mirror_qemu/hw/i386/intel_iommu.c

4287 lines
136 KiB
C

/*
* QEMU emulation of an Intel IOMMU (VT-d)
* (DMA Remapping device)
*
* Copyright (C) 2013 Knut Omang, Oracle <knut.omang@oracle.com>
* Copyright (C) 2014 Le Tan, <tamlokveer@gmail.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License along
* with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qemu/error-report.h"
#include "qemu/main-loop.h"
#include "qapi/error.h"
#include "hw/sysbus.h"
#include "intel_iommu_internal.h"
#include "hw/pci/pci.h"
#include "hw/pci/pci_bus.h"
#include "hw/qdev-properties.h"
#include "hw/i386/pc.h"
#include "hw/i386/apic-msidef.h"
#include "hw/i386/x86-iommu.h"
#include "hw/pci-host/q35.h"
#include "sysemu/kvm.h"
#include "sysemu/dma.h"
#include "sysemu/sysemu.h"
#include "hw/i386/apic_internal.h"
#include "kvm/kvm_i386.h"
#include "migration/vmstate.h"
#include "trace.h"
/* context entry operations */
#define VTD_CE_GET_RID2PASID(ce) \
((ce)->val[1] & VTD_SM_CONTEXT_ENTRY_RID2PASID_MASK)
#define VTD_CE_GET_PASID_DIR_TABLE(ce) \
((ce)->val[0] & VTD_PASID_DIR_BASE_ADDR_MASK)
/* pe operations */
#define VTD_PE_GET_TYPE(pe) ((pe)->val[0] & VTD_SM_PASID_ENTRY_PGTT)
#define VTD_PE_GET_LEVEL(pe) (2 + (((pe)->val[0] >> 2) & VTD_SM_PASID_ENTRY_AW))
/*
* PCI bus number (or SID) is not reliable since the device is usaully
* initialized before guest can configure the PCI bridge
* (SECONDARY_BUS_NUMBER).
*/
struct vtd_as_key {
PCIBus *bus;
uint8_t devfn;
uint32_t pasid;
};
struct vtd_iotlb_key {
uint64_t gfn;
uint32_t pasid;
uint16_t sid;
uint8_t level;
};
static void vtd_address_space_refresh_all(IntelIOMMUState *s);
static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n);
static void vtd_panic_require_caching_mode(void)
{
error_report("We need to set caching-mode=on for intel-iommu to enable "
"device assignment with IOMMU protection.");
exit(1);
}
static void vtd_define_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val,
uint64_t wmask, uint64_t w1cmask)
{
stq_le_p(&s->csr[addr], val);
stq_le_p(&s->wmask[addr], wmask);
stq_le_p(&s->w1cmask[addr], w1cmask);
}
static void vtd_define_quad_wo(IntelIOMMUState *s, hwaddr addr, uint64_t mask)
{
stq_le_p(&s->womask[addr], mask);
}
static void vtd_define_long(IntelIOMMUState *s, hwaddr addr, uint32_t val,
uint32_t wmask, uint32_t w1cmask)
{
stl_le_p(&s->csr[addr], val);
stl_le_p(&s->wmask[addr], wmask);
stl_le_p(&s->w1cmask[addr], w1cmask);
}
static void vtd_define_long_wo(IntelIOMMUState *s, hwaddr addr, uint32_t mask)
{
stl_le_p(&s->womask[addr], mask);
}
/* "External" get/set operations */
static void vtd_set_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val)
{
uint64_t oldval = ldq_le_p(&s->csr[addr]);
uint64_t wmask = ldq_le_p(&s->wmask[addr]);
uint64_t w1cmask = ldq_le_p(&s->w1cmask[addr]);
stq_le_p(&s->csr[addr],
((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
}
static void vtd_set_long(IntelIOMMUState *s, hwaddr addr, uint32_t val)
{
uint32_t oldval = ldl_le_p(&s->csr[addr]);
uint32_t wmask = ldl_le_p(&s->wmask[addr]);
uint32_t w1cmask = ldl_le_p(&s->w1cmask[addr]);
stl_le_p(&s->csr[addr],
((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
}
static uint64_t vtd_get_quad(IntelIOMMUState *s, hwaddr addr)
{
uint64_t val = ldq_le_p(&s->csr[addr]);
uint64_t womask = ldq_le_p(&s->womask[addr]);
return val & ~womask;
}
static uint32_t vtd_get_long(IntelIOMMUState *s, hwaddr addr)
{
uint32_t val = ldl_le_p(&s->csr[addr]);
uint32_t womask = ldl_le_p(&s->womask[addr]);
return val & ~womask;
}
/* "Internal" get/set operations */
static uint64_t vtd_get_quad_raw(IntelIOMMUState *s, hwaddr addr)
{
return ldq_le_p(&s->csr[addr]);
}
static uint32_t vtd_get_long_raw(IntelIOMMUState *s, hwaddr addr)
{
return ldl_le_p(&s->csr[addr]);
}
static void vtd_set_quad_raw(IntelIOMMUState *s, hwaddr addr, uint64_t val)
{
stq_le_p(&s->csr[addr], val);
}
static uint32_t vtd_set_clear_mask_long(IntelIOMMUState *s, hwaddr addr,
uint32_t clear, uint32_t mask)
{
uint32_t new_val = (ldl_le_p(&s->csr[addr]) & ~clear) | mask;
stl_le_p(&s->csr[addr], new_val);
return new_val;
}
static uint64_t vtd_set_clear_mask_quad(IntelIOMMUState *s, hwaddr addr,
uint64_t clear, uint64_t mask)
{
uint64_t new_val = (ldq_le_p(&s->csr[addr]) & ~clear) | mask;
stq_le_p(&s->csr[addr], new_val);
return new_val;
}
static inline void vtd_iommu_lock(IntelIOMMUState *s)
{
qemu_mutex_lock(&s->iommu_lock);
}
static inline void vtd_iommu_unlock(IntelIOMMUState *s)
{
qemu_mutex_unlock(&s->iommu_lock);
}
static void vtd_update_scalable_state(IntelIOMMUState *s)
{
uint64_t val = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
if (s->scalable_mode) {
s->root_scalable = val & VTD_RTADDR_SMT;
}
}
static void vtd_update_iq_dw(IntelIOMMUState *s)
{
uint64_t val = vtd_get_quad_raw(s, DMAR_IQA_REG);
if (s->ecap & VTD_ECAP_SMTS &&
val & VTD_IQA_DW_MASK) {
s->iq_dw = true;
} else {
s->iq_dw = false;
}
}
/* Whether the address space needs to notify new mappings */
static inline gboolean vtd_as_has_map_notifier(VTDAddressSpace *as)
{
return as->notifier_flags & IOMMU_NOTIFIER_MAP;
}
/* GHashTable functions */
static gboolean vtd_iotlb_equal(gconstpointer v1, gconstpointer v2)
{
const struct vtd_iotlb_key *key1 = v1;
const struct vtd_iotlb_key *key2 = v2;
return key1->sid == key2->sid &&
key1->pasid == key2->pasid &&
key1->level == key2->level &&
key1->gfn == key2->gfn;
}
static guint vtd_iotlb_hash(gconstpointer v)
{
const struct vtd_iotlb_key *key = v;
uint64_t hash64 = key->gfn | ((uint64_t)(key->sid) << VTD_IOTLB_SID_SHIFT) |
(uint64_t)(key->level - 1) << VTD_IOTLB_LVL_SHIFT |
(uint64_t)(key->pasid) << VTD_IOTLB_PASID_SHIFT;
return (guint)((hash64 >> 32) ^ (hash64 & 0xffffffffU));
}
static gboolean vtd_as_equal(gconstpointer v1, gconstpointer v2)
{
const struct vtd_as_key *key1 = v1;
const struct vtd_as_key *key2 = v2;
return (key1->bus == key2->bus) && (key1->devfn == key2->devfn) &&
(key1->pasid == key2->pasid);
}
/*
* Note that we use pointer to PCIBus as the key, so hashing/shifting
* based on the pointer value is intended. Note that we deal with
* collisions through vtd_as_equal().
*/
static guint vtd_as_hash(gconstpointer v)
{
const struct vtd_as_key *key = v;
guint value = (guint)(uintptr_t)key->bus;
return (guint)(value << 8 | key->devfn);
}
static gboolean vtd_hash_remove_by_domain(gpointer key, gpointer value,
gpointer user_data)
{
VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
uint16_t domain_id = *(uint16_t *)user_data;
return entry->domain_id == domain_id;
}
/* The shift of an addr for a certain level of paging structure */
static inline uint32_t vtd_slpt_level_shift(uint32_t level)
{
assert(level != 0);
return VTD_PAGE_SHIFT_4K + (level - 1) * VTD_SL_LEVEL_BITS;
}
static inline uint64_t vtd_slpt_level_page_mask(uint32_t level)
{
return ~((1ULL << vtd_slpt_level_shift(level)) - 1);
}
static gboolean vtd_hash_remove_by_page(gpointer key, gpointer value,
gpointer user_data)
{
VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
VTDIOTLBPageInvInfo *info = (VTDIOTLBPageInvInfo *)user_data;
uint64_t gfn = (info->addr >> VTD_PAGE_SHIFT_4K) & info->mask;
uint64_t gfn_tlb = (info->addr & entry->mask) >> VTD_PAGE_SHIFT_4K;
return (entry->domain_id == info->domain_id) &&
(((entry->gfn & info->mask) == gfn) ||
(entry->gfn == gfn_tlb));
}
/* Reset all the gen of VTDAddressSpace to zero and set the gen of
* IntelIOMMUState to 1. Must be called with IOMMU lock held.
*/
static void vtd_reset_context_cache_locked(IntelIOMMUState *s)
{
VTDAddressSpace *vtd_as;
GHashTableIter as_it;
trace_vtd_context_cache_reset();
g_hash_table_iter_init(&as_it, s->vtd_address_spaces);
while (g_hash_table_iter_next(&as_it, NULL, (void **)&vtd_as)) {
vtd_as->context_cache_entry.context_cache_gen = 0;
}
s->context_cache_gen = 1;
}
/* Must be called with IOMMU lock held. */
static void vtd_reset_iotlb_locked(IntelIOMMUState *s)
{
assert(s->iotlb);
g_hash_table_remove_all(s->iotlb);
}
static void vtd_reset_iotlb(IntelIOMMUState *s)
{
vtd_iommu_lock(s);
vtd_reset_iotlb_locked(s);
vtd_iommu_unlock(s);
}
static void vtd_reset_caches(IntelIOMMUState *s)
{
vtd_iommu_lock(s);
vtd_reset_iotlb_locked(s);
vtd_reset_context_cache_locked(s);
vtd_iommu_unlock(s);
}
static uint64_t vtd_get_iotlb_gfn(hwaddr addr, uint32_t level)
{
return (addr & vtd_slpt_level_page_mask(level)) >> VTD_PAGE_SHIFT_4K;
}
/* Must be called with IOMMU lock held */
static VTDIOTLBEntry *vtd_lookup_iotlb(IntelIOMMUState *s, uint16_t source_id,
uint32_t pasid, hwaddr addr)
{
struct vtd_iotlb_key key;
VTDIOTLBEntry *entry;
int level;
for (level = VTD_SL_PT_LEVEL; level < VTD_SL_PML4_LEVEL; level++) {
key.gfn = vtd_get_iotlb_gfn(addr, level);
key.level = level;
key.sid = source_id;
key.pasid = pasid;
entry = g_hash_table_lookup(s->iotlb, &key);
if (entry) {
goto out;
}
}
out:
return entry;
}
/* Must be with IOMMU lock held */
static void vtd_update_iotlb(IntelIOMMUState *s, uint16_t source_id,
uint16_t domain_id, hwaddr addr, uint64_t slpte,
uint8_t access_flags, uint32_t level,
uint32_t pasid)
{
VTDIOTLBEntry *entry = g_malloc(sizeof(*entry));
struct vtd_iotlb_key *key = g_malloc(sizeof(*key));
uint64_t gfn = vtd_get_iotlb_gfn(addr, level);
trace_vtd_iotlb_page_update(source_id, addr, slpte, domain_id);
if (g_hash_table_size(s->iotlb) >= VTD_IOTLB_MAX_SIZE) {
trace_vtd_iotlb_reset("iotlb exceeds size limit");
vtd_reset_iotlb_locked(s);
}
entry->gfn = gfn;
entry->domain_id = domain_id;
entry->slpte = slpte;
entry->access_flags = access_flags;
entry->mask = vtd_slpt_level_page_mask(level);
entry->pasid = pasid;
key->gfn = gfn;
key->sid = source_id;
key->level = level;
key->pasid = pasid;
g_hash_table_replace(s->iotlb, key, entry);
}
/* Given the reg addr of both the message data and address, generate an
* interrupt via MSI.
*/
static void vtd_generate_interrupt(IntelIOMMUState *s, hwaddr mesg_addr_reg,
hwaddr mesg_data_reg)
{
MSIMessage msi;
assert(mesg_data_reg < DMAR_REG_SIZE);
assert(mesg_addr_reg < DMAR_REG_SIZE);
msi.address = vtd_get_long_raw(s, mesg_addr_reg);
msi.data = vtd_get_long_raw(s, mesg_data_reg);
trace_vtd_irq_generate(msi.address, msi.data);
apic_get_class(NULL)->send_msi(&msi);
}
/* Generate a fault event to software via MSI if conditions are met.
* Notice that the value of FSTS_REG being passed to it should be the one
* before any update.
*/
static void vtd_generate_fault_event(IntelIOMMUState *s, uint32_t pre_fsts)
{
if (pre_fsts & VTD_FSTS_PPF || pre_fsts & VTD_FSTS_PFO ||
pre_fsts & VTD_FSTS_IQE) {
error_report_once("There are previous interrupt conditions "
"to be serviced by software, fault event "
"is not generated");
return;
}
vtd_set_clear_mask_long(s, DMAR_FECTL_REG, 0, VTD_FECTL_IP);
if (vtd_get_long_raw(s, DMAR_FECTL_REG) & VTD_FECTL_IM) {
error_report_once("Interrupt Mask set, irq is not generated");
} else {
vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
}
}
/* Check if the Fault (F) field of the Fault Recording Register referenced by
* @index is Set.
*/
static bool vtd_is_frcd_set(IntelIOMMUState *s, uint16_t index)
{
/* Each reg is 128-bit */
hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
addr += 8; /* Access the high 64-bit half */
assert(index < DMAR_FRCD_REG_NR);
return vtd_get_quad_raw(s, addr) & VTD_FRCD_F;
}
/* Update the PPF field of Fault Status Register.
* Should be called whenever change the F field of any fault recording
* registers.
*/
static void vtd_update_fsts_ppf(IntelIOMMUState *s)
{
uint32_t i;
uint32_t ppf_mask = 0;
for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
if (vtd_is_frcd_set(s, i)) {
ppf_mask = VTD_FSTS_PPF;
break;
}
}
vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_PPF, ppf_mask);
trace_vtd_fsts_ppf(!!ppf_mask);
}
static void vtd_set_frcd_and_update_ppf(IntelIOMMUState *s, uint16_t index)
{
/* Each reg is 128-bit */
hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
addr += 8; /* Access the high 64-bit half */
assert(index < DMAR_FRCD_REG_NR);
vtd_set_clear_mask_quad(s, addr, 0, VTD_FRCD_F);
vtd_update_fsts_ppf(s);
}
/* Must not update F field now, should be done later */
static void vtd_record_frcd(IntelIOMMUState *s, uint16_t index,
uint64_t hi, uint64_t lo)
{
hwaddr frcd_reg_addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
assert(index < DMAR_FRCD_REG_NR);
vtd_set_quad_raw(s, frcd_reg_addr, lo);
vtd_set_quad_raw(s, frcd_reg_addr + 8, hi);
trace_vtd_frr_new(index, hi, lo);
}
/* Try to collapse multiple pending faults from the same requester */
static bool vtd_try_collapse_fault(IntelIOMMUState *s, uint16_t source_id)
{
uint32_t i;
uint64_t frcd_reg;
hwaddr addr = DMAR_FRCD_REG_OFFSET + 8; /* The high 64-bit half */
for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
frcd_reg = vtd_get_quad_raw(s, addr);
if ((frcd_reg & VTD_FRCD_F) &&
((frcd_reg & VTD_FRCD_SID_MASK) == source_id)) {
return true;
}
addr += 16; /* 128-bit for each */
}
return false;
}
/* Log and report an DMAR (address translation) fault to software */
static void vtd_report_frcd_fault(IntelIOMMUState *s, uint64_t source_id,
uint64_t hi, uint64_t lo)
{
uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
if (fsts_reg & VTD_FSTS_PFO) {
error_report_once("New fault is not recorded due to "
"Primary Fault Overflow");
return;
}
if (vtd_try_collapse_fault(s, source_id)) {
error_report_once("New fault is not recorded due to "
"compression of faults");
return;
}
if (vtd_is_frcd_set(s, s->next_frcd_reg)) {
error_report_once("Next Fault Recording Reg is used, "
"new fault is not recorded, set PFO field");
vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_PFO);
return;
}
vtd_record_frcd(s, s->next_frcd_reg, hi, lo);
if (fsts_reg & VTD_FSTS_PPF) {
error_report_once("There are pending faults already, "
"fault event is not generated");
vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg);
s->next_frcd_reg++;
if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
s->next_frcd_reg = 0;
}
} else {
vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_FRI_MASK,
VTD_FSTS_FRI(s->next_frcd_reg));
vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg); /* Will set PPF */
s->next_frcd_reg++;
if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
s->next_frcd_reg = 0;
}
/* This case actually cause the PPF to be Set.
* So generate fault event (interrupt).
*/
vtd_generate_fault_event(s, fsts_reg);
}
}
/* Log and report an DMAR (address translation) fault to software */
static void vtd_report_dmar_fault(IntelIOMMUState *s, uint16_t source_id,
hwaddr addr, VTDFaultReason fault,
bool is_write, bool is_pasid,
uint32_t pasid)
{
uint64_t hi, lo;
assert(fault < VTD_FR_MAX);
trace_vtd_dmar_fault(source_id, fault, addr, is_write);
lo = VTD_FRCD_FI(addr);
hi = VTD_FRCD_SID(source_id) | VTD_FRCD_FR(fault) |
VTD_FRCD_PV(pasid) | VTD_FRCD_PP(is_pasid);
if (!is_write) {
hi |= VTD_FRCD_T;
}
vtd_report_frcd_fault(s, source_id, hi, lo);
}
static void vtd_report_ir_fault(IntelIOMMUState *s, uint64_t source_id,
VTDFaultReason fault, uint16_t index)
{
uint64_t hi, lo;
lo = VTD_FRCD_IR_IDX(index);
hi = VTD_FRCD_SID(source_id) | VTD_FRCD_FR(fault);
vtd_report_frcd_fault(s, source_id, hi, lo);
}
/* Handle Invalidation Queue Errors of queued invalidation interface error
* conditions.
*/
static void vtd_handle_inv_queue_error(IntelIOMMUState *s)
{
uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_IQE);
vtd_generate_fault_event(s, fsts_reg);
}
/* Set the IWC field and try to generate an invalidation completion interrupt */
static void vtd_generate_completion_event(IntelIOMMUState *s)
{
if (vtd_get_long_raw(s, DMAR_ICS_REG) & VTD_ICS_IWC) {
trace_vtd_inv_desc_wait_irq("One pending, skip current");
return;
}
vtd_set_clear_mask_long(s, DMAR_ICS_REG, 0, VTD_ICS_IWC);
vtd_set_clear_mask_long(s, DMAR_IECTL_REG, 0, VTD_IECTL_IP);
if (vtd_get_long_raw(s, DMAR_IECTL_REG) & VTD_IECTL_IM) {
trace_vtd_inv_desc_wait_irq("IM in IECTL_REG is set, "
"new event not generated");
return;
} else {
/* Generate the interrupt event */
trace_vtd_inv_desc_wait_irq("Generating complete event");
vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
}
}
static inline bool vtd_root_entry_present(IntelIOMMUState *s,
VTDRootEntry *re,
uint8_t devfn)
{
if (s->root_scalable && devfn > UINT8_MAX / 2) {
return re->hi & VTD_ROOT_ENTRY_P;
}
return re->lo & VTD_ROOT_ENTRY_P;
}
static int vtd_get_root_entry(IntelIOMMUState *s, uint8_t index,
VTDRootEntry *re)
{
dma_addr_t addr;
addr = s->root + index * sizeof(*re);
if (dma_memory_read(&address_space_memory, addr,
re, sizeof(*re), MEMTXATTRS_UNSPECIFIED)) {
re->lo = 0;
return -VTD_FR_ROOT_TABLE_INV;
}
re->lo = le64_to_cpu(re->lo);
re->hi = le64_to_cpu(re->hi);
return 0;
}
static inline bool vtd_ce_present(VTDContextEntry *context)
{
return context->lo & VTD_CONTEXT_ENTRY_P;
}
static int vtd_get_context_entry_from_root(IntelIOMMUState *s,
VTDRootEntry *re,
uint8_t index,
VTDContextEntry *ce)
{
dma_addr_t addr, ce_size;
/* we have checked that root entry is present */
ce_size = s->root_scalable ? VTD_CTX_ENTRY_SCALABLE_SIZE :
VTD_CTX_ENTRY_LEGACY_SIZE;
if (s->root_scalable && index > UINT8_MAX / 2) {
index = index & (~VTD_DEVFN_CHECK_MASK);
addr = re->hi & VTD_ROOT_ENTRY_CTP;
} else {
addr = re->lo & VTD_ROOT_ENTRY_CTP;
}
addr = addr + index * ce_size;
if (dma_memory_read(&address_space_memory, addr,
ce, ce_size, MEMTXATTRS_UNSPECIFIED)) {
return -VTD_FR_CONTEXT_TABLE_INV;
}
ce->lo = le64_to_cpu(ce->lo);
ce->hi = le64_to_cpu(ce->hi);
if (ce_size == VTD_CTX_ENTRY_SCALABLE_SIZE) {
ce->val[2] = le64_to_cpu(ce->val[2]);
ce->val[3] = le64_to_cpu(ce->val[3]);
}
return 0;
}
static inline dma_addr_t vtd_ce_get_slpt_base(VTDContextEntry *ce)
{
return ce->lo & VTD_CONTEXT_ENTRY_SLPTPTR;
}
static inline uint64_t vtd_get_slpte_addr(uint64_t slpte, uint8_t aw)
{
return slpte & VTD_SL_PT_BASE_ADDR_MASK(aw);
}
/* Whether the pte indicates the address of the page frame */
static inline bool vtd_is_last_slpte(uint64_t slpte, uint32_t level)
{
return level == VTD_SL_PT_LEVEL || (slpte & VTD_SL_PT_PAGE_SIZE_MASK);
}
/* Get the content of a spte located in @base_addr[@index] */
static uint64_t vtd_get_slpte(dma_addr_t base_addr, uint32_t index)
{
uint64_t slpte;
assert(index < VTD_SL_PT_ENTRY_NR);
if (dma_memory_read(&address_space_memory,
base_addr + index * sizeof(slpte),
&slpte, sizeof(slpte), MEMTXATTRS_UNSPECIFIED)) {
slpte = (uint64_t)-1;
return slpte;
}
slpte = le64_to_cpu(slpte);
return slpte;
}
/* Given an iova and the level of paging structure, return the offset
* of current level.
*/
static inline uint32_t vtd_iova_level_offset(uint64_t iova, uint32_t level)
{
return (iova >> vtd_slpt_level_shift(level)) &
((1ULL << VTD_SL_LEVEL_BITS) - 1);
}
/* Check Capability Register to see if the @level of page-table is supported */
static inline bool vtd_is_level_supported(IntelIOMMUState *s, uint32_t level)
{
return VTD_CAP_SAGAW_MASK & s->cap &
(1ULL << (level - 2 + VTD_CAP_SAGAW_SHIFT));
}
/* Return true if check passed, otherwise false */
static inline bool vtd_pe_type_check(X86IOMMUState *x86_iommu,
VTDPASIDEntry *pe)
{
switch (VTD_PE_GET_TYPE(pe)) {
case VTD_SM_PASID_ENTRY_FLT:
case VTD_SM_PASID_ENTRY_SLT:
case VTD_SM_PASID_ENTRY_NESTED:
break;
case VTD_SM_PASID_ENTRY_PT:
if (!x86_iommu->pt_supported) {
return false;
}
break;
default:
/* Unknown type */
return false;
}
return true;
}
static inline bool vtd_pdire_present(VTDPASIDDirEntry *pdire)
{
return pdire->val & 1;
}
/**
* Caller of this function should check present bit if wants
* to use pdir entry for further usage except for fpd bit check.
*/
static int vtd_get_pdire_from_pdir_table(dma_addr_t pasid_dir_base,
uint32_t pasid,
VTDPASIDDirEntry *pdire)
{
uint32_t index;
dma_addr_t addr, entry_size;
index = VTD_PASID_DIR_INDEX(pasid);
entry_size = VTD_PASID_DIR_ENTRY_SIZE;
addr = pasid_dir_base + index * entry_size;
if (dma_memory_read(&address_space_memory, addr,
pdire, entry_size, MEMTXATTRS_UNSPECIFIED)) {
return -VTD_FR_PASID_TABLE_INV;
}
pdire->val = le64_to_cpu(pdire->val);
return 0;
}
static inline bool vtd_pe_present(VTDPASIDEntry *pe)
{
return pe->val[0] & VTD_PASID_ENTRY_P;
}
static int vtd_get_pe_in_pasid_leaf_table(IntelIOMMUState *s,
uint32_t pasid,
dma_addr_t addr,
VTDPASIDEntry *pe)
{
uint32_t index;
dma_addr_t entry_size;
X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
index = VTD_PASID_TABLE_INDEX(pasid);
entry_size = VTD_PASID_ENTRY_SIZE;
addr = addr + index * entry_size;
if (dma_memory_read(&address_space_memory, addr,
pe, entry_size, MEMTXATTRS_UNSPECIFIED)) {
return -VTD_FR_PASID_TABLE_INV;
}
for (size_t i = 0; i < ARRAY_SIZE(pe->val); i++) {
pe->val[i] = le64_to_cpu(pe->val[i]);
}
/* Do translation type check */
if (!vtd_pe_type_check(x86_iommu, pe)) {
return -VTD_FR_PASID_TABLE_INV;
}
if (!vtd_is_level_supported(s, VTD_PE_GET_LEVEL(pe))) {
return -VTD_FR_PASID_TABLE_INV;
}
return 0;
}
/**
* Caller of this function should check present bit if wants
* to use pasid entry for further usage except for fpd bit check.
*/
static int vtd_get_pe_from_pdire(IntelIOMMUState *s,
uint32_t pasid,
VTDPASIDDirEntry *pdire,
VTDPASIDEntry *pe)
{
dma_addr_t addr = pdire->val & VTD_PASID_TABLE_BASE_ADDR_MASK;
return vtd_get_pe_in_pasid_leaf_table(s, pasid, addr, pe);
}
/**
* This function gets a pasid entry from a specified pasid
* table (includes dir and leaf table) with a specified pasid.
* Sanity check should be done to ensure return a present
* pasid entry to caller.
*/
static int vtd_get_pe_from_pasid_table(IntelIOMMUState *s,
dma_addr_t pasid_dir_base,
uint32_t pasid,
VTDPASIDEntry *pe)
{
int ret;
VTDPASIDDirEntry pdire;
ret = vtd_get_pdire_from_pdir_table(pasid_dir_base,
pasid, &pdire);
if (ret) {
return ret;
}
if (!vtd_pdire_present(&pdire)) {
return -VTD_FR_PASID_TABLE_INV;
}
ret = vtd_get_pe_from_pdire(s, pasid, &pdire, pe);
if (ret) {
return ret;
}
if (!vtd_pe_present(pe)) {
return -VTD_FR_PASID_TABLE_INV;
}
return 0;
}
static int vtd_ce_get_rid2pasid_entry(IntelIOMMUState *s,
VTDContextEntry *ce,
VTDPASIDEntry *pe,
uint32_t pasid)
{
dma_addr_t pasid_dir_base;
int ret = 0;
if (pasid == PCI_NO_PASID) {
pasid = VTD_CE_GET_RID2PASID(ce);
}
pasid_dir_base = VTD_CE_GET_PASID_DIR_TABLE(ce);
ret = vtd_get_pe_from_pasid_table(s, pasid_dir_base, pasid, pe);
return ret;
}
static int vtd_ce_get_pasid_fpd(IntelIOMMUState *s,
VTDContextEntry *ce,
bool *pe_fpd_set,
uint32_t pasid)
{
int ret;
dma_addr_t pasid_dir_base;
VTDPASIDDirEntry pdire;
VTDPASIDEntry pe;
if (pasid == PCI_NO_PASID) {
pasid = VTD_CE_GET_RID2PASID(ce);
}
pasid_dir_base = VTD_CE_GET_PASID_DIR_TABLE(ce);
/*
* No present bit check since fpd is meaningful even
* if the present bit is clear.
*/
ret = vtd_get_pdire_from_pdir_table(pasid_dir_base, pasid, &pdire);
if (ret) {
return ret;
}
if (pdire.val & VTD_PASID_DIR_FPD) {
*pe_fpd_set = true;
return 0;
}
if (!vtd_pdire_present(&pdire)) {
return -VTD_FR_PASID_TABLE_INV;
}
/*
* No present bit check since fpd is meaningful even
* if the present bit is clear.
*/
ret = vtd_get_pe_from_pdire(s, pasid, &pdire, &pe);
if (ret) {
return ret;
}
if (pe.val[0] & VTD_PASID_ENTRY_FPD) {
*pe_fpd_set = true;
}
return 0;
}
/* Get the page-table level that hardware should use for the second-level
* page-table walk from the Address Width field of context-entry.
*/
static inline uint32_t vtd_ce_get_level(VTDContextEntry *ce)
{
return 2 + (ce->hi & VTD_CONTEXT_ENTRY_AW);
}
static uint32_t vtd_get_iova_level(IntelIOMMUState *s,
VTDContextEntry *ce,
uint32_t pasid)
{
VTDPASIDEntry pe;
if (s->root_scalable) {
vtd_ce_get_rid2pasid_entry(s, ce, &pe, pasid);
return VTD_PE_GET_LEVEL(&pe);
}
return vtd_ce_get_level(ce);
}
static inline uint32_t vtd_ce_get_agaw(VTDContextEntry *ce)
{
return 30 + (ce->hi & VTD_CONTEXT_ENTRY_AW) * 9;
}
static uint32_t vtd_get_iova_agaw(IntelIOMMUState *s,
VTDContextEntry *ce,
uint32_t pasid)
{
VTDPASIDEntry pe;
if (s->root_scalable) {
vtd_ce_get_rid2pasid_entry(s, ce, &pe, pasid);
return 30 + ((pe.val[0] >> 2) & VTD_SM_PASID_ENTRY_AW) * 9;
}
return vtd_ce_get_agaw(ce);
}
static inline uint32_t vtd_ce_get_type(VTDContextEntry *ce)
{
return ce->lo & VTD_CONTEXT_ENTRY_TT;
}
/* Only for Legacy Mode. Return true if check passed, otherwise false */
static inline bool vtd_ce_type_check(X86IOMMUState *x86_iommu,
VTDContextEntry *ce)
{
switch (vtd_ce_get_type(ce)) {
case VTD_CONTEXT_TT_MULTI_LEVEL:
/* Always supported */
break;
case VTD_CONTEXT_TT_DEV_IOTLB:
if (!x86_iommu->dt_supported) {
error_report_once("%s: DT specified but not supported", __func__);
return false;
}
break;
case VTD_CONTEXT_TT_PASS_THROUGH:
if (!x86_iommu->pt_supported) {
error_report_once("%s: PT specified but not supported", __func__);
return false;
}
break;
default:
/* Unknown type */
error_report_once("%s: unknown ce type: %"PRIu32, __func__,
vtd_ce_get_type(ce));
return false;
}
return true;
}
static inline uint64_t vtd_iova_limit(IntelIOMMUState *s,
VTDContextEntry *ce, uint8_t aw,
uint32_t pasid)
{
uint32_t ce_agaw = vtd_get_iova_agaw(s, ce, pasid);
return 1ULL << MIN(ce_agaw, aw);
}
/* Return true if IOVA passes range check, otherwise false. */
static inline bool vtd_iova_range_check(IntelIOMMUState *s,
uint64_t iova, VTDContextEntry *ce,
uint8_t aw, uint32_t pasid)
{
/*
* Check if @iova is above 2^X-1, where X is the minimum of MGAW
* in CAP_REG and AW in context-entry.
*/
return !(iova & ~(vtd_iova_limit(s, ce, aw, pasid) - 1));
}
static dma_addr_t vtd_get_iova_pgtbl_base(IntelIOMMUState *s,
VTDContextEntry *ce,
uint32_t pasid)
{
VTDPASIDEntry pe;
if (s->root_scalable) {
vtd_ce_get_rid2pasid_entry(s, ce, &pe, pasid);
return pe.val[0] & VTD_SM_PASID_ENTRY_SLPTPTR;
}
return vtd_ce_get_slpt_base(ce);
}
/*
* Rsvd field masks for spte:
* vtd_spte_rsvd 4k pages
* vtd_spte_rsvd_large large pages
*
* We support only 3-level and 4-level page tables (see vtd_init() which
* sets only VTD_CAP_SAGAW_39bit and maybe VTD_CAP_SAGAW_48bit bits in s->cap).
*/
#define VTD_SPTE_RSVD_LEN 5
static uint64_t vtd_spte_rsvd[VTD_SPTE_RSVD_LEN];
static uint64_t vtd_spte_rsvd_large[VTD_SPTE_RSVD_LEN];
static bool vtd_slpte_nonzero_rsvd(uint64_t slpte, uint32_t level)
{
uint64_t rsvd_mask;
/*
* We should have caught a guest-mis-programmed level earlier,
* via vtd_is_level_supported.
*/
assert(level < VTD_SPTE_RSVD_LEN);
/*
* Zero level doesn't exist. The smallest level is VTD_SL_PT_LEVEL=1 and
* checked by vtd_is_last_slpte().
*/
assert(level);
if ((level == VTD_SL_PD_LEVEL || level == VTD_SL_PDP_LEVEL) &&
(slpte & VTD_SL_PT_PAGE_SIZE_MASK)) {
/* large page */
rsvd_mask = vtd_spte_rsvd_large[level];
} else {
rsvd_mask = vtd_spte_rsvd[level];
}
return slpte & rsvd_mask;
}
/* Given the @iova, get relevant @slptep. @slpte_level will be the last level
* of the translation, can be used for deciding the size of large page.
*/
static int vtd_iova_to_slpte(IntelIOMMUState *s, VTDContextEntry *ce,
uint64_t iova, bool is_write,
uint64_t *slptep, uint32_t *slpte_level,
bool *reads, bool *writes, uint8_t aw_bits,
uint32_t pasid)
{
dma_addr_t addr = vtd_get_iova_pgtbl_base(s, ce, pasid);
uint32_t level = vtd_get_iova_level(s, ce, pasid);
uint32_t offset;
uint64_t slpte;
uint64_t access_right_check;
uint64_t xlat, size;
if (!vtd_iova_range_check(s, iova, ce, aw_bits, pasid)) {
error_report_once("%s: detected IOVA overflow (iova=0x%" PRIx64 ","
"pasid=0x%" PRIx32 ")", __func__, iova, pasid);
return -VTD_FR_ADDR_BEYOND_MGAW;
}
/* FIXME: what is the Atomics request here? */
access_right_check = is_write ? VTD_SL_W : VTD_SL_R;
while (true) {
offset = vtd_iova_level_offset(iova, level);
slpte = vtd_get_slpte(addr, offset);
if (slpte == (uint64_t)-1) {
error_report_once("%s: detected read error on DMAR slpte "
"(iova=0x%" PRIx64 ", pasid=0x%" PRIx32 ")",
__func__, iova, pasid);
if (level == vtd_get_iova_level(s, ce, pasid)) {
/* Invalid programming of context-entry */
return -VTD_FR_CONTEXT_ENTRY_INV;
} else {
return -VTD_FR_PAGING_ENTRY_INV;
}
}
*reads = (*reads) && (slpte & VTD_SL_R);
*writes = (*writes) && (slpte & VTD_SL_W);
if (!(slpte & access_right_check)) {
error_report_once("%s: detected slpte permission error "
"(iova=0x%" PRIx64 ", level=0x%" PRIx32 ", "
"slpte=0x%" PRIx64 ", write=%d, pasid=0x%"
PRIx32 ")", __func__, iova, level,
slpte, is_write, pasid);
return is_write ? -VTD_FR_WRITE : -VTD_FR_READ;
}
if (vtd_slpte_nonzero_rsvd(slpte, level)) {
error_report_once("%s: detected splte reserve non-zero "
"iova=0x%" PRIx64 ", level=0x%" PRIx32
"slpte=0x%" PRIx64 ", pasid=0x%" PRIX32 ")",
__func__, iova, level, slpte, pasid);
return -VTD_FR_PAGING_ENTRY_RSVD;
}
if (vtd_is_last_slpte(slpte, level)) {
*slptep = slpte;
*slpte_level = level;
break;
}
addr = vtd_get_slpte_addr(slpte, aw_bits);
level--;
}
xlat = vtd_get_slpte_addr(*slptep, aw_bits);
size = ~vtd_slpt_level_page_mask(level) + 1;
/*
* From VT-d spec 3.14: Untranslated requests and translation
* requests that result in an address in the interrupt range will be
* blocked with condition code LGN.4 or SGN.8.
*/
if ((xlat > VTD_INTERRUPT_ADDR_LAST ||
xlat + size - 1 < VTD_INTERRUPT_ADDR_FIRST)) {
return 0;
} else {
error_report_once("%s: xlat address is in interrupt range "
"(iova=0x%" PRIx64 ", level=0x%" PRIx32 ", "
"slpte=0x%" PRIx64 ", write=%d, "
"xlat=0x%" PRIx64 ", size=0x%" PRIx64 ", "
"pasid=0x%" PRIx32 ")",
__func__, iova, level, slpte, is_write,
xlat, size, pasid);
return s->scalable_mode ? -VTD_FR_SM_INTERRUPT_ADDR :
-VTD_FR_INTERRUPT_ADDR;
}
}
typedef int (*vtd_page_walk_hook)(IOMMUTLBEvent *event, void *private);
/**
* Constant information used during page walking
*
* @hook_fn: hook func to be called when detected page
* @private: private data to be passed into hook func
* @notify_unmap: whether we should notify invalid entries
* @as: VT-d address space of the device
* @aw: maximum address width
* @domain: domain ID of the page walk
*/
typedef struct {
VTDAddressSpace *as;
vtd_page_walk_hook hook_fn;
void *private;
bool notify_unmap;
uint8_t aw;
uint16_t domain_id;
} vtd_page_walk_info;
static int vtd_page_walk_one(IOMMUTLBEvent *event, vtd_page_walk_info *info)
{
VTDAddressSpace *as = info->as;
vtd_page_walk_hook hook_fn = info->hook_fn;
void *private = info->private;
IOMMUTLBEntry *entry = &event->entry;
DMAMap target = {
.iova = entry->iova,
.size = entry->addr_mask,
.translated_addr = entry->translated_addr,
.perm = entry->perm,
};
const DMAMap *mapped = iova_tree_find(as->iova_tree, &target);
if (event->type == IOMMU_NOTIFIER_UNMAP && !info->notify_unmap) {
trace_vtd_page_walk_one_skip_unmap(entry->iova, entry->addr_mask);
return 0;
}
assert(hook_fn);
/* Update local IOVA mapped ranges */
if (event->type == IOMMU_NOTIFIER_MAP) {
if (mapped) {
/* If it's exactly the same translation, skip */
if (!memcmp(mapped, &target, sizeof(target))) {
trace_vtd_page_walk_one_skip_map(entry->iova, entry->addr_mask,
entry->translated_addr);
return 0;
} else {
/*
* Translation changed. Normally this should not
* happen, but it can happen when with buggy guest
* OSes. Note that there will be a small window that
* we don't have map at all. But that's the best
* effort we can do. The ideal way to emulate this is
* atomically modify the PTE to follow what has
* changed, but we can't. One example is that vfio
* driver only has VFIO_IOMMU_[UN]MAP_DMA but no
* interface to modify a mapping (meanwhile it seems
* meaningless to even provide one). Anyway, let's
* mark this as a TODO in case one day we'll have
* a better solution.
*/
IOMMUAccessFlags cache_perm = entry->perm;
int ret;
/* Emulate an UNMAP */
event->type = IOMMU_NOTIFIER_UNMAP;
entry->perm = IOMMU_NONE;
trace_vtd_page_walk_one(info->domain_id,
entry->iova,
entry->translated_addr,
entry->addr_mask,
entry->perm);
ret = hook_fn(event, private);
if (ret) {
return ret;
}
/* Drop any existing mapping */
iova_tree_remove(as->iova_tree, target);
/* Recover the correct type */
event->type = IOMMU_NOTIFIER_MAP;
entry->perm = cache_perm;
}
}
iova_tree_insert(as->iova_tree, &target);
} else {
if (!mapped) {
/* Skip since we didn't map this range at all */
trace_vtd_page_walk_one_skip_unmap(entry->iova, entry->addr_mask);
return 0;
}
iova_tree_remove(as->iova_tree, target);
}
trace_vtd_page_walk_one(info->domain_id, entry->iova,
entry->translated_addr, entry->addr_mask,
entry->perm);
return hook_fn(event, private);
}
/**
* vtd_page_walk_level - walk over specific level for IOVA range
*
* @addr: base GPA addr to start the walk
* @start: IOVA range start address
* @end: IOVA range end address (start <= addr < end)
* @read: whether parent level has read permission
* @write: whether parent level has write permission
* @info: constant information for the page walk
*/
static int vtd_page_walk_level(dma_addr_t addr, uint64_t start,
uint64_t end, uint32_t level, bool read,
bool write, vtd_page_walk_info *info)
{
bool read_cur, write_cur, entry_valid;
uint32_t offset;
uint64_t slpte;
uint64_t subpage_size, subpage_mask;
IOMMUTLBEvent event;
uint64_t iova = start;
uint64_t iova_next;
int ret = 0;
trace_vtd_page_walk_level(addr, level, start, end);
subpage_size = 1ULL << vtd_slpt_level_shift(level);
subpage_mask = vtd_slpt_level_page_mask(level);
while (iova < end) {
iova_next = (iova & subpage_mask) + subpage_size;
offset = vtd_iova_level_offset(iova, level);
slpte = vtd_get_slpte(addr, offset);
if (slpte == (uint64_t)-1) {
trace_vtd_page_walk_skip_read(iova, iova_next);
goto next;
}
if (vtd_slpte_nonzero_rsvd(slpte, level)) {
trace_vtd_page_walk_skip_reserve(iova, iova_next);
goto next;
}
/* Permissions are stacked with parents' */
read_cur = read && (slpte & VTD_SL_R);
write_cur = write && (slpte & VTD_SL_W);
/*
* As long as we have either read/write permission, this is a
* valid entry. The rule works for both page entries and page
* table entries.
*/
entry_valid = read_cur | write_cur;
if (!vtd_is_last_slpte(slpte, level) && entry_valid) {
/*
* This is a valid PDE (or even bigger than PDE). We need
* to walk one further level.
*/
ret = vtd_page_walk_level(vtd_get_slpte_addr(slpte, info->aw),
iova, MIN(iova_next, end), level - 1,
read_cur, write_cur, info);
} else {
/*
* This means we are either:
*
* (1) the real page entry (either 4K page, or huge page)
* (2) the whole range is invalid
*
* In either case, we send an IOTLB notification down.
*/
event.entry.target_as = &address_space_memory;
event.entry.iova = iova & subpage_mask;
event.entry.perm = IOMMU_ACCESS_FLAG(read_cur, write_cur);
event.entry.addr_mask = ~subpage_mask;
/* NOTE: this is only meaningful if entry_valid == true */
event.entry.translated_addr = vtd_get_slpte_addr(slpte, info->aw);
event.type = event.entry.perm ? IOMMU_NOTIFIER_MAP :
IOMMU_NOTIFIER_UNMAP;
ret = vtd_page_walk_one(&event, info);
}
if (ret < 0) {
return ret;
}
next:
iova = iova_next;
}
return 0;
}
/**
* vtd_page_walk - walk specific IOVA range, and call the hook
*
* @s: intel iommu state
* @ce: context entry to walk upon
* @start: IOVA address to start the walk
* @end: IOVA range end address (start <= addr < end)
* @info: page walking information struct
*/
static int vtd_page_walk(IntelIOMMUState *s, VTDContextEntry *ce,
uint64_t start, uint64_t end,
vtd_page_walk_info *info,
uint32_t pasid)
{
dma_addr_t addr = vtd_get_iova_pgtbl_base(s, ce, pasid);
uint32_t level = vtd_get_iova_level(s, ce, pasid);
if (!vtd_iova_range_check(s, start, ce, info->aw, pasid)) {
return -VTD_FR_ADDR_BEYOND_MGAW;
}
if (!vtd_iova_range_check(s, end, ce, info->aw, pasid)) {
/* Fix end so that it reaches the maximum */
end = vtd_iova_limit(s, ce, info->aw, pasid);
}
return vtd_page_walk_level(addr, start, end, level, true, true, info);
}
static int vtd_root_entry_rsvd_bits_check(IntelIOMMUState *s,
VTDRootEntry *re)
{
/* Legacy Mode reserved bits check */
if (!s->root_scalable &&
(re->hi || (re->lo & VTD_ROOT_ENTRY_RSVD(s->aw_bits))))
goto rsvd_err;
/* Scalable Mode reserved bits check */
if (s->root_scalable &&
((re->lo & VTD_ROOT_ENTRY_RSVD(s->aw_bits)) ||
(re->hi & VTD_ROOT_ENTRY_RSVD(s->aw_bits))))
goto rsvd_err;
return 0;
rsvd_err:
error_report_once("%s: invalid root entry: hi=0x%"PRIx64
", lo=0x%"PRIx64,
__func__, re->hi, re->lo);
return -VTD_FR_ROOT_ENTRY_RSVD;
}
static inline int vtd_context_entry_rsvd_bits_check(IntelIOMMUState *s,
VTDContextEntry *ce)
{
if (!s->root_scalable &&
(ce->hi & VTD_CONTEXT_ENTRY_RSVD_HI ||
ce->lo & VTD_CONTEXT_ENTRY_RSVD_LO(s->aw_bits))) {
error_report_once("%s: invalid context entry: hi=%"PRIx64
", lo=%"PRIx64" (reserved nonzero)",
__func__, ce->hi, ce->lo);
return -VTD_FR_CONTEXT_ENTRY_RSVD;
}
if (s->root_scalable &&
(ce->val[0] & VTD_SM_CONTEXT_ENTRY_RSVD_VAL0(s->aw_bits) ||
ce->val[1] & VTD_SM_CONTEXT_ENTRY_RSVD_VAL1 ||
ce->val[2] ||
ce->val[3])) {
error_report_once("%s: invalid context entry: val[3]=%"PRIx64
", val[2]=%"PRIx64
", val[1]=%"PRIx64
", val[0]=%"PRIx64" (reserved nonzero)",
__func__, ce->val[3], ce->val[2],
ce->val[1], ce->val[0]);
return -VTD_FR_CONTEXT_ENTRY_RSVD;
}
return 0;
}
static int vtd_ce_rid2pasid_check(IntelIOMMUState *s,
VTDContextEntry *ce)
{
VTDPASIDEntry pe;
/*
* Make sure in Scalable Mode, a present context entry
* has valid rid2pasid setting, which includes valid
* rid2pasid field and corresponding pasid entry setting
*/
return vtd_ce_get_rid2pasid_entry(s, ce, &pe, PCI_NO_PASID);
}
/* Map a device to its corresponding domain (context-entry) */
static int vtd_dev_to_context_entry(IntelIOMMUState *s, uint8_t bus_num,
uint8_t devfn, VTDContextEntry *ce)
{
VTDRootEntry re;
int ret_fr;
X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
ret_fr = vtd_get_root_entry(s, bus_num, &re);
if (ret_fr) {
return ret_fr;
}
if (!vtd_root_entry_present(s, &re, devfn)) {
/* Not error - it's okay we don't have root entry. */
trace_vtd_re_not_present(bus_num);
return -VTD_FR_ROOT_ENTRY_P;
}
ret_fr = vtd_root_entry_rsvd_bits_check(s, &re);
if (ret_fr) {
return ret_fr;
}
ret_fr = vtd_get_context_entry_from_root(s, &re, devfn, ce);
if (ret_fr) {
return ret_fr;
}
if (!vtd_ce_present(ce)) {
/* Not error - it's okay we don't have context entry. */
trace_vtd_ce_not_present(bus_num, devfn);
return -VTD_FR_CONTEXT_ENTRY_P;
}
ret_fr = vtd_context_entry_rsvd_bits_check(s, ce);
if (ret_fr) {
return ret_fr;
}
/* Check if the programming of context-entry is valid */
if (!s->root_scalable &&
!vtd_is_level_supported(s, vtd_ce_get_level(ce))) {
error_report_once("%s: invalid context entry: hi=%"PRIx64
", lo=%"PRIx64" (level %d not supported)",
__func__, ce->hi, ce->lo,
vtd_ce_get_level(ce));
return -VTD_FR_CONTEXT_ENTRY_INV;
}
if (!s->root_scalable) {
/* Do translation type check */
if (!vtd_ce_type_check(x86_iommu, ce)) {
/* Errors dumped in vtd_ce_type_check() */
return -VTD_FR_CONTEXT_ENTRY_INV;
}
} else {
/*
* Check if the programming of context-entry.rid2pasid
* and corresponding pasid setting is valid, and thus
* avoids to check pasid entry fetching result in future
* helper function calling.
*/
ret_fr = vtd_ce_rid2pasid_check(s, ce);
if (ret_fr) {
return ret_fr;
}
}
return 0;
}
static int vtd_sync_shadow_page_hook(IOMMUTLBEvent *event,
void *private)
{
memory_region_notify_iommu(private, 0, *event);
return 0;
}
static uint16_t vtd_get_domain_id(IntelIOMMUState *s,
VTDContextEntry *ce,
uint32_t pasid)
{
VTDPASIDEntry pe;
if (s->root_scalable) {
vtd_ce_get_rid2pasid_entry(s, ce, &pe, pasid);
return VTD_SM_PASID_ENTRY_DID(pe.val[1]);
}
return VTD_CONTEXT_ENTRY_DID(ce->hi);
}
static int vtd_sync_shadow_page_table_range(VTDAddressSpace *vtd_as,
VTDContextEntry *ce,
hwaddr addr, hwaddr size)
{
IntelIOMMUState *s = vtd_as->iommu_state;
vtd_page_walk_info info = {
.hook_fn = vtd_sync_shadow_page_hook,
.private = (void *)&vtd_as->iommu,
.notify_unmap = true,
.aw = s->aw_bits,
.as = vtd_as,
.domain_id = vtd_get_domain_id(s, ce, vtd_as->pasid),
};
return vtd_page_walk(s, ce, addr, addr + size, &info, vtd_as->pasid);
}
static int vtd_address_space_sync(VTDAddressSpace *vtd_as)
{
int ret;
VTDContextEntry ce;
IOMMUNotifier *n;
/* If no MAP notifier registered, we simply invalidate all the cache */
if (!vtd_as_has_map_notifier(vtd_as)) {
IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
memory_region_unmap_iommu_notifier_range(n);
}
return 0;
}
ret = vtd_dev_to_context_entry(vtd_as->iommu_state,
pci_bus_num(vtd_as->bus),
vtd_as->devfn, &ce);
if (ret) {
if (ret == -VTD_FR_CONTEXT_ENTRY_P) {
/*
* It's a valid scenario to have a context entry that is
* not present. For example, when a device is removed
* from an existing domain then the context entry will be
* zeroed by the guest before it was put into another
* domain. When this happens, instead of synchronizing
* the shadow pages we should invalidate all existing
* mappings and notify the backends.
*/
IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
vtd_address_space_unmap(vtd_as, n);
}
ret = 0;
}
return ret;
}
return vtd_sync_shadow_page_table_range(vtd_as, &ce, 0, UINT64_MAX);
}
/*
* Check if specific device is configured to bypass address
* translation for DMA requests. In Scalable Mode, bypass
* 1st-level translation or 2nd-level translation, it depends
* on PGTT setting.
*/
static bool vtd_dev_pt_enabled(IntelIOMMUState *s, VTDContextEntry *ce,
uint32_t pasid)
{
VTDPASIDEntry pe;
int ret;
if (s->root_scalable) {
ret = vtd_ce_get_rid2pasid_entry(s, ce, &pe, pasid);
if (ret) {
/*
* This error is guest triggerable. We should assumt PT
* not enabled for safety.
*/
return false;
}
return (VTD_PE_GET_TYPE(&pe) == VTD_SM_PASID_ENTRY_PT);
}
return (vtd_ce_get_type(ce) == VTD_CONTEXT_TT_PASS_THROUGH);
}
static bool vtd_as_pt_enabled(VTDAddressSpace *as)
{
IntelIOMMUState *s;
VTDContextEntry ce;
assert(as);
s = as->iommu_state;
if (vtd_dev_to_context_entry(s, pci_bus_num(as->bus), as->devfn,
&ce)) {
/*
* Possibly failed to parse the context entry for some reason
* (e.g., during init, or any guest configuration errors on
* context entries). We should assume PT not enabled for
* safety.
*/
return false;
}
return vtd_dev_pt_enabled(s, &ce, as->pasid);
}
/* Return whether the device is using IOMMU translation. */
static bool vtd_switch_address_space(VTDAddressSpace *as)
{
bool use_iommu, pt;
/* Whether we need to take the BQL on our own */
bool take_bql = !bql_locked();
assert(as);
use_iommu = as->iommu_state->dmar_enabled && !vtd_as_pt_enabled(as);
pt = as->iommu_state->dmar_enabled && vtd_as_pt_enabled(as);
trace_vtd_switch_address_space(pci_bus_num(as->bus),
VTD_PCI_SLOT(as->devfn),
VTD_PCI_FUNC(as->devfn),
use_iommu);
/*
* It's possible that we reach here without BQL, e.g., when called
* from vtd_pt_enable_fast_path(). However the memory APIs need
* it. We'd better make sure we have had it already, or, take it.
*/
if (take_bql) {
bql_lock();
}
/* Turn off first then on the other */
if (use_iommu) {
memory_region_set_enabled(&as->nodmar, false);
memory_region_set_enabled(MEMORY_REGION(&as->iommu), true);
/*
* vt-d spec v3.4 3.14:
*
* """
* Requests-with-PASID with input address in range 0xFEEx_xxxx
* are translated normally like any other request-with-PASID
* through DMA-remapping hardware.
* """
*
* Need to disable ir for as with PASID.
*/
if (as->pasid != PCI_NO_PASID) {
memory_region_set_enabled(&as->iommu_ir, false);
} else {
memory_region_set_enabled(&as->iommu_ir, true);
}
} else {
memory_region_set_enabled(MEMORY_REGION(&as->iommu), false);
memory_region_set_enabled(&as->nodmar, true);
}
/*
* vtd-spec v3.4 3.14:
*
* """
* Requests-with-PASID with input address in range 0xFEEx_xxxx are
* translated normally like any other request-with-PASID through
* DMA-remapping hardware. However, if such a request is processed
* using pass-through translation, it will be blocked as described
* in the paragraph below.
*
* Software must not program paging-structure entries to remap any
* address to the interrupt address range. Untranslated requests
* and translation requests that result in an address in the
* interrupt range will be blocked with condition code LGN.4 or
* SGN.8.
* """
*
* We enable per as memory region (iommu_ir_fault) for catching
* the translation for interrupt range through PASID + PT.
*/
if (pt && as->pasid != PCI_NO_PASID) {
memory_region_set_enabled(&as->iommu_ir_fault, true);
} else {
memory_region_set_enabled(&as->iommu_ir_fault, false);
}
if (take_bql) {
bql_unlock();
}
return use_iommu;
}
static void vtd_switch_address_space_all(IntelIOMMUState *s)
{
VTDAddressSpace *vtd_as;
GHashTableIter iter;
g_hash_table_iter_init(&iter, s->vtd_address_spaces);
while (g_hash_table_iter_next(&iter, NULL, (void **)&vtd_as)) {
vtd_switch_address_space(vtd_as);
}
}
static const bool vtd_qualified_faults[] = {
[VTD_FR_RESERVED] = false,
[VTD_FR_ROOT_ENTRY_P] = false,
[VTD_FR_CONTEXT_ENTRY_P] = true,
[VTD_FR_CONTEXT_ENTRY_INV] = true,
[VTD_FR_ADDR_BEYOND_MGAW] = true,
[VTD_FR_WRITE] = true,
[VTD_FR_READ] = true,
[VTD_FR_PAGING_ENTRY_INV] = true,
[VTD_FR_ROOT_TABLE_INV] = false,
[VTD_FR_CONTEXT_TABLE_INV] = false,
[VTD_FR_INTERRUPT_ADDR] = true,
[VTD_FR_ROOT_ENTRY_RSVD] = false,
[VTD_FR_PAGING_ENTRY_RSVD] = true,
[VTD_FR_CONTEXT_ENTRY_TT] = true,
[VTD_FR_PASID_TABLE_INV] = false,
[VTD_FR_SM_INTERRUPT_ADDR] = true,
[VTD_FR_MAX] = false,
};
/* To see if a fault condition is "qualified", which is reported to software
* only if the FPD field in the context-entry used to process the faulting
* request is 0.
*/
static inline bool vtd_is_qualified_fault(VTDFaultReason fault)
{
return vtd_qualified_faults[fault];
}
static inline bool vtd_is_interrupt_addr(hwaddr addr)
{
return VTD_INTERRUPT_ADDR_FIRST <= addr && addr <= VTD_INTERRUPT_ADDR_LAST;
}
static gboolean vtd_find_as_by_sid(gpointer key, gpointer value,
gpointer user_data)
{
struct vtd_as_key *as_key = (struct vtd_as_key *)key;
uint16_t target_sid = *(uint16_t *)user_data;
uint16_t sid = PCI_BUILD_BDF(pci_bus_num(as_key->bus), as_key->devfn);
return sid == target_sid;
}
static VTDAddressSpace *vtd_get_as_by_sid(IntelIOMMUState *s, uint16_t sid)
{
uint8_t bus_num = PCI_BUS_NUM(sid);
VTDAddressSpace *vtd_as = s->vtd_as_cache[bus_num];
if (vtd_as &&
(sid == PCI_BUILD_BDF(pci_bus_num(vtd_as->bus), vtd_as->devfn))) {
return vtd_as;
}
vtd_as = g_hash_table_find(s->vtd_address_spaces, vtd_find_as_by_sid, &sid);
s->vtd_as_cache[bus_num] = vtd_as;
return vtd_as;
}
static void vtd_pt_enable_fast_path(IntelIOMMUState *s, uint16_t source_id)
{
VTDAddressSpace *vtd_as;
bool success = false;
vtd_as = vtd_get_as_by_sid(s, source_id);
if (!vtd_as) {
goto out;
}
if (vtd_switch_address_space(vtd_as) == false) {
/* We switched off IOMMU region successfully. */
success = true;
}
out:
trace_vtd_pt_enable_fast_path(source_id, success);
}
static void vtd_report_fault(IntelIOMMUState *s,
int err, bool is_fpd_set,
uint16_t source_id,
hwaddr addr,
bool is_write,
bool is_pasid,
uint32_t pasid)
{
if (is_fpd_set && vtd_is_qualified_fault(err)) {
trace_vtd_fault_disabled();
} else {
vtd_report_dmar_fault(s, source_id, addr, err, is_write,
is_pasid, pasid);
}
}
/* Map dev to context-entry then do a paging-structures walk to do a iommu
* translation.
*
* Called from RCU critical section.
*
* @bus_num: The bus number
* @devfn: The devfn, which is the combined of device and function number
* @is_write: The access is a write operation
* @entry: IOMMUTLBEntry that contain the addr to be translated and result
*
* Returns true if translation is successful, otherwise false.
*/
static bool vtd_do_iommu_translate(VTDAddressSpace *vtd_as, PCIBus *bus,
uint8_t devfn, hwaddr addr, bool is_write,
IOMMUTLBEntry *entry)
{
IntelIOMMUState *s = vtd_as->iommu_state;
VTDContextEntry ce;
uint8_t bus_num = pci_bus_num(bus);
VTDContextCacheEntry *cc_entry;
uint64_t slpte, page_mask;
uint32_t level, pasid = vtd_as->pasid;
uint16_t source_id = PCI_BUILD_BDF(bus_num, devfn);
int ret_fr;
bool is_fpd_set = false;
bool reads = true;
bool writes = true;
uint8_t access_flags;
bool rid2pasid = (pasid == PCI_NO_PASID) && s->root_scalable;
VTDIOTLBEntry *iotlb_entry;
/*
* We have standalone memory region for interrupt addresses, we
* should never receive translation requests in this region.
*/
assert(!vtd_is_interrupt_addr(addr));
vtd_iommu_lock(s);
cc_entry = &vtd_as->context_cache_entry;
/* Try to fetch slpte form IOTLB, we don't need RID2PASID logic */
if (!rid2pasid) {
iotlb_entry = vtd_lookup_iotlb(s, source_id, pasid, addr);
if (iotlb_entry) {
trace_vtd_iotlb_page_hit(source_id, addr, iotlb_entry->slpte,
iotlb_entry->domain_id);
slpte = iotlb_entry->slpte;
access_flags = iotlb_entry->access_flags;
page_mask = iotlb_entry->mask;
goto out;
}
}
/* Try to fetch context-entry from cache first */
if (cc_entry->context_cache_gen == s->context_cache_gen) {
trace_vtd_iotlb_cc_hit(bus_num, devfn, cc_entry->context_entry.hi,
cc_entry->context_entry.lo,
cc_entry->context_cache_gen);
ce = cc_entry->context_entry;
is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
if (!is_fpd_set && s->root_scalable) {
ret_fr = vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set, pasid);
if (ret_fr) {
vtd_report_fault(s, -ret_fr, is_fpd_set,
source_id, addr, is_write,
false, 0);
goto error;
}
}
} else {
ret_fr = vtd_dev_to_context_entry(s, bus_num, devfn, &ce);
is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
if (!ret_fr && !is_fpd_set && s->root_scalable) {
ret_fr = vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set, pasid);
}
if (ret_fr) {
vtd_report_fault(s, -ret_fr, is_fpd_set,
source_id, addr, is_write,
false, 0);
goto error;
}
/* Update context-cache */
trace_vtd_iotlb_cc_update(bus_num, devfn, ce.hi, ce.lo,
cc_entry->context_cache_gen,
s->context_cache_gen);
cc_entry->context_entry = ce;
cc_entry->context_cache_gen = s->context_cache_gen;
}
if (rid2pasid) {
pasid = VTD_CE_GET_RID2PASID(&ce);
}
/*
* We don't need to translate for pass-through context entries.
* Also, let's ignore IOTLB caching as well for PT devices.
*/
if (vtd_dev_pt_enabled(s, &ce, pasid)) {
entry->iova = addr & VTD_PAGE_MASK_4K;
entry->translated_addr = entry->iova;
entry->addr_mask = ~VTD_PAGE_MASK_4K;
entry->perm = IOMMU_RW;
trace_vtd_translate_pt(source_id, entry->iova);
/*
* When this happens, it means firstly caching-mode is not
* enabled, and this is the first passthrough translation for
* the device. Let's enable the fast path for passthrough.
*
* When passthrough is disabled again for the device, we can
* capture it via the context entry invalidation, then the
* IOMMU region can be swapped back.
*/
vtd_pt_enable_fast_path(s, source_id);
vtd_iommu_unlock(s);
return true;
}
/* Try to fetch slpte form IOTLB for RID2PASID slow path */
if (rid2pasid) {
iotlb_entry = vtd_lookup_iotlb(s, source_id, pasid, addr);
if (iotlb_entry) {
trace_vtd_iotlb_page_hit(source_id, addr, iotlb_entry->slpte,
iotlb_entry->domain_id);
slpte = iotlb_entry->slpte;
access_flags = iotlb_entry->access_flags;
page_mask = iotlb_entry->mask;
goto out;
}
}
ret_fr = vtd_iova_to_slpte(s, &ce, addr, is_write, &slpte, &level,
&reads, &writes, s->aw_bits, pasid);
if (ret_fr) {
vtd_report_fault(s, -ret_fr, is_fpd_set, source_id,
addr, is_write, pasid != PCI_NO_PASID, pasid);
goto error;
}
page_mask = vtd_slpt_level_page_mask(level);
access_flags = IOMMU_ACCESS_FLAG(reads, writes);
vtd_update_iotlb(s, source_id, vtd_get_domain_id(s, &ce, pasid),
addr, slpte, access_flags, level, pasid);
out:
vtd_iommu_unlock(s);
entry->iova = addr & page_mask;
entry->translated_addr = vtd_get_slpte_addr(slpte, s->aw_bits) & page_mask;
entry->addr_mask = ~page_mask;
entry->perm = access_flags;
return true;
error:
vtd_iommu_unlock(s);
entry->iova = 0;
entry->translated_addr = 0;
entry->addr_mask = 0;
entry->perm = IOMMU_NONE;
return false;
}
static void vtd_root_table_setup(IntelIOMMUState *s)
{
s->root = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
s->root &= VTD_RTADDR_ADDR_MASK(s->aw_bits);
vtd_update_scalable_state(s);
trace_vtd_reg_dmar_root(s->root, s->root_scalable);
}
static void vtd_iec_notify_all(IntelIOMMUState *s, bool global,
uint32_t index, uint32_t mask)
{
x86_iommu_iec_notify_all(X86_IOMMU_DEVICE(s), global, index, mask);
}
static void vtd_interrupt_remap_table_setup(IntelIOMMUState *s)
{
uint64_t value = 0;
value = vtd_get_quad_raw(s, DMAR_IRTA_REG);
s->intr_size = 1UL << ((value & VTD_IRTA_SIZE_MASK) + 1);
s->intr_root = value & VTD_IRTA_ADDR_MASK(s->aw_bits);
s->intr_eime = value & VTD_IRTA_EIME;
/* Notify global invalidation */
vtd_iec_notify_all(s, true, 0, 0);
trace_vtd_reg_ir_root(s->intr_root, s->intr_size);
}
static void vtd_iommu_replay_all(IntelIOMMUState *s)
{
VTDAddressSpace *vtd_as;
QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
vtd_address_space_sync(vtd_as);
}
}
static void vtd_context_global_invalidate(IntelIOMMUState *s)
{
trace_vtd_inv_desc_cc_global();
/* Protects context cache */
vtd_iommu_lock(s);
s->context_cache_gen++;
if (s->context_cache_gen == VTD_CONTEXT_CACHE_GEN_MAX) {
vtd_reset_context_cache_locked(s);
}
vtd_iommu_unlock(s);
vtd_address_space_refresh_all(s);
/*
* From VT-d spec 6.5.2.1, a global context entry invalidation
* should be followed by a IOTLB global invalidation, so we should
* be safe even without this. Hoewever, let's replay the region as
* well to be safer, and go back here when we need finer tunes for
* VT-d emulation codes.
*/
vtd_iommu_replay_all(s);
}
/* Do a context-cache device-selective invalidation.
* @func_mask: FM field after shifting
*/
static void vtd_context_device_invalidate(IntelIOMMUState *s,
uint16_t source_id,
uint16_t func_mask)
{
GHashTableIter as_it;
uint16_t mask;
VTDAddressSpace *vtd_as;
uint8_t bus_n, devfn;
trace_vtd_inv_desc_cc_devices(source_id, func_mask);
switch (func_mask & 3) {
case 0:
mask = 0; /* No bits in the SID field masked */
break;
case 1:
mask = 4; /* Mask bit 2 in the SID field */
break;
case 2:
mask = 6; /* Mask bit 2:1 in the SID field */
break;
case 3:
mask = 7; /* Mask bit 2:0 in the SID field */
break;
default:
g_assert_not_reached();
}
mask = ~mask;
bus_n = VTD_SID_TO_BUS(source_id);
devfn = VTD_SID_TO_DEVFN(source_id);
g_hash_table_iter_init(&as_it, s->vtd_address_spaces);
while (g_hash_table_iter_next(&as_it, NULL, (void **)&vtd_as)) {
if ((pci_bus_num(vtd_as->bus) == bus_n) &&
(vtd_as->devfn & mask) == (devfn & mask)) {
trace_vtd_inv_desc_cc_device(bus_n, VTD_PCI_SLOT(vtd_as->devfn),
VTD_PCI_FUNC(vtd_as->devfn));
vtd_iommu_lock(s);
vtd_as->context_cache_entry.context_cache_gen = 0;
vtd_iommu_unlock(s);
/*
* Do switch address space when needed, in case if the
* device passthrough bit is switched.
*/
vtd_switch_address_space(vtd_as);
/*
* So a device is moving out of (or moving into) a
* domain, resync the shadow page table.
* This won't bring bad even if we have no such
* notifier registered - the IOMMU notification
* framework will skip MAP notifications if that
* happened.
*/
vtd_address_space_sync(vtd_as);
}
}
}
/* Context-cache invalidation
* Returns the Context Actual Invalidation Granularity.
* @val: the content of the CCMD_REG
*/
static uint64_t vtd_context_cache_invalidate(IntelIOMMUState *s, uint64_t val)
{
uint64_t caig;
uint64_t type = val & VTD_CCMD_CIRG_MASK;
switch (type) {
case VTD_CCMD_DOMAIN_INVL:
/* Fall through */
case VTD_CCMD_GLOBAL_INVL:
caig = VTD_CCMD_GLOBAL_INVL_A;
vtd_context_global_invalidate(s);
break;
case VTD_CCMD_DEVICE_INVL:
caig = VTD_CCMD_DEVICE_INVL_A;
vtd_context_device_invalidate(s, VTD_CCMD_SID(val), VTD_CCMD_FM(val));
break;
default:
error_report_once("%s: invalid context: 0x%" PRIx64,
__func__, val);
caig = 0;
}
return caig;
}
static void vtd_iotlb_global_invalidate(IntelIOMMUState *s)
{
trace_vtd_inv_desc_iotlb_global();
vtd_reset_iotlb(s);
vtd_iommu_replay_all(s);
}
static void vtd_iotlb_domain_invalidate(IntelIOMMUState *s, uint16_t domain_id)
{
VTDContextEntry ce;
VTDAddressSpace *vtd_as;
trace_vtd_inv_desc_iotlb_domain(domain_id);
vtd_iommu_lock(s);
g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_domain,
&domain_id);
vtd_iommu_unlock(s);
QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
if (!vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
vtd_as->devfn, &ce) &&
domain_id == vtd_get_domain_id(s, &ce, vtd_as->pasid)) {
vtd_address_space_sync(vtd_as);
}
}
}
static void vtd_iotlb_page_invalidate_notify(IntelIOMMUState *s,
uint16_t domain_id, hwaddr addr,
uint8_t am, uint32_t pasid)
{
VTDAddressSpace *vtd_as;
VTDContextEntry ce;
int ret;
hwaddr size = (1 << am) * VTD_PAGE_SIZE;
QLIST_FOREACH(vtd_as, &(s->vtd_as_with_notifiers), next) {
if (pasid != PCI_NO_PASID && pasid != vtd_as->pasid) {
continue;
}
ret = vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
vtd_as->devfn, &ce);
if (!ret && domain_id == vtd_get_domain_id(s, &ce, vtd_as->pasid)) {
if (vtd_as_has_map_notifier(vtd_as)) {
/*
* As long as we have MAP notifications registered in
* any of our IOMMU notifiers, we need to sync the
* shadow page table.
*/
vtd_sync_shadow_page_table_range(vtd_as, &ce, addr, size);
} else {
/*
* For UNMAP-only notifiers, we don't need to walk the
* page tables. We just deliver the PSI down to
* invalidate caches.
*/
IOMMUTLBEvent event = {
.type = IOMMU_NOTIFIER_UNMAP,
.entry = {
.target_as = &address_space_memory,
.iova = addr,
.translated_addr = 0,
.addr_mask = size - 1,
.perm = IOMMU_NONE,
},
};
memory_region_notify_iommu(&vtd_as->iommu, 0, event);
}
}
}
}
static void vtd_iotlb_page_invalidate(IntelIOMMUState *s, uint16_t domain_id,
hwaddr addr, uint8_t am)
{
VTDIOTLBPageInvInfo info;
trace_vtd_inv_desc_iotlb_pages(domain_id, addr, am);
assert(am <= VTD_MAMV);
info.domain_id = domain_id;
info.addr = addr;
info.mask = ~((1 << am) - 1);
vtd_iommu_lock(s);
g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_page, &info);
vtd_iommu_unlock(s);
vtd_iotlb_page_invalidate_notify(s, domain_id, addr, am, PCI_NO_PASID);
}
/* Flush IOTLB
* Returns the IOTLB Actual Invalidation Granularity.
* @val: the content of the IOTLB_REG
*/
static uint64_t vtd_iotlb_flush(IntelIOMMUState *s, uint64_t val)
{
uint64_t iaig;
uint64_t type = val & VTD_TLB_FLUSH_GRANU_MASK;
uint16_t domain_id;
hwaddr addr;
uint8_t am;
switch (type) {
case VTD_TLB_GLOBAL_FLUSH:
iaig = VTD_TLB_GLOBAL_FLUSH_A;
vtd_iotlb_global_invalidate(s);
break;
case VTD_TLB_DSI_FLUSH:
domain_id = VTD_TLB_DID(val);
iaig = VTD_TLB_DSI_FLUSH_A;
vtd_iotlb_domain_invalidate(s, domain_id);
break;
case VTD_TLB_PSI_FLUSH:
domain_id = VTD_TLB_DID(val);
addr = vtd_get_quad_raw(s, DMAR_IVA_REG);
am = VTD_IVA_AM(addr);
addr = VTD_IVA_ADDR(addr);
if (am > VTD_MAMV) {
error_report_once("%s: address mask overflow: 0x%" PRIx64,
__func__, vtd_get_quad_raw(s, DMAR_IVA_REG));
iaig = 0;
break;
}
iaig = VTD_TLB_PSI_FLUSH_A;
vtd_iotlb_page_invalidate(s, domain_id, addr, am);
break;
default:
error_report_once("%s: invalid granularity: 0x%" PRIx64,
__func__, val);
iaig = 0;
}
return iaig;
}
static void vtd_fetch_inv_desc(IntelIOMMUState *s);
static inline bool vtd_queued_inv_disable_check(IntelIOMMUState *s)
{
return s->qi_enabled && (s->iq_tail == s->iq_head) &&
(s->iq_last_desc_type == VTD_INV_DESC_WAIT);
}
static void vtd_handle_gcmd_qie(IntelIOMMUState *s, bool en)
{
uint64_t iqa_val = vtd_get_quad_raw(s, DMAR_IQA_REG);
trace_vtd_inv_qi_enable(en);
if (en) {
s->iq = iqa_val & VTD_IQA_IQA_MASK(s->aw_bits);
/* 2^(x+8) entries */
s->iq_size = 1UL << ((iqa_val & VTD_IQA_QS) + 8 - (s->iq_dw ? 1 : 0));
s->qi_enabled = true;
trace_vtd_inv_qi_setup(s->iq, s->iq_size);
/* Ok - report back to driver */
vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_QIES);
if (s->iq_tail != 0) {
/*
* This is a spec violation but Windows guests are known to set up
* Queued Invalidation this way so we allow the write and process
* Invalidation Descriptors right away.
*/
trace_vtd_warn_invalid_qi_tail(s->iq_tail);
if (!(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
vtd_fetch_inv_desc(s);
}
}
} else {
if (vtd_queued_inv_disable_check(s)) {
/* disable Queued Invalidation */
vtd_set_quad_raw(s, DMAR_IQH_REG, 0);
s->iq_head = 0;
s->qi_enabled = false;
/* Ok - report back to driver */
vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_QIES, 0);
} else {
error_report_once("%s: detected improper state when disable QI "
"(head=0x%x, tail=0x%x, last_type=%d)",
__func__,
s->iq_head, s->iq_tail, s->iq_last_desc_type);
}
}
}
/* Set Root Table Pointer */
static void vtd_handle_gcmd_srtp(IntelIOMMUState *s)
{
vtd_root_table_setup(s);
/* Ok - report back to driver */
vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_RTPS);
vtd_reset_caches(s);
vtd_address_space_refresh_all(s);
}
/* Set Interrupt Remap Table Pointer */
static void vtd_handle_gcmd_sirtp(IntelIOMMUState *s)
{
vtd_interrupt_remap_table_setup(s);
/* Ok - report back to driver */
vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRTPS);
}
/* Handle Translation Enable/Disable */
static void vtd_handle_gcmd_te(IntelIOMMUState *s, bool en)
{
if (s->dmar_enabled == en) {
return;
}
trace_vtd_dmar_enable(en);
if (en) {
s->dmar_enabled = true;
/* Ok - report back to driver */
vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_TES);
} else {
s->dmar_enabled = false;
/* Clear the index of Fault Recording Register */
s->next_frcd_reg = 0;
/* Ok - report back to driver */
vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_TES, 0);
}
vtd_reset_caches(s);
vtd_address_space_refresh_all(s);
}
/* Handle Interrupt Remap Enable/Disable */
static void vtd_handle_gcmd_ire(IntelIOMMUState *s, bool en)
{
trace_vtd_ir_enable(en);
if (en) {
s->intr_enabled = true;
/* Ok - report back to driver */
vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRES);
} else {
s->intr_enabled = false;
/* Ok - report back to driver */
vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_IRES, 0);
}
}
/* Handle write to Global Command Register */
static void vtd_handle_gcmd_write(IntelIOMMUState *s)
{
X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
uint32_t status = vtd_get_long_raw(s, DMAR_GSTS_REG);
uint32_t val = vtd_get_long_raw(s, DMAR_GCMD_REG);
uint32_t changed = status ^ val;
trace_vtd_reg_write_gcmd(status, val);
if ((changed & VTD_GCMD_TE) && s->dma_translation) {
/* Translation enable/disable */
vtd_handle_gcmd_te(s, val & VTD_GCMD_TE);
}
if (val & VTD_GCMD_SRTP) {
/* Set/update the root-table pointer */
vtd_handle_gcmd_srtp(s);
}
if (changed & VTD_GCMD_QIE) {
/* Queued Invalidation Enable */
vtd_handle_gcmd_qie(s, val & VTD_GCMD_QIE);
}
if (val & VTD_GCMD_SIRTP) {
/* Set/update the interrupt remapping root-table pointer */
vtd_handle_gcmd_sirtp(s);
}
if ((changed & VTD_GCMD_IRE) &&
x86_iommu_ir_supported(x86_iommu)) {
/* Interrupt remap enable/disable */
vtd_handle_gcmd_ire(s, val & VTD_GCMD_IRE);
}
}
/* Handle write to Context Command Register */
static void vtd_handle_ccmd_write(IntelIOMMUState *s)
{
uint64_t ret;
uint64_t val = vtd_get_quad_raw(s, DMAR_CCMD_REG);
/* Context-cache invalidation request */
if (val & VTD_CCMD_ICC) {
if (s->qi_enabled) {
error_report_once("Queued Invalidation enabled, "
"should not use register-based invalidation");
return;
}
ret = vtd_context_cache_invalidate(s, val);
/* Invalidation completed. Change something to show */
vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_ICC, 0ULL);
ret = vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_CAIG_MASK,
ret);
}
}
/* Handle write to IOTLB Invalidation Register */
static void vtd_handle_iotlb_write(IntelIOMMUState *s)
{
uint64_t ret;
uint64_t val = vtd_get_quad_raw(s, DMAR_IOTLB_REG);
/* IOTLB invalidation request */
if (val & VTD_TLB_IVT) {
if (s->qi_enabled) {
error_report_once("Queued Invalidation enabled, "
"should not use register-based invalidation");
return;
}
ret = vtd_iotlb_flush(s, val);
/* Invalidation completed. Change something to show */
vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG, VTD_TLB_IVT, 0ULL);
ret = vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG,
VTD_TLB_FLUSH_GRANU_MASK_A, ret);
}
}
/* Fetch an Invalidation Descriptor from the Invalidation Queue */
static bool vtd_get_inv_desc(IntelIOMMUState *s,
VTDInvDesc *inv_desc)
{
dma_addr_t base_addr = s->iq;
uint32_t offset = s->iq_head;
uint32_t dw = s->iq_dw ? 32 : 16;
dma_addr_t addr = base_addr + offset * dw;
if (dma_memory_read(&address_space_memory, addr,
inv_desc, dw, MEMTXATTRS_UNSPECIFIED)) {
error_report_once("Read INV DESC failed.");
return false;
}
inv_desc->lo = le64_to_cpu(inv_desc->lo);
inv_desc->hi = le64_to_cpu(inv_desc->hi);
if (dw == 32) {
inv_desc->val[2] = le64_to_cpu(inv_desc->val[2]);
inv_desc->val[3] = le64_to_cpu(inv_desc->val[3]);
}
return true;
}
static bool vtd_process_wait_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
{
if ((inv_desc->hi & VTD_INV_DESC_WAIT_RSVD_HI) ||
(inv_desc->lo & VTD_INV_DESC_WAIT_RSVD_LO)) {
error_report_once("%s: invalid wait desc: hi=%"PRIx64", lo=%"PRIx64
" (reserved nonzero)", __func__, inv_desc->hi,
inv_desc->lo);
return false;
}
if (inv_desc->lo & VTD_INV_DESC_WAIT_SW) {
/* Status Write */
uint32_t status_data = (uint32_t)(inv_desc->lo >>
VTD_INV_DESC_WAIT_DATA_SHIFT);
assert(!(inv_desc->lo & VTD_INV_DESC_WAIT_IF));
/* FIXME: need to be masked with HAW? */
dma_addr_t status_addr = inv_desc->hi;
trace_vtd_inv_desc_wait_sw(status_addr, status_data);
status_data = cpu_to_le32(status_data);
if (dma_memory_write(&address_space_memory, status_addr,
&status_data, sizeof(status_data),
MEMTXATTRS_UNSPECIFIED)) {
trace_vtd_inv_desc_wait_write_fail(inv_desc->hi, inv_desc->lo);
return false;
}
} else if (inv_desc->lo & VTD_INV_DESC_WAIT_IF) {
/* Interrupt flag */
vtd_generate_completion_event(s);
} else {
error_report_once("%s: invalid wait desc: hi=%"PRIx64", lo=%"PRIx64
" (unknown type)", __func__, inv_desc->hi,
inv_desc->lo);
return false;
}
return true;
}
static bool vtd_process_context_cache_desc(IntelIOMMUState *s,
VTDInvDesc *inv_desc)
{
uint16_t sid, fmask;
if ((inv_desc->lo & VTD_INV_DESC_CC_RSVD) || inv_desc->hi) {
error_report_once("%s: invalid cc inv desc: hi=%"PRIx64", lo=%"PRIx64
" (reserved nonzero)", __func__, inv_desc->hi,
inv_desc->lo);
return false;
}
switch (inv_desc->lo & VTD_INV_DESC_CC_G) {
case VTD_INV_DESC_CC_DOMAIN:
trace_vtd_inv_desc_cc_domain(
(uint16_t)VTD_INV_DESC_CC_DID(inv_desc->lo));
/* Fall through */
case VTD_INV_DESC_CC_GLOBAL:
vtd_context_global_invalidate(s);
break;
case VTD_INV_DESC_CC_DEVICE:
sid = VTD_INV_DESC_CC_SID(inv_desc->lo);
fmask = VTD_INV_DESC_CC_FM(inv_desc->lo);
vtd_context_device_invalidate(s, sid, fmask);
break;
default:
error_report_once("%s: invalid cc inv desc: hi=%"PRIx64", lo=%"PRIx64
" (invalid type)", __func__, inv_desc->hi,
inv_desc->lo);
return false;
}
return true;
}
static bool vtd_process_iotlb_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
{
uint16_t domain_id;
uint8_t am;
hwaddr addr;
if ((inv_desc->lo & VTD_INV_DESC_IOTLB_RSVD_LO) ||
(inv_desc->hi & VTD_INV_DESC_IOTLB_RSVD_HI)) {
error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
", lo=0x%"PRIx64" (reserved bits unzero)",
__func__, inv_desc->hi, inv_desc->lo);
return false;
}
switch (inv_desc->lo & VTD_INV_DESC_IOTLB_G) {
case VTD_INV_DESC_IOTLB_GLOBAL:
vtd_iotlb_global_invalidate(s);
break;
case VTD_INV_DESC_IOTLB_DOMAIN:
domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
vtd_iotlb_domain_invalidate(s, domain_id);
break;
case VTD_INV_DESC_IOTLB_PAGE:
domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
addr = VTD_INV_DESC_IOTLB_ADDR(inv_desc->hi);
am = VTD_INV_DESC_IOTLB_AM(inv_desc->hi);
if (am > VTD_MAMV) {
error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
", lo=0x%"PRIx64" (am=%u > VTD_MAMV=%u)",
__func__, inv_desc->hi, inv_desc->lo,
am, (unsigned)VTD_MAMV);
return false;
}
vtd_iotlb_page_invalidate(s, domain_id, addr, am);
break;
default:
error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
", lo=0x%"PRIx64" (type mismatch: 0x%llx)",
__func__, inv_desc->hi, inv_desc->lo,
inv_desc->lo & VTD_INV_DESC_IOTLB_G);
return false;
}
return true;
}
static bool vtd_process_inv_iec_desc(IntelIOMMUState *s,
VTDInvDesc *inv_desc)
{
trace_vtd_inv_desc_iec(inv_desc->iec.granularity,
inv_desc->iec.index,
inv_desc->iec.index_mask);
vtd_iec_notify_all(s, !inv_desc->iec.granularity,
inv_desc->iec.index,
inv_desc->iec.index_mask);
return true;
}
static bool vtd_process_device_iotlb_desc(IntelIOMMUState *s,
VTDInvDesc *inv_desc)
{
VTDAddressSpace *vtd_dev_as;
IOMMUTLBEvent event;
hwaddr addr;
uint64_t sz;
uint16_t sid;
bool size;
addr = VTD_INV_DESC_DEVICE_IOTLB_ADDR(inv_desc->hi);
sid = VTD_INV_DESC_DEVICE_IOTLB_SID(inv_desc->lo);
size = VTD_INV_DESC_DEVICE_IOTLB_SIZE(inv_desc->hi);
if ((inv_desc->lo & VTD_INV_DESC_DEVICE_IOTLB_RSVD_LO) ||
(inv_desc->hi & VTD_INV_DESC_DEVICE_IOTLB_RSVD_HI)) {
error_report_once("%s: invalid dev-iotlb inv desc: hi=%"PRIx64
", lo=%"PRIx64" (reserved nonzero)", __func__,
inv_desc->hi, inv_desc->lo);
return false;
}
/*
* Using sid is OK since the guest should have finished the
* initialization of both the bus and device.
*/
vtd_dev_as = vtd_get_as_by_sid(s, sid);
if (!vtd_dev_as) {
goto done;
}
/* According to ATS spec table 2.4:
* S = 0, bits 15:12 = xxxx range size: 4K
* S = 1, bits 15:12 = xxx0 range size: 8K
* S = 1, bits 15:12 = xx01 range size: 16K
* S = 1, bits 15:12 = x011 range size: 32K
* S = 1, bits 15:12 = 0111 range size: 64K
* ...
*/
if (size) {
sz = (VTD_PAGE_SIZE * 2) << cto64(addr >> VTD_PAGE_SHIFT);
addr &= ~(sz - 1);
} else {
sz = VTD_PAGE_SIZE;
}
event.type = IOMMU_NOTIFIER_DEVIOTLB_UNMAP;
event.entry.target_as = &vtd_dev_as->as;
event.entry.addr_mask = sz - 1;
event.entry.iova = addr;
event.entry.perm = IOMMU_NONE;
event.entry.translated_addr = 0;
memory_region_notify_iommu(&vtd_dev_as->iommu, 0, event);
done:
return true;
}
static bool vtd_process_inv_desc(IntelIOMMUState *s)
{
VTDInvDesc inv_desc;
uint8_t desc_type;
trace_vtd_inv_qi_head(s->iq_head);
if (!vtd_get_inv_desc(s, &inv_desc)) {
s->iq_last_desc_type = VTD_INV_DESC_NONE;
return false;
}
desc_type = inv_desc.lo & VTD_INV_DESC_TYPE;
/* FIXME: should update at first or at last? */
s->iq_last_desc_type = desc_type;
switch (desc_type) {
case VTD_INV_DESC_CC:
trace_vtd_inv_desc("context-cache", inv_desc.hi, inv_desc.lo);
if (!vtd_process_context_cache_desc(s, &inv_desc)) {
return false;
}
break;
case VTD_INV_DESC_IOTLB:
trace_vtd_inv_desc("iotlb", inv_desc.hi, inv_desc.lo);
if (!vtd_process_iotlb_desc(s, &inv_desc)) {
return false;
}
break;
/*
* TODO: the entity of below two cases will be implemented in future series.
* To make guest (which integrates scalable mode support patch set in
* iommu driver) work, just return true is enough so far.
*/
case VTD_INV_DESC_PC:
break;
case VTD_INV_DESC_PIOTLB:
break;
case VTD_INV_DESC_WAIT:
trace_vtd_inv_desc("wait", inv_desc.hi, inv_desc.lo);
if (!vtd_process_wait_desc(s, &inv_desc)) {
return false;
}
break;
case VTD_INV_DESC_IEC:
trace_vtd_inv_desc("iec", inv_desc.hi, inv_desc.lo);
if (!vtd_process_inv_iec_desc(s, &inv_desc)) {
return false;
}
break;
case VTD_INV_DESC_DEVICE:
trace_vtd_inv_desc("device", inv_desc.hi, inv_desc.lo);
if (!vtd_process_device_iotlb_desc(s, &inv_desc)) {
return false;
}
break;
default:
error_report_once("%s: invalid inv desc: hi=%"PRIx64", lo=%"PRIx64
" (unknown type)", __func__, inv_desc.hi,
inv_desc.lo);
return false;
}
s->iq_head++;
if (s->iq_head == s->iq_size) {
s->iq_head = 0;
}
return true;
}
/* Try to fetch and process more Invalidation Descriptors */
static void vtd_fetch_inv_desc(IntelIOMMUState *s)
{
int qi_shift;
/* Refer to 10.4.23 of VT-d spec 3.0 */
qi_shift = s->iq_dw ? VTD_IQH_QH_SHIFT_5 : VTD_IQH_QH_SHIFT_4;
trace_vtd_inv_qi_fetch();
if (s->iq_tail >= s->iq_size) {
/* Detects an invalid Tail pointer */
error_report_once("%s: detected invalid QI tail "
"(tail=0x%x, size=0x%x)",
__func__, s->iq_tail, s->iq_size);
vtd_handle_inv_queue_error(s);
return;
}
while (s->iq_head != s->iq_tail) {
if (!vtd_process_inv_desc(s)) {
/* Invalidation Queue Errors */
vtd_handle_inv_queue_error(s);
break;
}
/* Must update the IQH_REG in time */
vtd_set_quad_raw(s, DMAR_IQH_REG,
(((uint64_t)(s->iq_head)) << qi_shift) &
VTD_IQH_QH_MASK);
}
}
/* Handle write to Invalidation Queue Tail Register */
static void vtd_handle_iqt_write(IntelIOMMUState *s)
{
uint64_t val = vtd_get_quad_raw(s, DMAR_IQT_REG);
if (s->iq_dw && (val & VTD_IQT_QT_256_RSV_BIT)) {
error_report_once("%s: RSV bit is set: val=0x%"PRIx64,
__func__, val);
return;
}
s->iq_tail = VTD_IQT_QT(s->iq_dw, val);
trace_vtd_inv_qi_tail(s->iq_tail);
if (s->qi_enabled && !(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
/* Process Invalidation Queue here */
vtd_fetch_inv_desc(s);
}
}
static void vtd_handle_fsts_write(IntelIOMMUState *s)
{
uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
uint32_t fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
uint32_t status_fields = VTD_FSTS_PFO | VTD_FSTS_PPF | VTD_FSTS_IQE;
if ((fectl_reg & VTD_FECTL_IP) && !(fsts_reg & status_fields)) {
vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
trace_vtd_fsts_clear_ip();
}
/* FIXME: when IQE is Clear, should we try to fetch some Invalidation
* Descriptors if there are any when Queued Invalidation is enabled?
*/
}
static void vtd_handle_fectl_write(IntelIOMMUState *s)
{
uint32_t fectl_reg;
/* FIXME: when software clears the IM field, check the IP field. But do we
* need to compare the old value and the new value to conclude that
* software clears the IM field? Or just check if the IM field is zero?
*/
fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
trace_vtd_reg_write_fectl(fectl_reg);
if ((fectl_reg & VTD_FECTL_IP) && !(fectl_reg & VTD_FECTL_IM)) {
vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
}
}
static void vtd_handle_ics_write(IntelIOMMUState *s)
{
uint32_t ics_reg = vtd_get_long_raw(s, DMAR_ICS_REG);
uint32_t iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
if ((iectl_reg & VTD_IECTL_IP) && !(ics_reg & VTD_ICS_IWC)) {
trace_vtd_reg_ics_clear_ip();
vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
}
}
static void vtd_handle_iectl_write(IntelIOMMUState *s)
{
uint32_t iectl_reg;
/* FIXME: when software clears the IM field, check the IP field. But do we
* need to compare the old value and the new value to conclude that
* software clears the IM field? Or just check if the IM field is zero?
*/
iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
trace_vtd_reg_write_iectl(iectl_reg);
if ((iectl_reg & VTD_IECTL_IP) && !(iectl_reg & VTD_IECTL_IM)) {
vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
}
}
static uint64_t vtd_mem_read(void *opaque, hwaddr addr, unsigned size)
{
IntelIOMMUState *s = opaque;
uint64_t val;
trace_vtd_reg_read(addr, size);
if (addr + size > DMAR_REG_SIZE) {
error_report_once("%s: MMIO over range: addr=0x%" PRIx64
" size=0x%x", __func__, addr, size);
return (uint64_t)-1;
}
switch (addr) {
/* Root Table Address Register, 64-bit */
case DMAR_RTADDR_REG:
val = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
if (size == 4) {
val = val & ((1ULL << 32) - 1);
}
break;
case DMAR_RTADDR_REG_HI:
assert(size == 4);
val = vtd_get_quad_raw(s, DMAR_RTADDR_REG) >> 32;
break;
/* Invalidation Queue Address Register, 64-bit */
case DMAR_IQA_REG:
val = s->iq | (vtd_get_quad(s, DMAR_IQA_REG) & VTD_IQA_QS);
if (size == 4) {
val = val & ((1ULL << 32) - 1);
}
break;
case DMAR_IQA_REG_HI:
assert(size == 4);
val = s->iq >> 32;
break;
default:
if (size == 4) {
val = vtd_get_long(s, addr);
} else {
val = vtd_get_quad(s, addr);
}
}
return val;
}
static void vtd_mem_write(void *opaque, hwaddr addr,
uint64_t val, unsigned size)
{
IntelIOMMUState *s = opaque;
trace_vtd_reg_write(addr, size, val);
if (addr + size > DMAR_REG_SIZE) {
error_report_once("%s: MMIO over range: addr=0x%" PRIx64
" size=0x%x", __func__, addr, size);
return;
}
switch (addr) {
/* Global Command Register, 32-bit */
case DMAR_GCMD_REG:
vtd_set_long(s, addr, val);
vtd_handle_gcmd_write(s);
break;
/* Context Command Register, 64-bit */
case DMAR_CCMD_REG:
if (size == 4) {
vtd_set_long(s, addr, val);
} else {
vtd_set_quad(s, addr, val);
vtd_handle_ccmd_write(s);
}
break;
case DMAR_CCMD_REG_HI:
assert(size == 4);
vtd_set_long(s, addr, val);
vtd_handle_ccmd_write(s);
break;
/* IOTLB Invalidation Register, 64-bit */
case DMAR_IOTLB_REG:
if (size == 4) {
vtd_set_long(s, addr, val);
} else {
vtd_set_quad(s, addr, val);
vtd_handle_iotlb_write(s);
}
break;
case DMAR_IOTLB_REG_HI:
assert(size == 4);
vtd_set_long(s, addr, val);
vtd_handle_iotlb_write(s);
break;
/* Invalidate Address Register, 64-bit */
case DMAR_IVA_REG:
if (size == 4) {
vtd_set_long(s, addr, val);
} else {
vtd_set_quad(s, addr, val);
}
break;
case DMAR_IVA_REG_HI:
assert(size == 4);
vtd_set_long(s, addr, val);
break;
/* Fault Status Register, 32-bit */
case DMAR_FSTS_REG:
assert(size == 4);
vtd_set_long(s, addr, val);
vtd_handle_fsts_write(s);
break;
/* Fault Event Control Register, 32-bit */
case DMAR_FECTL_REG:
assert(size == 4);
vtd_set_long(s, addr, val);
vtd_handle_fectl_write(s);
break;
/* Fault Event Data Register, 32-bit */
case DMAR_FEDATA_REG:
assert(size == 4);
vtd_set_long(s, addr, val);
break;
/* Fault Event Address Register, 32-bit */
case DMAR_FEADDR_REG:
if (size == 4) {
vtd_set_long(s, addr, val);
} else {
/*
* While the register is 32-bit only, some guests (Xen...) write to
* it with 64-bit.
*/
vtd_set_quad(s, addr, val);
}
break;
/* Fault Event Upper Address Register, 32-bit */
case DMAR_FEUADDR_REG:
assert(size == 4);
vtd_set_long(s, addr, val);
break;
/* Protected Memory Enable Register, 32-bit */
case DMAR_PMEN_REG:
assert(size == 4);
vtd_set_long(s, addr, val);
break;
/* Root Table Address Register, 64-bit */
case DMAR_RTADDR_REG:
if (size == 4) {
vtd_set_long(s, addr, val);
} else {
vtd_set_quad(s, addr, val);
}
break;
case DMAR_RTADDR_REG_HI:
assert(size == 4);
vtd_set_long(s, addr, val);
break;
/* Invalidation Queue Tail Register, 64-bit */
case DMAR_IQT_REG:
if (size == 4) {
vtd_set_long(s, addr, val);
} else {
vtd_set_quad(s, addr, val);
}
vtd_handle_iqt_write(s);
break;
case DMAR_IQT_REG_HI:
assert(size == 4);
vtd_set_long(s, addr, val);
/* 19:63 of IQT_REG is RsvdZ, do nothing here */
break;
/* Invalidation Queue Address Register, 64-bit */
case DMAR_IQA_REG:
if (size == 4) {
vtd_set_long(s, addr, val);
} else {
vtd_set_quad(s, addr, val);
}
vtd_update_iq_dw(s);
break;
case DMAR_IQA_REG_HI:
assert(size == 4);
vtd_set_long(s, addr, val);
break;
/* Invalidation Completion Status Register, 32-bit */
case DMAR_ICS_REG:
assert(size == 4);
vtd_set_long(s, addr, val);
vtd_handle_ics_write(s);
break;
/* Invalidation Event Control Register, 32-bit */
case DMAR_IECTL_REG:
assert(size == 4);
vtd_set_long(s, addr, val);
vtd_handle_iectl_write(s);
break;
/* Invalidation Event Data Register, 32-bit */
case DMAR_IEDATA_REG:
assert(size == 4);
vtd_set_long(s, addr, val);
break;
/* Invalidation Event Address Register, 32-bit */
case DMAR_IEADDR_REG:
assert(size == 4);
vtd_set_long(s, addr, val);
break;
/* Invalidation Event Upper Address Register, 32-bit */
case DMAR_IEUADDR_REG:
assert(size == 4);
vtd_set_long(s, addr, val);
break;
/* Fault Recording Registers, 128-bit */
case DMAR_FRCD_REG_0_0:
if (size == 4) {
vtd_set_long(s, addr, val);
} else {
vtd_set_quad(s, addr, val);
}
break;
case DMAR_FRCD_REG_0_1:
assert(size == 4);
vtd_set_long(s, addr, val);
break;
case DMAR_FRCD_REG_0_2:
if (size == 4) {
vtd_set_long(s, addr, val);
} else {
vtd_set_quad(s, addr, val);
/* May clear bit 127 (Fault), update PPF */
vtd_update_fsts_ppf(s);
}
break;
case DMAR_FRCD_REG_0_3:
assert(size == 4);
vtd_set_long(s, addr, val);
/* May clear bit 127 (Fault), update PPF */
vtd_update_fsts_ppf(s);
break;
case DMAR_IRTA_REG:
if (size == 4) {
vtd_set_long(s, addr, val);
} else {
vtd_set_quad(s, addr, val);
}
break;
case DMAR_IRTA_REG_HI:
assert(size == 4);
vtd_set_long(s, addr, val);
break;
default:
if (size == 4) {
vtd_set_long(s, addr, val);
} else {
vtd_set_quad(s, addr, val);
}
}
}
static IOMMUTLBEntry vtd_iommu_translate(IOMMUMemoryRegion *iommu, hwaddr addr,
IOMMUAccessFlags flag, int iommu_idx)
{
VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
IntelIOMMUState *s = vtd_as->iommu_state;
IOMMUTLBEntry iotlb = {
/* We'll fill in the rest later. */
.target_as = &address_space_memory,
};
bool success;
if (likely(s->dmar_enabled)) {
success = vtd_do_iommu_translate(vtd_as, vtd_as->bus, vtd_as->devfn,
addr, flag & IOMMU_WO, &iotlb);
} else {
/* DMAR disabled, passthrough, use 4k-page*/
iotlb.iova = addr & VTD_PAGE_MASK_4K;
iotlb.translated_addr = addr & VTD_PAGE_MASK_4K;
iotlb.addr_mask = ~VTD_PAGE_MASK_4K;
iotlb.perm = IOMMU_RW;
success = true;
}
if (likely(success)) {
trace_vtd_dmar_translate(pci_bus_num(vtd_as->bus),
VTD_PCI_SLOT(vtd_as->devfn),
VTD_PCI_FUNC(vtd_as->devfn),
iotlb.iova, iotlb.translated_addr,
iotlb.addr_mask);
} else {
error_report_once("%s: detected translation failure "
"(dev=%02x:%02x:%02x, iova=0x%" PRIx64 ")",
__func__, pci_bus_num(vtd_as->bus),
VTD_PCI_SLOT(vtd_as->devfn),
VTD_PCI_FUNC(vtd_as->devfn),
addr);
}
return iotlb;
}
static int vtd_iommu_notify_flag_changed(IOMMUMemoryRegion *iommu,
IOMMUNotifierFlag old,
IOMMUNotifierFlag new,
Error **errp)
{
VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
IntelIOMMUState *s = vtd_as->iommu_state;
X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
/* TODO: add support for VFIO and vhost users */
if (s->snoop_control) {
error_setg_errno(errp, ENOTSUP,
"Snoop Control with vhost or VFIO is not supported");
return -ENOTSUP;
}
if (!s->caching_mode && (new & IOMMU_NOTIFIER_MAP)) {
error_setg_errno(errp, ENOTSUP,
"device %02x.%02x.%x requires caching mode",
pci_bus_num(vtd_as->bus), PCI_SLOT(vtd_as->devfn),
PCI_FUNC(vtd_as->devfn));
return -ENOTSUP;
}
if (!x86_iommu->dt_supported && (new & IOMMU_NOTIFIER_DEVIOTLB_UNMAP)) {
error_setg_errno(errp, ENOTSUP,
"device %02x.%02x.%x requires device IOTLB mode",
pci_bus_num(vtd_as->bus), PCI_SLOT(vtd_as->devfn),
PCI_FUNC(vtd_as->devfn));
return -ENOTSUP;
}
/* Update per-address-space notifier flags */
vtd_as->notifier_flags = new;
if (old == IOMMU_NOTIFIER_NONE) {
QLIST_INSERT_HEAD(&s->vtd_as_with_notifiers, vtd_as, next);
} else if (new == IOMMU_NOTIFIER_NONE) {
QLIST_REMOVE(vtd_as, next);
}
return 0;
}
static int vtd_post_load(void *opaque, int version_id)
{
IntelIOMMUState *iommu = opaque;
/*
* We don't need to migrate the root_scalable because we can
* simply do the calculation after the loading is complete. We
* can actually do similar things with root, dmar_enabled, etc.
* however since we've had them already so we'd better keep them
* for compatibility of migration.
*/
vtd_update_scalable_state(iommu);
vtd_update_iq_dw(iommu);
/*
* Memory regions are dynamically turned on/off depending on
* context entry configurations from the guest. After migration,
* we need to make sure the memory regions are still correct.
*/
vtd_switch_address_space_all(iommu);
return 0;
}
static const VMStateDescription vtd_vmstate = {
.name = "iommu-intel",
.version_id = 1,
.minimum_version_id = 1,
.priority = MIG_PRI_IOMMU,
.post_load = vtd_post_load,
.fields = (const VMStateField[]) {
VMSTATE_UINT64(root, IntelIOMMUState),
VMSTATE_UINT64(intr_root, IntelIOMMUState),
VMSTATE_UINT64(iq, IntelIOMMUState),
VMSTATE_UINT32(intr_size, IntelIOMMUState),
VMSTATE_UINT16(iq_head, IntelIOMMUState),
VMSTATE_UINT16(iq_tail, IntelIOMMUState),
VMSTATE_UINT16(iq_size, IntelIOMMUState),
VMSTATE_UINT16(next_frcd_reg, IntelIOMMUState),
VMSTATE_UINT8_ARRAY(csr, IntelIOMMUState, DMAR_REG_SIZE),
VMSTATE_UINT8(iq_last_desc_type, IntelIOMMUState),
VMSTATE_UNUSED(1), /* bool root_extended is obsolete by VT-d */
VMSTATE_BOOL(dmar_enabled, IntelIOMMUState),
VMSTATE_BOOL(qi_enabled, IntelIOMMUState),
VMSTATE_BOOL(intr_enabled, IntelIOMMUState),
VMSTATE_BOOL(intr_eime, IntelIOMMUState),
VMSTATE_END_OF_LIST()
}
};
static const MemoryRegionOps vtd_mem_ops = {
.read = vtd_mem_read,
.write = vtd_mem_write,
.endianness = DEVICE_LITTLE_ENDIAN,
.impl = {
.min_access_size = 4,
.max_access_size = 8,
},
.valid = {
.min_access_size = 4,
.max_access_size = 8,
},
};
static Property vtd_properties[] = {
DEFINE_PROP_UINT32("version", IntelIOMMUState, version, 0),
DEFINE_PROP_ON_OFF_AUTO("eim", IntelIOMMUState, intr_eim,
ON_OFF_AUTO_AUTO),
DEFINE_PROP_BOOL("x-buggy-eim", IntelIOMMUState, buggy_eim, false),
DEFINE_PROP_UINT8("aw-bits", IntelIOMMUState, aw_bits,
VTD_HOST_ADDRESS_WIDTH),
DEFINE_PROP_BOOL("caching-mode", IntelIOMMUState, caching_mode, FALSE),
DEFINE_PROP_BOOL("x-scalable-mode", IntelIOMMUState, scalable_mode, FALSE),
DEFINE_PROP_BOOL("snoop-control", IntelIOMMUState, snoop_control, false),
DEFINE_PROP_BOOL("x-pasid-mode", IntelIOMMUState, pasid, false),
DEFINE_PROP_BOOL("dma-drain", IntelIOMMUState, dma_drain, true),
DEFINE_PROP_BOOL("dma-translation", IntelIOMMUState, dma_translation, true),
DEFINE_PROP_END_OF_LIST(),
};
/* Read IRTE entry with specific index */
static bool vtd_irte_get(IntelIOMMUState *iommu, uint16_t index,
VTD_IR_TableEntry *entry, uint16_t sid,
bool do_fault)
{
static const uint16_t vtd_svt_mask[VTD_SQ_MAX] = \
{0xffff, 0xfffb, 0xfff9, 0xfff8};
dma_addr_t addr = 0x00;
uint16_t mask, source_id;
uint8_t bus, bus_max, bus_min;
if (index >= iommu->intr_size) {
error_report_once("%s: index too large: ind=0x%x",
__func__, index);
if (do_fault) {
vtd_report_ir_fault(iommu, sid, VTD_FR_IR_INDEX_OVER, index);
}
return false;
}
addr = iommu->intr_root + index * sizeof(*entry);
if (dma_memory_read(&address_space_memory, addr,
entry, sizeof(*entry), MEMTXATTRS_UNSPECIFIED)) {
error_report_once("%s: read failed: ind=0x%x addr=0x%" PRIx64,
__func__, index, addr);
if (do_fault) {
vtd_report_ir_fault(iommu, sid, VTD_FR_IR_ROOT_INVAL, index);
}
return false;
}
entry->data[0] = le64_to_cpu(entry->data[0]);
entry->data[1] = le64_to_cpu(entry->data[1]);
trace_vtd_ir_irte_get(index, entry->data[1], entry->data[0]);
/*
* The remaining potential fault conditions are "qualified" by the
* Fault Processing Disable bit in the IRTE. Even "not present".
* So just clear the do_fault flag if PFD is set, which will
* prevent faults being raised.
*/
if (entry->irte.fault_disable) {
do_fault = false;
}
if (!entry->irte.present) {
error_report_once("%s: detected non-present IRTE "
"(index=%u, high=0x%" PRIx64 ", low=0x%" PRIx64 ")",
__func__, index, entry->data[1], entry->data[0]);
if (do_fault) {
vtd_report_ir_fault(iommu, sid, VTD_FR_IR_ENTRY_P, index);
}
return false;
}
if (entry->irte.__reserved_0 || entry->irte.__reserved_1 ||
entry->irte.__reserved_2) {
error_report_once("%s: detected non-zero reserved IRTE "
"(index=%u, high=0x%" PRIx64 ", low=0x%" PRIx64 ")",
__func__, index, entry->data[1], entry->data[0]);
if (do_fault) {
vtd_report_ir_fault(iommu, sid, VTD_FR_IR_IRTE_RSVD, index);
}
return false;
}
if (sid != X86_IOMMU_SID_INVALID) {
/* Validate IRTE SID */
source_id = entry->irte.source_id;
switch (entry->irte.sid_vtype) {
case VTD_SVT_NONE:
break;
case VTD_SVT_ALL:
mask = vtd_svt_mask[entry->irte.sid_q];
if ((source_id & mask) != (sid & mask)) {
error_report_once("%s: invalid IRTE SID "
"(index=%u, sid=%u, source_id=%u)",
__func__, index, sid, source_id);
if (do_fault) {
vtd_report_ir_fault(iommu, sid, VTD_FR_IR_SID_ERR, index);
}
return false;
}
break;
case VTD_SVT_BUS:
bus_max = source_id >> 8;
bus_min = source_id & 0xff;
bus = sid >> 8;
if (bus > bus_max || bus < bus_min) {
error_report_once("%s: invalid SVT_BUS "
"(index=%u, bus=%u, min=%u, max=%u)",
__func__, index, bus, bus_min, bus_max);
if (do_fault) {
vtd_report_ir_fault(iommu, sid, VTD_FR_IR_SID_ERR, index);
}
return false;
}
break;
default:
error_report_once("%s: detected invalid IRTE SVT "
"(index=%u, type=%d)", __func__,
index, entry->irte.sid_vtype);
/* Take this as verification failure. */
if (do_fault) {
vtd_report_ir_fault(iommu, sid, VTD_FR_IR_SID_ERR, index);
}
return false;
}
}
return true;
}
/* Fetch IRQ information of specific IR index */
static bool vtd_remap_irq_get(IntelIOMMUState *iommu, uint16_t index,
X86IOMMUIrq *irq, uint16_t sid, bool do_fault)
{
VTD_IR_TableEntry irte = {};
if (!vtd_irte_get(iommu, index, &irte, sid, do_fault)) {
return false;
}
irq->trigger_mode = irte.irte.trigger_mode;
irq->vector = irte.irte.vector;
irq->delivery_mode = irte.irte.delivery_mode;
irq->dest = irte.irte.dest_id;
if (!iommu->intr_eime) {
#define VTD_IR_APIC_DEST_MASK (0xff00ULL)
#define VTD_IR_APIC_DEST_SHIFT (8)
irq->dest = (irq->dest & VTD_IR_APIC_DEST_MASK) >>
VTD_IR_APIC_DEST_SHIFT;
}
irq->dest_mode = irte.irte.dest_mode;
irq->redir_hint = irte.irte.redir_hint;
trace_vtd_ir_remap(index, irq->trigger_mode, irq->vector,
irq->delivery_mode, irq->dest, irq->dest_mode);
return true;
}
/* Interrupt remapping for MSI/MSI-X entry */
static int vtd_interrupt_remap_msi(IntelIOMMUState *iommu,
MSIMessage *origin,
MSIMessage *translated,
uint16_t sid, bool do_fault)
{
VTD_IR_MSIAddress addr;
uint16_t index;
X86IOMMUIrq irq = {};
assert(origin && translated);
trace_vtd_ir_remap_msi_req(origin->address, origin->data);
if (!iommu || !iommu->intr_enabled) {
memcpy(translated, origin, sizeof(*origin));
goto out;
}
if (origin->address & VTD_MSI_ADDR_HI_MASK) {
error_report_once("%s: MSI address high 32 bits non-zero detected: "
"address=0x%" PRIx64, __func__, origin->address);
if (do_fault) {
vtd_report_ir_fault(iommu, sid, VTD_FR_IR_REQ_RSVD, 0);
}
return -EINVAL;
}
addr.data = origin->address & VTD_MSI_ADDR_LO_MASK;
if (addr.addr.__head != 0xfee) {
error_report_once("%s: MSI address low 32 bit invalid: 0x%" PRIx32,
__func__, addr.data);
if (do_fault) {
vtd_report_ir_fault(iommu, sid, VTD_FR_IR_REQ_RSVD, 0);
}
return -EINVAL;
}
/* This is compatible mode. */
if (addr.addr.int_mode != VTD_IR_INT_FORMAT_REMAP) {
memcpy(translated, origin, sizeof(*origin));
goto out;
}
index = addr.addr.index_h << 15 | addr.addr.index_l;
#define VTD_IR_MSI_DATA_SUBHANDLE (0x0000ffff)
#define VTD_IR_MSI_DATA_RESERVED (0xffff0000)
if (addr.addr.sub_valid) {
/* See VT-d spec 5.1.2.2 and 5.1.3 on subhandle */
index += origin->data & VTD_IR_MSI_DATA_SUBHANDLE;
}
if (!vtd_remap_irq_get(iommu, index, &irq, sid, do_fault)) {
return -EINVAL;
}
if (addr.addr.sub_valid) {
trace_vtd_ir_remap_type("MSI");
if (origin->data & VTD_IR_MSI_DATA_RESERVED) {
error_report_once("%s: invalid IR MSI "
"(sid=%u, address=0x%" PRIx64
", data=0x%" PRIx32 ")",
__func__, sid, origin->address, origin->data);
if (do_fault) {
vtd_report_ir_fault(iommu, sid, VTD_FR_IR_REQ_RSVD, 0);
}
return -EINVAL;
}
} else {
uint8_t vector = origin->data & 0xff;
uint8_t trigger_mode = (origin->data >> MSI_DATA_TRIGGER_SHIFT) & 0x1;
trace_vtd_ir_remap_type("IOAPIC");
/* IOAPIC entry vector should be aligned with IRTE vector
* (see vt-d spec 5.1.5.1). */
if (vector != irq.vector) {
trace_vtd_warn_ir_vector(sid, index, vector, irq.vector);
}
/* The Trigger Mode field must match the Trigger Mode in the IRTE.
* (see vt-d spec 5.1.5.1). */
if (trigger_mode != irq.trigger_mode) {
trace_vtd_warn_ir_trigger(sid, index, trigger_mode,
irq.trigger_mode);
}
}
/*
* We'd better keep the last two bits, assuming that guest OS
* might modify it. Keep it does not hurt after all.
*/
irq.msi_addr_last_bits = addr.addr.__not_care;
/* Translate X86IOMMUIrq to MSI message */
x86_iommu_irq_to_msi_message(&irq, translated);
out:
trace_vtd_ir_remap_msi(origin->address, origin->data,
translated->address, translated->data);
return 0;
}
static int vtd_int_remap(X86IOMMUState *iommu, MSIMessage *src,
MSIMessage *dst, uint16_t sid)
{
return vtd_interrupt_remap_msi(INTEL_IOMMU_DEVICE(iommu),
src, dst, sid, false);
}
static MemTxResult vtd_mem_ir_read(void *opaque, hwaddr addr,
uint64_t *data, unsigned size,
MemTxAttrs attrs)
{
return MEMTX_OK;
}
static MemTxResult vtd_mem_ir_write(void *opaque, hwaddr addr,
uint64_t value, unsigned size,
MemTxAttrs attrs)
{
int ret = 0;
MSIMessage from = {}, to = {};
uint16_t sid = X86_IOMMU_SID_INVALID;
from.address = (uint64_t) addr + VTD_INTERRUPT_ADDR_FIRST;
from.data = (uint32_t) value;
if (!attrs.unspecified) {
/* We have explicit Source ID */
sid = attrs.requester_id;
}
ret = vtd_interrupt_remap_msi(opaque, &from, &to, sid, true);
if (ret) {
/* Drop this interrupt */
return MEMTX_ERROR;
}
apic_get_class(NULL)->send_msi(&to);
return MEMTX_OK;
}
static const MemoryRegionOps vtd_mem_ir_ops = {
.read_with_attrs = vtd_mem_ir_read,
.write_with_attrs = vtd_mem_ir_write,
.endianness = DEVICE_LITTLE_ENDIAN,
.impl = {
.min_access_size = 4,
.max_access_size = 4,
},
.valid = {
.min_access_size = 4,
.max_access_size = 4,
},
};
static void vtd_report_ir_illegal_access(VTDAddressSpace *vtd_as,
hwaddr addr, bool is_write)
{
IntelIOMMUState *s = vtd_as->iommu_state;
uint8_t bus_n = pci_bus_num(vtd_as->bus);
uint16_t sid = PCI_BUILD_BDF(bus_n, vtd_as->devfn);
bool is_fpd_set = false;
VTDContextEntry ce;
assert(vtd_as->pasid != PCI_NO_PASID);
/* Try out best to fetch FPD, we can't do anything more */
if (vtd_dev_to_context_entry(s, bus_n, vtd_as->devfn, &ce) == 0) {
is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
if (!is_fpd_set && s->root_scalable) {
vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set, vtd_as->pasid);
}
}
vtd_report_fault(s, VTD_FR_SM_INTERRUPT_ADDR,
is_fpd_set, sid, addr, is_write,
true, vtd_as->pasid);
}
static MemTxResult vtd_mem_ir_fault_read(void *opaque, hwaddr addr,
uint64_t *data, unsigned size,
MemTxAttrs attrs)
{
vtd_report_ir_illegal_access(opaque, addr, false);
return MEMTX_ERROR;
}
static MemTxResult vtd_mem_ir_fault_write(void *opaque, hwaddr addr,
uint64_t value, unsigned size,
MemTxAttrs attrs)
{
vtd_report_ir_illegal_access(opaque, addr, true);
return MEMTX_ERROR;
}
static const MemoryRegionOps vtd_mem_ir_fault_ops = {
.read_with_attrs = vtd_mem_ir_fault_read,
.write_with_attrs = vtd_mem_ir_fault_write,
.endianness = DEVICE_LITTLE_ENDIAN,
.impl = {
.min_access_size = 1,
.max_access_size = 8,
},
.valid = {
.min_access_size = 1,
.max_access_size = 8,
},
};
VTDAddressSpace *vtd_find_add_as(IntelIOMMUState *s, PCIBus *bus,
int devfn, unsigned int pasid)
{
/*
* We can't simply use sid here since the bus number might not be
* initialized by the guest.
*/
struct vtd_as_key key = {
.bus = bus,
.devfn = devfn,
.pasid = pasid,
};
VTDAddressSpace *vtd_dev_as;
char name[128];
vtd_dev_as = g_hash_table_lookup(s->vtd_address_spaces, &key);
if (!vtd_dev_as) {
struct vtd_as_key *new_key = g_malloc(sizeof(*new_key));
new_key->bus = bus;
new_key->devfn = devfn;
new_key->pasid = pasid;
if (pasid == PCI_NO_PASID) {
snprintf(name, sizeof(name), "vtd-%02x.%x", PCI_SLOT(devfn),
PCI_FUNC(devfn));
} else {
snprintf(name, sizeof(name), "vtd-%02x.%x-pasid-%x", PCI_SLOT(devfn),
PCI_FUNC(devfn), pasid);
}
vtd_dev_as = g_new0(VTDAddressSpace, 1);
vtd_dev_as->bus = bus;
vtd_dev_as->devfn = (uint8_t)devfn;
vtd_dev_as->pasid = pasid;
vtd_dev_as->iommu_state = s;
vtd_dev_as->context_cache_entry.context_cache_gen = 0;
vtd_dev_as->iova_tree = iova_tree_new();
memory_region_init(&vtd_dev_as->root, OBJECT(s), name, UINT64_MAX);
address_space_init(&vtd_dev_as->as, &vtd_dev_as->root, "vtd-root");
/*
* Build the DMAR-disabled container with aliases to the
* shared MRs. Note that aliasing to a shared memory region
* could help the memory API to detect same FlatViews so we
* can have devices to share the same FlatView when DMAR is
* disabled (either by not providing "intel_iommu=on" or with
* "iommu=pt"). It will greatly reduce the total number of
* FlatViews of the system hence VM runs faster.
*/
memory_region_init_alias(&vtd_dev_as->nodmar, OBJECT(s),
"vtd-nodmar", &s->mr_nodmar, 0,
memory_region_size(&s->mr_nodmar));
/*
* Build the per-device DMAR-enabled container.
*
* TODO: currently we have per-device IOMMU memory region only
* because we have per-device IOMMU notifiers for devices. If
* one day we can abstract the IOMMU notifiers out of the
* memory regions then we can also share the same memory
* region here just like what we've done above with the nodmar
* region.
*/
strcat(name, "-dmar");
memory_region_init_iommu(&vtd_dev_as->iommu, sizeof(vtd_dev_as->iommu),
TYPE_INTEL_IOMMU_MEMORY_REGION, OBJECT(s),
name, UINT64_MAX);
memory_region_init_alias(&vtd_dev_as->iommu_ir, OBJECT(s), "vtd-ir",
&s->mr_ir, 0, memory_region_size(&s->mr_ir));
memory_region_add_subregion_overlap(MEMORY_REGION(&vtd_dev_as->iommu),
VTD_INTERRUPT_ADDR_FIRST,
&vtd_dev_as->iommu_ir, 1);
/*
* This region is used for catching fault to access interrupt
* range via passthrough + PASID. See also
* vtd_switch_address_space(). We can't use alias since we
* need to know the sid which is valid for MSI who uses
* bus_master_as (see msi_send_message()).
*/
memory_region_init_io(&vtd_dev_as->iommu_ir_fault, OBJECT(s),
&vtd_mem_ir_fault_ops, vtd_dev_as, "vtd-no-ir",
VTD_INTERRUPT_ADDR_SIZE);
/*
* Hook to root since when PT is enabled vtd_dev_as->iommu
* will be disabled.
*/
memory_region_add_subregion_overlap(MEMORY_REGION(&vtd_dev_as->root),
VTD_INTERRUPT_ADDR_FIRST,
&vtd_dev_as->iommu_ir_fault, 2);
/*
* Hook both the containers under the root container, we
* switch between DMAR & noDMAR by enable/disable
* corresponding sub-containers
*/
memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
MEMORY_REGION(&vtd_dev_as->iommu),
0);
memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
&vtd_dev_as->nodmar, 0);
vtd_switch_address_space(vtd_dev_as);
g_hash_table_insert(s->vtd_address_spaces, new_key, vtd_dev_as);
}
return vtd_dev_as;
}
/* Unmap the whole range in the notifier's scope. */
static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n)
{
hwaddr total, remain;
hwaddr start = n->start;
hwaddr end = n->end;
IntelIOMMUState *s = as->iommu_state;
DMAMap map;
/*
* Note: all the codes in this function has a assumption that IOVA
* bits are no more than VTD_MGAW bits (which is restricted by
* VT-d spec), otherwise we need to consider overflow of 64 bits.
*/
if (end > VTD_ADDRESS_SIZE(s->aw_bits) - 1) {
/*
* Don't need to unmap regions that is bigger than the whole
* VT-d supported address space size
*/
end = VTD_ADDRESS_SIZE(s->aw_bits) - 1;
}
assert(start <= end);
total = remain = end - start + 1;
while (remain >= VTD_PAGE_SIZE) {
IOMMUTLBEvent event;
uint64_t mask = dma_aligned_pow2_mask(start, end, s->aw_bits);
uint64_t size = mask + 1;
assert(size);
event.type = IOMMU_NOTIFIER_UNMAP;
event.entry.iova = start;
event.entry.addr_mask = mask;
event.entry.target_as = &address_space_memory;
event.entry.perm = IOMMU_NONE;
/* This field is meaningless for unmap */
event.entry.translated_addr = 0;
memory_region_notify_iommu_one(n, &event);
start += size;
remain -= size;
}
assert(!remain);
trace_vtd_as_unmap_whole(pci_bus_num(as->bus),
VTD_PCI_SLOT(as->devfn),
VTD_PCI_FUNC(as->devfn),
n->start, total);
map.iova = n->start;
map.size = total - 1; /* Inclusive */
iova_tree_remove(as->iova_tree, map);
}
static void vtd_address_space_unmap_all(IntelIOMMUState *s)
{
VTDAddressSpace *vtd_as;
IOMMUNotifier *n;
QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
vtd_address_space_unmap(vtd_as, n);
}
}
}
static void vtd_address_space_refresh_all(IntelIOMMUState *s)
{
vtd_address_space_unmap_all(s);
vtd_switch_address_space_all(s);
}
static int vtd_replay_hook(IOMMUTLBEvent *event, void *private)
{
memory_region_notify_iommu_one(private, event);
return 0;
}
static void vtd_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n)
{
VTDAddressSpace *vtd_as = container_of(iommu_mr, VTDAddressSpace, iommu);
IntelIOMMUState *s = vtd_as->iommu_state;
uint8_t bus_n = pci_bus_num(vtd_as->bus);
VTDContextEntry ce;
DMAMap map = { .iova = 0, .size = HWADDR_MAX };
/* replay is protected by BQL, page walk will re-setup it safely */
iova_tree_remove(vtd_as->iova_tree, map);
if (vtd_dev_to_context_entry(s, bus_n, vtd_as->devfn, &ce) == 0) {
trace_vtd_replay_ce_valid(s->root_scalable ? "scalable mode" :
"legacy mode",
bus_n, PCI_SLOT(vtd_as->devfn),
PCI_FUNC(vtd_as->devfn),
vtd_get_domain_id(s, &ce, vtd_as->pasid),
ce.hi, ce.lo);
if (n->notifier_flags & IOMMU_NOTIFIER_MAP) {
/* This is required only for MAP typed notifiers */
vtd_page_walk_info info = {
.hook_fn = vtd_replay_hook,
.private = (void *)n,
.notify_unmap = false,
.aw = s->aw_bits,
.as = vtd_as,
.domain_id = vtd_get_domain_id(s, &ce, vtd_as->pasid),
};
vtd_page_walk(s, &ce, 0, ~0ULL, &info, vtd_as->pasid);
}
} else {
trace_vtd_replay_ce_invalid(bus_n, PCI_SLOT(vtd_as->devfn),
PCI_FUNC(vtd_as->devfn));
}
return;
}
/* Do the initialization. It will also be called when reset, so pay
* attention when adding new initialization stuff.
*/
static void vtd_init(IntelIOMMUState *s)
{
X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
memset(s->csr, 0, DMAR_REG_SIZE);
memset(s->wmask, 0, DMAR_REG_SIZE);
memset(s->w1cmask, 0, DMAR_REG_SIZE);
memset(s->womask, 0, DMAR_REG_SIZE);
s->root = 0;
s->root_scalable = false;
s->dmar_enabled = false;
s->intr_enabled = false;
s->iq_head = 0;
s->iq_tail = 0;
s->iq = 0;
s->iq_size = 0;
s->qi_enabled = false;
s->iq_last_desc_type = VTD_INV_DESC_NONE;
s->iq_dw = false;
s->next_frcd_reg = 0;
s->cap = VTD_CAP_FRO | VTD_CAP_NFR | VTD_CAP_ND |
VTD_CAP_MAMV | VTD_CAP_PSI | VTD_CAP_SLLPS |
VTD_CAP_MGAW(s->aw_bits);
if (s->dma_drain) {
s->cap |= VTD_CAP_DRAIN;
}
if (s->dma_translation) {
if (s->aw_bits >= VTD_HOST_AW_39BIT) {
s->cap |= VTD_CAP_SAGAW_39bit;
}
if (s->aw_bits >= VTD_HOST_AW_48BIT) {
s->cap |= VTD_CAP_SAGAW_48bit;
}
}
s->ecap = VTD_ECAP_QI | VTD_ECAP_IRO;
/*
* Rsvd field masks for spte
*/
vtd_spte_rsvd[0] = ~0ULL;
vtd_spte_rsvd[1] = VTD_SPTE_PAGE_L1_RSVD_MASK(s->aw_bits,
x86_iommu->dt_supported);
vtd_spte_rsvd[2] = VTD_SPTE_PAGE_L2_RSVD_MASK(s->aw_bits);
vtd_spte_rsvd[3] = VTD_SPTE_PAGE_L3_RSVD_MASK(s->aw_bits);
vtd_spte_rsvd[4] = VTD_SPTE_PAGE_L4_RSVD_MASK(s->aw_bits);
vtd_spte_rsvd_large[2] = VTD_SPTE_LPAGE_L2_RSVD_MASK(s->aw_bits,
x86_iommu->dt_supported);
vtd_spte_rsvd_large[3] = VTD_SPTE_LPAGE_L3_RSVD_MASK(s->aw_bits,
x86_iommu->dt_supported);
if (s->scalable_mode || s->snoop_control) {
vtd_spte_rsvd[1] &= ~VTD_SPTE_SNP;
vtd_spte_rsvd_large[2] &= ~VTD_SPTE_SNP;
vtd_spte_rsvd_large[3] &= ~VTD_SPTE_SNP;
}
if (x86_iommu_ir_supported(x86_iommu)) {
s->ecap |= VTD_ECAP_IR | VTD_ECAP_MHMV;
if (s->intr_eim == ON_OFF_AUTO_ON) {
s->ecap |= VTD_ECAP_EIM;
}
assert(s->intr_eim != ON_OFF_AUTO_AUTO);
}
if (x86_iommu->dt_supported) {
s->ecap |= VTD_ECAP_DT;
}
if (x86_iommu->pt_supported) {
s->ecap |= VTD_ECAP_PT;
}
if (s->caching_mode) {
s->cap |= VTD_CAP_CM;
}
/* TODO: read cap/ecap from host to decide which cap to be exposed. */
if (s->scalable_mode) {
s->ecap |= VTD_ECAP_SMTS | VTD_ECAP_SRS | VTD_ECAP_SLTS;
}
if (s->snoop_control) {
s->ecap |= VTD_ECAP_SC;
}
if (s->pasid) {
s->ecap |= VTD_ECAP_PASID;
}
vtd_reset_caches(s);
/* Define registers with default values and bit semantics */
vtd_define_long(s, DMAR_VER_REG, 0x10UL, 0, 0);
vtd_define_quad(s, DMAR_CAP_REG, s->cap, 0, 0);
vtd_define_quad(s, DMAR_ECAP_REG, s->ecap, 0, 0);
vtd_define_long(s, DMAR_GCMD_REG, 0, 0xff800000UL, 0);
vtd_define_long_wo(s, DMAR_GCMD_REG, 0xff800000UL);
vtd_define_long(s, DMAR_GSTS_REG, 0, 0, 0);
vtd_define_quad(s, DMAR_RTADDR_REG, 0, 0xfffffffffffffc00ULL, 0);
vtd_define_quad(s, DMAR_CCMD_REG, 0, 0xe0000003ffffffffULL, 0);
vtd_define_quad_wo(s, DMAR_CCMD_REG, 0x3ffff0000ULL);
/* Advanced Fault Logging not supported */
vtd_define_long(s, DMAR_FSTS_REG, 0, 0, 0x11UL);
vtd_define_long(s, DMAR_FECTL_REG, 0x80000000UL, 0x80000000UL, 0);
vtd_define_long(s, DMAR_FEDATA_REG, 0, 0x0000ffffUL, 0);
vtd_define_long(s, DMAR_FEADDR_REG, 0, 0xfffffffcUL, 0);
/* Treated as RsvdZ when EIM in ECAP_REG is not supported
* vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0xffffffffUL, 0);
*/
vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0, 0);
/* Treated as RO for implementations that PLMR and PHMR fields reported
* as Clear in the CAP_REG.
* vtd_define_long(s, DMAR_PMEN_REG, 0, 0x80000000UL, 0);
*/
vtd_define_long(s, DMAR_PMEN_REG, 0, 0, 0);
vtd_define_quad(s, DMAR_IQH_REG, 0, 0, 0);
vtd_define_quad(s, DMAR_IQT_REG, 0, 0x7fff0ULL, 0);
vtd_define_quad(s, DMAR_IQA_REG, 0, 0xfffffffffffff807ULL, 0);
vtd_define_long(s, DMAR_ICS_REG, 0, 0, 0x1UL);
vtd_define_long(s, DMAR_IECTL_REG, 0x80000000UL, 0x80000000UL, 0);
vtd_define_long(s, DMAR_IEDATA_REG, 0, 0xffffffffUL, 0);
vtd_define_long(s, DMAR_IEADDR_REG, 0, 0xfffffffcUL, 0);
/* Treadted as RsvdZ when EIM in ECAP_REG is not supported */
vtd_define_long(s, DMAR_IEUADDR_REG, 0, 0, 0);
/* IOTLB registers */
vtd_define_quad(s, DMAR_IOTLB_REG, 0, 0Xb003ffff00000000ULL, 0);
vtd_define_quad(s, DMAR_IVA_REG, 0, 0xfffffffffffff07fULL, 0);
vtd_define_quad_wo(s, DMAR_IVA_REG, 0xfffffffffffff07fULL);
/* Fault Recording Registers, 128-bit */
vtd_define_quad(s, DMAR_FRCD_REG_0_0, 0, 0, 0);
vtd_define_quad(s, DMAR_FRCD_REG_0_2, 0, 0, 0x8000000000000000ULL);
/*
* Interrupt remapping registers.
*/
vtd_define_quad(s, DMAR_IRTA_REG, 0, 0xfffffffffffff80fULL, 0);
}
/* Should not reset address_spaces when reset because devices will still use
* the address space they got at first (won't ask the bus again).
*/
static void vtd_reset(DeviceState *dev)
{
IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
vtd_init(s);
vtd_address_space_refresh_all(s);
}
static AddressSpace *vtd_host_dma_iommu(PCIBus *bus, void *opaque, int devfn)
{
IntelIOMMUState *s = opaque;
VTDAddressSpace *vtd_as;
assert(0 <= devfn && devfn < PCI_DEVFN_MAX);
vtd_as = vtd_find_add_as(s, bus, devfn, PCI_NO_PASID);
return &vtd_as->as;
}
static PCIIOMMUOps vtd_iommu_ops = {
.get_address_space = vtd_host_dma_iommu,
};
static bool vtd_decide_config(IntelIOMMUState *s, Error **errp)
{
X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
if (s->intr_eim == ON_OFF_AUTO_ON && !x86_iommu_ir_supported(x86_iommu)) {
error_setg(errp, "eim=on cannot be selected without intremap=on");
return false;
}
if (s->intr_eim == ON_OFF_AUTO_AUTO) {
s->intr_eim = (kvm_irqchip_in_kernel() || s->buggy_eim)
&& x86_iommu_ir_supported(x86_iommu) ?
ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
}
if (s->intr_eim == ON_OFF_AUTO_ON && !s->buggy_eim) {
if (!kvm_irqchip_is_split()) {
error_setg(errp, "eim=on requires accel=kvm,kernel-irqchip=split");
return false;
}
if (kvm_enabled() && !kvm_enable_x2apic()) {
error_setg(errp, "eim=on requires support on the KVM side"
"(X2APIC_API, first shipped in v4.7)");
return false;
}
}
/* Currently only address widths supported are 39 and 48 bits */
if ((s->aw_bits != VTD_HOST_AW_39BIT) &&
(s->aw_bits != VTD_HOST_AW_48BIT)) {
error_setg(errp, "Supported values for aw-bits are: %d, %d",
VTD_HOST_AW_39BIT, VTD_HOST_AW_48BIT);
return false;
}
if (s->scalable_mode && !s->dma_drain) {
error_setg(errp, "Need to set dma_drain for scalable mode");
return false;
}
if (s->pasid && !s->scalable_mode) {
error_setg(errp, "Need to set scalable mode for PASID");
return false;
}
return true;
}
static int vtd_machine_done_notify_one(Object *child, void *unused)
{
IntelIOMMUState *iommu = INTEL_IOMMU_DEVICE(x86_iommu_get_default());
/*
* We hard-coded here because vfio-pci is the only special case
* here. Let's be more elegant in the future when we can, but so
* far there seems to be no better way.
*/
if (object_dynamic_cast(child, "vfio-pci") && !iommu->caching_mode) {
vtd_panic_require_caching_mode();
}
return 0;
}
static void vtd_machine_done_hook(Notifier *notifier, void *unused)
{
object_child_foreach_recursive(object_get_root(),
vtd_machine_done_notify_one, NULL);
}
static Notifier vtd_machine_done_notify = {
.notify = vtd_machine_done_hook,
};
static void vtd_realize(DeviceState *dev, Error **errp)
{
MachineState *ms = MACHINE(qdev_get_machine());
PCMachineState *pcms = PC_MACHINE(ms);
X86MachineState *x86ms = X86_MACHINE(ms);
PCIBus *bus = pcms->bus;
IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
if (s->pasid && x86_iommu->dt_supported) {
/*
* PASID-based-Device-TLB Invalidate Descriptor is not
* implemented and it requires support from vhost layer which
* needs to be implemented in the future.
*/
error_setg(errp, "PASID based device IOTLB is not supported");
return;
}
if (!vtd_decide_config(s, errp)) {
return;
}
QLIST_INIT(&s->vtd_as_with_notifiers);
qemu_mutex_init(&s->iommu_lock);
memory_region_init_io(&s->csrmem, OBJECT(s), &vtd_mem_ops, s,
"intel_iommu", DMAR_REG_SIZE);
memory_region_add_subregion(get_system_memory(),
Q35_HOST_BRIDGE_IOMMU_ADDR, &s->csrmem);
/* Create the shared memory regions by all devices */
memory_region_init(&s->mr_nodmar, OBJECT(s), "vtd-nodmar",
UINT64_MAX);
memory_region_init_io(&s->mr_ir, OBJECT(s), &vtd_mem_ir_ops,
s, "vtd-ir", VTD_INTERRUPT_ADDR_SIZE);
memory_region_init_alias(&s->mr_sys_alias, OBJECT(s),
"vtd-sys-alias", get_system_memory(), 0,
memory_region_size(get_system_memory()));
memory_region_add_subregion_overlap(&s->mr_nodmar, 0,
&s->mr_sys_alias, 0);
memory_region_add_subregion_overlap(&s->mr_nodmar,
VTD_INTERRUPT_ADDR_FIRST,
&s->mr_ir, 1);
/* No corresponding destroy */
s->iotlb = g_hash_table_new_full(vtd_iotlb_hash, vtd_iotlb_equal,
g_free, g_free);
s->vtd_address_spaces = g_hash_table_new_full(vtd_as_hash, vtd_as_equal,
g_free, g_free);
vtd_init(s);
pci_setup_iommu(bus, &vtd_iommu_ops, dev);
/* Pseudo address space under root PCI bus. */
x86ms->ioapic_as = vtd_host_dma_iommu(bus, s, Q35_PSEUDO_DEVFN_IOAPIC);
qemu_add_machine_init_done_notifier(&vtd_machine_done_notify);
}
static void vtd_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
X86IOMMUClass *x86_class = X86_IOMMU_DEVICE_CLASS(klass);
dc->reset = vtd_reset;
dc->vmsd = &vtd_vmstate;
device_class_set_props(dc, vtd_properties);
dc->hotpluggable = false;
x86_class->realize = vtd_realize;
x86_class->int_remap = vtd_int_remap;
/* Supported by the pc-q35-* machine types */
dc->user_creatable = true;
set_bit(DEVICE_CATEGORY_MISC, dc->categories);
dc->desc = "Intel IOMMU (VT-d) DMA Remapping device";
}
static const TypeInfo vtd_info = {
.name = TYPE_INTEL_IOMMU_DEVICE,
.parent = TYPE_X86_IOMMU_DEVICE,
.instance_size = sizeof(IntelIOMMUState),
.class_init = vtd_class_init,
};
static void vtd_iommu_memory_region_class_init(ObjectClass *klass,
void *data)
{
IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_CLASS(klass);
imrc->translate = vtd_iommu_translate;
imrc->notify_flag_changed = vtd_iommu_notify_flag_changed;
imrc->replay = vtd_iommu_replay;
}
static const TypeInfo vtd_iommu_memory_region_info = {
.parent = TYPE_IOMMU_MEMORY_REGION,
.name = TYPE_INTEL_IOMMU_MEMORY_REGION,
.class_init = vtd_iommu_memory_region_class_init,
};
static void vtd_register_types(void)
{
type_register_static(&vtd_info);
type_register_static(&vtd_iommu_memory_region_info);
}
type_init(vtd_register_types)