openscad/src/cgalutils.cc

521 lines
16 KiB
C++
Raw Normal View History

#ifdef ENABLE_CGAL
#include "cgalutils.h"
#include "polyset.h"
#include "printutils.h"
#include "Polygon2d.h"
2012-10-28 21:37:27 +04:00
#include "cgal.h"
2011-11-09 07:48:56 +04:00
2012-10-28 21:37:27 +04:00
#include <map>
#include <boost/foreach.hpp>
2012-10-28 21:37:27 +04:00
bool createPolySetFromPolyhedron(const CGAL_Polyhedron &p, PolySet &ps)
{
bool err = false;
typedef CGAL_Polyhedron::Vertex Vertex;
typedef CGAL_Polyhedron::Vertex_const_iterator VCI;
typedef CGAL_Polyhedron::Facet_const_iterator FCI;
typedef CGAL_Polyhedron::Halfedge_around_facet_const_circulator HFCC;
for (FCI fi = p.facets_begin(); fi != p.facets_end(); ++fi) {
HFCC hc = fi->facet_begin();
HFCC hc_end = hc;
Vertex v1, v2, v3;
v1 = *VCI((hc++)->vertex());
v3 = *VCI((hc++)->vertex());
do {
v2 = v3;
v3 = *VCI((hc++)->vertex());
double x1 = CGAL::to_double(v1.point().x());
double y1 = CGAL::to_double(v1.point().y());
double z1 = CGAL::to_double(v1.point().z());
double x2 = CGAL::to_double(v2.point().x());
double y2 = CGAL::to_double(v2.point().y());
double z2 = CGAL::to_double(v2.point().z());
double x3 = CGAL::to_double(v3.point().x());
double y3 = CGAL::to_double(v3.point().y());
double z3 = CGAL::to_double(v3.point().z());
ps.append_poly();
ps.append_vertex(x1, y1, z1);
ps.append_vertex(x2, y2, z2);
ps.append_vertex(x3, y3, z3);
} while (hc != hc_end);
}
return err;
}
#undef GEN_SURFACE_DEBUG
class CGAL_Build_PolySet : public CGAL::Modifier_base<CGAL_HDS>
{
public:
typedef CGAL_HDS::Vertex::Point CGALPoint;
const PolySet &ps;
CGAL_Build_PolySet(const PolySet &ps) : ps(ps) { }
void operator()(CGAL_HDS& hds)
{
CGAL_Polybuilder B(hds, true);
std::vector<CGALPoint> vertices;
Grid3d<int> vertices_idx(GRID_FINE);
for (size_t i = 0; i < ps.polygons.size(); i++) {
const PolySet::Polygon *poly = &ps.polygons[i];
for (size_t j = 0; j < poly->size(); j++) {
const Vector3d &p = poly->at(j);
if (!vertices_idx.has(p[0], p[1], p[2])) {
vertices_idx.data(p[0], p[1], p[2]) = vertices.size();
vertices.push_back(CGALPoint(p[0], p[1], p[2]));
}
}
}
B.begin_surface(vertices.size(), ps.polygons.size());
#ifdef GEN_SURFACE_DEBUG
printf("=== CGAL Surface ===\n");
#endif
for (size_t i = 0; i < vertices.size(); i++) {
const CGALPoint &p = vertices[i];
B.add_vertex(p);
#ifdef GEN_SURFACE_DEBUG
2012-10-09 06:22:27 +04:00
printf("%d: %f %f %f\n", i, p.x().to_double(), p.y().to_double(), p.z().to_double());
#endif
}
for (size_t i = 0; i < ps.polygons.size(); i++) {
const PolySet::Polygon *poly = &ps.polygons[i];
2011-11-09 07:48:56 +04:00
std::map<int,int> fc;
bool facet_is_degenerated = false;
for (size_t j = 0; j < poly->size(); j++) {
const Vector3d &p = poly->at(j);
int v = vertices_idx.data(p[0], p[1], p[2]);
if (fc[v]++ > 0)
facet_is_degenerated = true;
}
if (!facet_is_degenerated)
B.begin_facet();
#ifdef GEN_SURFACE_DEBUG
printf("F:");
#endif
for (size_t j = 0; j < poly->size(); j++) {
const Vector3d &p = poly->at(j);
#ifdef GEN_SURFACE_DEBUG
printf(" %d (%f,%f,%f)", vertices_idx.data(p[0], p[1], p[2]), p[0], p[1], p[2]);
#endif
if (!facet_is_degenerated)
B.add_vertex_to_facet(vertices_idx.data(p[0], p[1], p[2]));
}
#ifdef GEN_SURFACE_DEBUG
if (facet_is_degenerated)
printf(" (degenerated)");
printf("\n");
#endif
if (!facet_is_degenerated)
B.end_facet();
}
#ifdef GEN_SURFACE_DEBUG
printf("====================\n");
#endif
B.end_surface();
#undef PointKey
}
};
bool createPolyhedronFromPolySet(const PolySet &ps, CGAL_Polyhedron &p)
{
bool err = false;
CGAL::Failure_behaviour old_behaviour = CGAL::set_error_behaviour(CGAL::THROW_EXCEPTION);
try {
CGAL_Build_PolySet builder(ps);
p.delegate(builder);
}
catch (const CGAL::Assertion_exception &e) {
2012-01-25 06:11:12 +04:00
PRINTB("CGAL error in CGAL_Build_PolySet: %s", e.what());
err = true;
}
CGAL::set_error_behaviour(old_behaviour);
return err;
}
CGAL_Iso_cuboid_3 bounding_box( const CGAL_Nef_polyhedron3 &N )
{
CGAL_Iso_cuboid_3 result(0,0,0,0,0,0);
CGAL_Nef_polyhedron3::Vertex_const_iterator vi;
std::vector<CGAL_Nef_polyhedron3::Point_3> points;
// can be optimized by rewriting bounding_box to accept vertices
CGAL_forall_vertices( vi, N )
points.push_back( vi->point() );
if (points.size())
result = CGAL::bounding_box( points.begin(), points.end() );
return result;
}
CGAL_Iso_rectangle_2e bounding_box( const CGAL_Nef_polyhedron2 &N )
{
CGAL_Iso_rectangle_2e result(0,0,0,0);
CGAL_Nef_polyhedron2::Explorer explorer = N.explorer();
CGAL_Nef_polyhedron2::Explorer::Vertex_const_iterator vi;
std::vector<CGAL_Point_2e> points;
// can be optimized by rewriting bounding_box to accept vertices
for ( vi = explorer.vertices_begin(); vi != explorer.vertices_end(); ++vi )
if ( explorer.is_standard( vi ) )
points.push_back( explorer.point( vi ) );
if (points.size())
result = CGAL::bounding_box( points.begin(), points.end() );
return result;
}
void ZRemover::visit( CGAL_Nef_polyhedron3::Halffacet_const_handle hfacet )
{
log << " <!-- ZRemover Halffacet visit. Mark: " << hfacet->mark() << " -->\n";
if ( hfacet->plane().orthogonal_direction() != this->up ) {
log << " <!-- ZRemover down-facing half-facet. skipping -->\n";
log << " <!-- ZRemover Halffacet visit end-->\n";
return;
}
// possible optimization - throw out facets that are vertically oriented
CGAL_Nef_polyhedron3::Halffacet_cycle_const_iterator fci;
int contour_counter = 0;
CGAL_forall_facet_cycles_of( fci, hfacet ) {
if ( fci.is_shalfedge() ) {
log << " <!-- ZRemover Halffacet cycle begin -->\n";
CGAL_Nef_polyhedron3::SHalfedge_around_facet_const_circulator c1(fci), cend(c1);
std::vector<CGAL_Nef_polyhedron2::Explorer::Point> contour;
CGAL_For_all( c1, cend ) {
CGAL_Nef_polyhedron3::Point_3 point3d = c1->source()->target()->point();
CGAL_Nef_polyhedron2::Explorer::Point point2d(CGAL::to_double(point3d.x()),
CGAL::to_double(point3d.y()));
contour.push_back( point2d );
}
if (contour.size()==0) continue;
log << " <!-- is_simple_2:" << CGAL::is_simple_2( contour.begin(), contour.end() ) << " --> \n";
tmpnef2d.reset( new CGAL_Nef_polyhedron2( contour.begin(), contour.end(), boundary ) );
if ( contour_counter == 0 ) {
log << " <!-- contour is a body. make union(). " << contour.size() << " points. -->\n" ;
*(output_nefpoly2d) += *(tmpnef2d);
} else {
log << " <!-- contour is a hole. make intersection(). " << contour.size() << " points. -->\n";
*(output_nefpoly2d) *= *(tmpnef2d);
}
/*log << "\n<!-- ======== output tmp nef: ==== -->\n"
<< OpenSCAD::dump_svg( *tmpnef2d ) << "\n"
<< "\n<!-- ======== output accumulator: ==== -->\n"
<< OpenSCAD::dump_svg( *output_nefpoly2d ) << "\n";*/
contour_counter++;
} else {
log << " <!-- ZRemover trivial facet cycle skipped -->\n";
}
log << " <!-- ZRemover Halffacet cycle end -->\n";
}
log << " <!-- ZRemover Halffacet visit end -->\n";
}
static CGAL_Nef_polyhedron createNefPolyhedronFromPolySet(const PolySet &ps)
{
if (ps.empty()) return CGAL_Nef_polyhedron(ps.is2d ? 2 : 3);
if (ps.is2d)
{
#if 0
// This version of the code causes problems in some cases.
// Example testcase: import_dxf("testdata/polygon8.dxf");
//
typedef std::list<CGAL_Nef_polyhedron2::Point> point_list_t;
typedef point_list_t::iterator point_list_it;
std::list< point_list_t > pdata_point_lists;
std::list < std::pair < point_list_it, point_list_it > > pdata;
Grid2d<CGAL_Nef_polyhedron2::Point> grid(GRID_COARSE);
for (int i = 0; i < ps.polygons.size(); i++) {
pdata_point_lists.push_back(point_list_t());
for (int j = 0; j < ps.polygons[i].size(); j++) {
double x = ps.polygons[i][j].x;
double y = ps.polygons[i][j].y;
CGAL_Nef_polyhedron2::Point p;
if (grid.has(x, y)) {
p = grid.data(x, y);
} else {
p = CGAL_Nef_polyhedron2::Point(x, y);
grid.data(x, y) = p;
}
pdata_point_lists.back().push_back(p);
}
pdata.push_back(std::make_pair(pdata_point_lists.back().begin(),
pdata_point_lists.back().end()));
}
CGAL_Nef_polyhedron2 N(pdata.begin(), pdata.end(), CGAL_Nef_polyhedron2::POLYGONS);
return CGAL_Nef_polyhedron(N);
#endif
#if 0
// This version of the code works fine but is pretty slow.
//
CGAL_Nef_polyhedron2 N;
Grid2d<CGAL_Nef_polyhedron2::Point> grid(GRID_COARSE);
for (int i = 0; i < ps.polygons.size(); i++) {
std::list<CGAL_Nef_polyhedron2::Point> plist;
for (int j = 0; j < ps.polygons[i].size(); j++) {
double x = ps.polygons[i][j].x;
double y = ps.polygons[i][j].y;
CGAL_Nef_polyhedron2::Point p;
if (grid.has(x, y)) {
p = grid.data(x, y);
} else {
p = CGAL_Nef_polyhedron2::Point(x, y);
grid.data(x, y) = p;
}
plist.push_back(p);
}
N += CGAL_Nef_polyhedron2(plist.begin(), plist.end(), CGAL_Nef_polyhedron2::INCLUDED);
}
return CGAL_Nef_polyhedron(N);
#endif
#if 1
// This version of the code does essentially the same thing as the 2nd
// version but merges some triangles before sending them to CGAL. This adds
// complexity but speeds up things..
//
struct PolyReducer
{
Grid2d<int> grid;
std::map<std::pair<int,int>, std::pair<int,int> > edge_to_poly;
std::map<int, CGAL_Nef_polyhedron2::Point> points;
typedef std::map<int, std::vector<int> > PolygonMap;
PolygonMap polygons;
int poly_n;
void add_edges(int pn)
{
for (unsigned int j = 1; j <= this->polygons[pn].size(); j++) {
int a = this->polygons[pn][j-1];
int b = this->polygons[pn][j % this->polygons[pn].size()];
if (a > b) { a = a^b; b = a^b; a = a^b; }
if (this->edge_to_poly[std::pair<int,int>(a, b)].first == 0)
this->edge_to_poly[std::pair<int,int>(a, b)].first = pn;
else if (this->edge_to_poly[std::pair<int,int>(a, b)].second == 0)
this->edge_to_poly[std::pair<int,int>(a, b)].second = pn;
else
abort();
}
}
void del_poly(int pn)
{
for (unsigned int j = 1; j <= this->polygons[pn].size(); j++) {
int a = this->polygons[pn][j-1];
int b = this->polygons[pn][j % this->polygons[pn].size()];
if (a > b) { a = a^b; b = a^b; a = a^b; }
if (this->edge_to_poly[std::pair<int,int>(a, b)].first == pn)
this->edge_to_poly[std::pair<int,int>(a, b)].first = 0;
if (this->edge_to_poly[std::pair<int,int>(a, b)].second == pn)
this->edge_to_poly[std::pair<int,int>(a, b)].second = 0;
}
this->polygons.erase(pn);
}
PolyReducer(const PolySet &ps) : grid(GRID_COARSE), poly_n(1)
{
int point_n = 1;
for (size_t i = 0; i < ps.polygons.size(); i++) {
for (size_t j = 0; j < ps.polygons[i].size(); j++) {
double x = ps.polygons[i][j][0];
double y = ps.polygons[i][j][1];
if (this->grid.has(x, y)) {
int idx = this->grid.data(x, y);
// Filter away two vertices with the same index (due to grid)
// This could be done in a more general way, but we'd rather redo the entire
// grid concept instead.
std::vector<int> &poly = this->polygons[this->poly_n];
if (std::find(poly.begin(), poly.end(), idx) == poly.end()) {
poly.push_back(this->grid.data(x, y));
}
} else {
this->grid.align(x, y) = point_n;
this->polygons[this->poly_n].push_back(point_n);
this->points[point_n] = CGAL_Nef_polyhedron2::Point(x, y);
point_n++;
}
}
if (this->polygons[this->poly_n].size() >= 3) {
add_edges(this->poly_n);
this->poly_n++;
}
else {
this->polygons.erase(this->poly_n);
}
}
}
int merge(int p1, int p1e, int p2, int p2e)
{
for (unsigned int i = 1; i < this->polygons[p1].size(); i++) {
int j = (p1e + i) % this->polygons[p1].size();
this->polygons[this->poly_n].push_back(this->polygons[p1][j]);
}
for (unsigned int i = 1; i < this->polygons[p2].size(); i++) {
int j = (p2e + i) % this->polygons[p2].size();
this->polygons[this->poly_n].push_back(this->polygons[p2][j]);
}
del_poly(p1);
del_poly(p2);
add_edges(this->poly_n);
return this->poly_n++;
}
void reduce()
{
std::deque<int> work_queue;
BOOST_FOREACH(const PolygonMap::value_type &i, polygons) {
work_queue.push_back(i.first);
}
while (!work_queue.empty()) {
int poly1_n = work_queue.front();
work_queue.pop_front();
if (this->polygons.find(poly1_n) == this->polygons.end()) continue;
for (unsigned int j = 1; j <= this->polygons[poly1_n].size(); j++) {
int a = this->polygons[poly1_n][j-1];
int b = this->polygons[poly1_n][j % this->polygons[poly1_n].size()];
if (a > b) { a = a^b; b = a^b; a = a^b; }
if (this->edge_to_poly[std::pair<int,int>(a, b)].first != 0 &&
this->edge_to_poly[std::pair<int,int>(a, b)].second != 0) {
int poly2_n = this->edge_to_poly[std::pair<int,int>(a, b)].first +
this->edge_to_poly[std::pair<int,int>(a, b)].second - poly1_n;
int poly2_edge = -1;
for (unsigned int k = 1; k <= this->polygons[poly2_n].size(); k++) {
int c = this->polygons[poly2_n][k-1];
int d = this->polygons[poly2_n][k % this->polygons[poly2_n].size()];
if (c > d) { c = c^d; d = c^d; c = c^d; }
if (a == c && b == d) {
poly2_edge = k-1;
continue;
}
int poly3_n = this->edge_to_poly[std::pair<int,int>(c, d)].first +
this->edge_to_poly[std::pair<int,int>(c, d)].second - poly2_n;
if (poly3_n < 0)
continue;
if (poly3_n == poly1_n)
goto next_poly1_edge;
}
work_queue.push_back(merge(poly1_n, j-1, poly2_n, poly2_edge));
goto next_poly1;
}
next_poly1_edge:;
}
next_poly1:;
}
}
CGAL_Nef_polyhedron2 *toNef()
{
CGAL_Nef_polyhedron2 *N = new CGAL_Nef_polyhedron2;
BOOST_FOREACH(const PolygonMap::value_type &i, polygons) {
std::list<CGAL_Nef_polyhedron2::Point> plist;
for (unsigned int j = 0; j < i.second.size(); j++) {
int p = i.second[j];
plist.push_back(points[p]);
}
*N += CGAL_Nef_polyhedron2(plist.begin(), plist.end(), CGAL_Nef_polyhedron2::INCLUDED);
}
return N;
}
};
PolyReducer pr(ps);
pr.reduce();
return CGAL_Nef_polyhedron(pr.toNef());
#endif
#if 0
// This is another experimental version. I should run faster than the above,
// is a lot simpler and has only one known weakness: Degenerate polygons, which
// get repaired by GLUTess, might trigger a CGAL crash here. The only
// known case for this is triangle-with-duplicate-vertex.dxf
// FIXME: If we just did a projection, we need to recreate the border!
if (ps.polygons.size() > 0) assert(ps.borders.size() > 0);
CGAL_Nef_polyhedron2 N;
Grid2d<CGAL_Nef_polyhedron2::Point> grid(GRID_COARSE);
for (int i = 0; i < ps.borders.size(); i++) {
std::list<CGAL_Nef_polyhedron2::Point> plist;
for (int j = 0; j < ps.borders[i].size(); j++) {
double x = ps.borders[i][j].x;
double y = ps.borders[i][j].y;
CGAL_Nef_polyhedron2::Point p;
if (grid.has(x, y)) {
p = grid.data(x, y);
} else {
p = CGAL_Nef_polyhedron2::Point(x, y);
grid.data(x, y) = p;
}
plist.push_back(p);
}
// FIXME: If a border (path) has a duplicate vertex in dxf,
// the CGAL_Nef_polyhedron2 constructor will crash.
N ^= CGAL_Nef_polyhedron2(plist.begin(), plist.end(), CGAL_Nef_polyhedron2::INCLUDED);
}
return CGAL_Nef_polyhedron(N);
#endif
}
else // not (this->is2d)
{
CGAL_Nef_polyhedron3 *N = NULL;
CGAL::Failure_behaviour old_behaviour = CGAL::set_error_behaviour(CGAL::THROW_EXCEPTION);
try {
// FIXME: Are we leaking memory for the CGAL_Polyhedron object?
CGAL_Polyhedron *P = createPolyhedronFromPolySet(ps);
if (P) {
N = new CGAL_Nef_polyhedron3(*P);
}
}
catch (const CGAL::Assertion_exception &e) {
PRINTB("CGAL error in CGAL_Nef_polyhedron3(): %s", e.what());
}
CGAL::set_error_behaviour(old_behaviour);
return CGAL_Nef_polyhedron(N);
}
return CGAL_Nef_polyhedron();
}
static CGAL_Nef_polyhedron createNefPolyhedronFromPolygon2d(const Polygon2d &polygon)
{
shared_ptr<PolySet> ps(polygon.tessellate());
return createNefPolyhedronFromPolySet(*ps);
}
CGAL_Nef_polyhedron createNefPolyhedronFromGeometry(const Geometry &geom)
{
const PolySet *ps = dynamic_cast<const PolySet*>(&geom);
if (ps) {
return createNefPolyhedronFromPolySet(*ps);
}
else {
const Polygon2d *poly2d = dynamic_cast<const Polygon2d*>(&geom);
if (poly2d) return createNefPolyhedronFromPolygon2d(*poly2d);
}
assert(false && "CGALEvaluator::evaluateCGALMesh(): Unsupported geometry type");
return CGAL_Nef_polyhedron();
}
#endif /* ENABLE_CGAL */