(LOG_GUEST_ERROR, "%s: Out of bounds write: %"HWADDR_PRIx" for %u\n", __func__, addr, size); return; } switch (reg) { case APB2OPB_CONTROL: fsi_opb_fsi_master_address(&s->fsi[0], data & APB2OPB_CONTROL_OFF); break; case APB2OPB_OPB2FSI: fsi_opb_opb2fsi_address(&s->fsi[0], data & APB2OPB_OPB2FSI_OFF); break; case APB2OPB_OPB0_WRITE_WORD_ENDIAN: if (data != APB2OPB_OPB0_WRITE_WORD_ENDIAN_BE) { qemu_log_mask(LOG_GUEST_ERROR, "%s: Bridge needs to be driven as BE (0x%x)\n", __func__, APB2OPB_OPB0_WRITE_WORD_ENDIAN_BE); } break; case APB2OPB_OPB0_WRITE_BYTE_ENDIAN: if (data != APB2OPB_OPB0_WRITE_BYTE_ENDIAN_BE) { qemu_log_mask(LOG_GUEST_ERROR, "%s: Bridge needs to be driven as BE (0x%x)\n", __func__, APB2OPB_OPB0_WRITE_BYTE_ENDIAN_BE); } break; case APB2OPB_OPB0_READ_BYTE_ENDIAN: if (data != APB2OPB_OPB0_READ_WORD_ENDIAN_BE) { qemu_log_mask(LOG_GUEST_ERROR, "%s: Bridge needs to be driven as BE (0x%x)\n", __func__, APB2OPB_OPB0_READ_WORD_ENDIAN_BE); } break; case APB2OPB_TRIGGER: { uint32_t opb, op_mode, op_size, op_addr, op_data; MemTxResult result; bool is_write; int index; AddressSpace *as; assert((s->regs[APB2OPB_OPB0_SEL] & APB2OPB_OPB_SEL_EN) ^ (s->regs[APB2OPB_OPB1_SEL] & APB2OPB_OPB_SEL_EN)); if (s->regs[APB2OPB_OPB0_SEL] & APB2OPB_OPB_SEL_EN) { opb = 0; op_mode = s->regs[APB2OPB_OPB0_MODE]; op_size = s->regs[APB2OPB_OPB0_XFER]; op_addr = s->regs[APB2OPB_OPB0_ADDR]; op_data = s->regs[APB2OPB_OPB0_WRITE_DATA]; } else if (s->regs[APB2OPB_OPB1_SEL] & APB2OPB_OPB_SEL_EN) { opb = 1; op_mode = s->regs[APB2OPB_OPB1_MODE]; op_size = s->regs[APB2OPB_OPB1_XFER]; op_addr = s->regs[APB2OPB_OPB1_ADDR]; op_data = s->regs[APB2OPB_OPB1_WRITE_DATA]; } else { qemu_log_mask(LOG_GUEST_ERROR, "%s: Invalid operation: 0x%"HWADDR_PRIx" for %u\n", __func__, addr, size); return; } if (op_size & ~(APB2OPB_OPB_XFER_HALF | APB2OPB_OPB_XFER_FULL)) { qemu_log_mask(LOG_GUEST_ERROR, "OPB transaction failed: Unrecognized access width: %d\n", op_size); return; } op_size += 1; is_write = !(op_mode & APB2OPB_OPB_MODE_RD); index = opb ? APB2OPB_OPB1_READ_DATA : APB2OPB_OPB0_READ_DATA; as = &s->opb[opb].as; result = fsi_aspeed_apb2opb_rw(as, op_addr, MEMTXATTRS_UNSPECIFIED, &op_data, op_size, is_write); if (result != MEMTX_OK) { qemu_log_mask(LOG_GUEST_ERROR, "%s: OPB %s failed @%08x\n", __func__, is_write ? "write" : "read", op_addr); return; } if (!is_write) { s->regs[index] = op_data; } s->regs[APB2OPB_IRQ_STS] |= opb ? APB2OPB_IRQ_STS_OPB1_TX_ACK : APB2OPB_IRQ_STS_OPB0_TX_ACK; break; } } s->regs[reg] = data; } static const struct MemoryRegionOps aspeed_apb2opb_ops = { .read = fsi_aspeed_apb2opb_read, .write = fsi_aspeed_apb2opb_write, .valid.max_access_size = 4, .valid.min_access_size = 4, .impl.max_access_size = 4, .impl.min_access_size = 4, .endianness = DEVICE_LITTLE_ENDIAN, }; static void fsi_aspeed_apb2opb_init(Object *o) { AspeedAPB2OPBState *s = ASPEED_APB2OPB(o); int i; for (i = 0; i < ASPEED_FSI_NUM; i++) { object_initialize_child(o, "fsi-master[*]", &s->fsi[i], TYPE_FSI_MASTER); } } static void fsi_aspeed_apb2opb_realize(DeviceState *dev, Error **errp) { SysBusDevice *sbd = SYS_BUS_DEVICE(dev); AspeedAPB2OPBState *s = ASPEED_APB2OPB(dev); int i; /* * TODO: The OPBus model initializes the OPB address space in * the .instance_init handler and this is problematic for test * device-introspect-test. To avoid a memory corruption and a QEMU * crash, qbus_init() should be called from realize(). Something to * improve. Possibly, OPBus could also be removed. */ for (i = 0; i < ASPEED_FSI_NUM; i++) { qbus_init(&s->opb[i], sizeof(s->opb[i]), TYPE_OP_BUS, DEVICE(s), NULL); } sysbus_init_irq(sbd, &s->irq); memory_region_init_io(&s->iomem, OBJECT(s), &aspeed_apb2opb_ops, s, TYPE_ASPEED_APB2OPB, 0x1000); sysbus_init_mmio(sbd, &s->iomem); for (i = 0; i < ASPEED_FSI_NUM; i++) { if (!qdev_realize(DEVICE(&s->fsi[i]), BUS(&s->opb[i]), errp)) { return; } memory_region_add_subregion(&s->opb[i].mr, 0x80000000, &s->fsi[i].iomem); memory_region_add_subregion(&s->opb[i].mr, 0xa0000000, &s->fsi[i].opb2fsi); } } static void fsi_aspeed_apb2opb_reset(DeviceState *dev) { AspeedAPB2OPBState *s = ASPEED_APB2OPB(dev); memcpy(s->regs, aspeed_apb2opb_reset, ASPEED_APB2OPB_NR_REGS); } static void fsi_aspeed_apb2opb_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); dc->desc = "ASPEED APB2OPB Bridge"; dc->realize = fsi_aspeed_apb2opb_realize; dc->reset = fsi_aspeed_apb2opb_reset; } static const TypeInfo aspeed_apb2opb_info = { .name = TYPE_ASPEED_APB2OPB, .parent = TYPE_SYS_BUS_DEVICE, .instance_init = fsi_aspeed_apb2opb_init, .instance_size = sizeof(AspeedAPB2OPBState), .class_init = fsi_aspeed_apb2opb_class_init, }; static void aspeed_apb2opb_register_types(void) { type_register_static(&aspeed_apb2opb_info); } type_init(aspeed_apb2opb_register_types); static void fsi_opb_init(Object *o) { OPBus *opb = OP_BUS(o); memory_region_init(&opb->mr, 0, TYPE_FSI_OPB, UINT32_MAX); address_space_init(&opb->as, &opb->mr, TYPE_FSI_OPB); } static const TypeInfo opb_info = { .name = TYPE_OP_BUS, .parent = TYPE_BUS, .instance_init = fsi_opb_init, .instance_size = sizeof(OPBus), }; static void fsi_opb_register_types(void) { type_register_static(&opb_info); } type_init(fsi_opb_register_types);