/* * OpenSCAD (www.openscad.org) * Copyright (C) 2009-2011 Clifford Wolf and * Marius Kintel * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * As a special exception, you have permission to link this program * with the CGAL library and distribute executables, as long as you * follow the requirements of the GNU GPL in regard to all of the * software in the executable aside from CGAL. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ #include "transformnode.h" #include "module.h" #include "evalcontext.h" #include "polyset.h" #include "builtin.h" #include "value.h" #include "printutils.h" #include #include #include #include using namespace boost::assign; // bring 'operator+=()' into scope enum transform_type_e { SCALE, ROTATE, MIRROR, TRANSLATE, MULTMATRIX }; class TransformModule : public AbstractModule { public: transform_type_e type; TransformModule(transform_type_e type) : type(type) { } virtual AbstractNode *instantiate(const Context *ctx, const ModuleInstantiation *inst, EvalContext *evalctx) const; }; AbstractNode *TransformModule::instantiate(const Context *ctx, const ModuleInstantiation *inst, EvalContext *evalctx) const { TransformNode *node = new TransformNode(inst); node->matrix = Transform3d::Identity(); AssignmentList args; switch (this->type) { case SCALE: args += Assignment("v"); break; case ROTATE: args += Assignment("a"), Assignment("v"); break; case MIRROR: args += Assignment("v"); break; case TRANSLATE: args += Assignment("v"); break; case MULTMATRIX: args += Assignment("m"); break; default: assert(false); } Context c(ctx); c.setVariables(args, evalctx); inst->scope.apply(*evalctx); if (this->type == SCALE) { Vector3d scalevec(1,1,1); ValuePtr v = c.lookup_variable("v"); if (!v->getVec3(scalevec[0], scalevec[1], scalevec[2], 1.0)) { double num; if (v->getDouble(num)) scalevec.setConstant(num); } node->matrix.scale(scalevec); } else if (this->type == ROTATE) { ValuePtr val_a = c.lookup_variable("a"); if (val_a->type() == Value::VECTOR) { Eigen::AngleAxisd rotx(0, Vector3d::UnitX()); Eigen::AngleAxisd roty(0, Vector3d::UnitY()); Eigen::AngleAxisd rotz(0, Vector3d::UnitZ()); double a; if (val_a->toVector().size() > 0) { val_a->toVector()[0].getDouble(a); rotx = Eigen::AngleAxisd(a*M_PI/180, Vector3d::UnitX()); } if (val_a->toVector().size() > 1) { val_a->toVector()[1].getDouble(a); roty = Eigen::AngleAxisd(a*M_PI/180, Vector3d::UnitY()); } if (val_a->toVector().size() > 2) { val_a->toVector()[2].getDouble(a); rotz = Eigen::AngleAxisd(a*M_PI/180, Vector3d::UnitZ()); } node->matrix.rotate(rotz * roty * rotx); } else { ValuePtr val_v = c.lookup_variable("v"); double a = 0; val_a->getDouble(a); Vector3d axis(0,0,1); if (val_v->getVec3(axis[0], axis[1], axis[2])) { if (axis.squaredNorm() > 0) axis.normalize(); } if (axis.squaredNorm() > 0) { node->matrix = Eigen::AngleAxisd(a*M_PI/180, axis); } } } else if (this->type == MIRROR) { ValuePtr val_v = c.lookup_variable("v"); double x = 1, y = 0, z = 0; if (val_v->getVec3(x, y, z)) { if (x != 0.0 || y != 0.0 || z != 0.0) { double sn = 1.0 / sqrt(x*x + y*y + z*z); x *= sn, y *= sn, z *= sn; } } if (x != 0.0 || y != 0.0 || z != 0.0) { Eigen::Matrix4d m; m << 1-2*x*x, -2*y*x, -2*z*x, 0, -2*x*y, 1-2*y*y, -2*z*y, 0, -2*x*z, -2*y*z, 1-2*z*z, 0, 0, 0, 0, 1; node->matrix = m; } } else if (this->type == TRANSLATE) { ValuePtr v = c.lookup_variable("v"); Vector3d translatevec(0,0,0); v->getVec3(translatevec[0], translatevec[1], translatevec[2]); node->matrix.translate(translatevec); } else if (this->type == MULTMATRIX) { ValuePtr v = c.lookup_variable("m"); if (v->type() == Value::VECTOR) { Matrix4d rawmatrix = Matrix4d::Identity(); for (int i = 0; i < 16; i++) { size_t x = i / 4, y = i % 4; if (y < v->toVector().size() && v->toVector()[y].type() == Value::VECTOR && x < v->toVector()[y].toVector().size()) v->toVector()[y].toVector()[x].getDouble(rawmatrix(y, x)); } double w = rawmatrix(3,3); if (w != 1.0) node->matrix = rawmatrix / w; else node->matrix = rawmatrix; } } std::vector instantiatednodes = inst->instantiateChildren(evalctx); node->children.insert(node->children.end(), instantiatednodes.begin(), instantiatednodes.end()); return node; } std::string TransformNode::toString() const { std::stringstream stream; stream << "multmatrix(["; for (int j=0;j<4;j++) { stream << "["; for (int i=0;i<4;i++) { Value v(this->matrix(j, i)); stream << v; if (i != 3) stream << ", "; } stream << "]"; if (j != 3) stream << ", "; } stream << "])"; return stream.str(); } std::string TransformNode::name() const { return "transform"; } void register_builtin_transform() { Builtins::init("scale", new TransformModule(SCALE)); Builtins::init("rotate", new TransformModule(ROTATE)); Builtins::init("mirror", new TransformModule(MIRROR)); Builtins::init("translate", new TransformModule(TRANSLATE)); Builtins::init("multmatrix", new TransformModule(MULTMATRIX)); }