openscad/src/transform.cc

223 lines
5.9 KiB
C++

/*
* OpenSCAD (www.openscad.org)
* Copyright (C) 2009-2011 Clifford Wolf <clifford@clifford.at> and
* Marius Kintel <marius@kintel.net>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* As a special exception, you have permission to link this program
* with the CGAL library and distribute executables, as long as you
* follow the requirements of the GNU GPL in regard to all of the
* software in the executable aside from CGAL.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
#include "transformnode.h"
#include "module.h"
#include "evalcontext.h"
#include "polyset.h"
#include "builtin.h"
#include "value.h"
#include "printutils.h"
#include <sstream>
#include <vector>
#include <assert.h>
#include <boost/assign/std/vector.hpp>
using namespace boost::assign; // bring 'operator+=()' into scope
enum transform_type_e {
SCALE,
ROTATE,
MIRROR,
TRANSLATE,
MULTMATRIX
};
class TransformModule : public AbstractModule
{
public:
transform_type_e type;
TransformModule(transform_type_e type) : type(type) { }
virtual AbstractNode *instantiate(const Context *ctx, const ModuleInstantiation *inst, EvalContext *evalctx) const;
};
AbstractNode *TransformModule::instantiate(const Context *ctx, const ModuleInstantiation *inst, EvalContext *evalctx) const
{
TransformNode *node = new TransformNode(inst);
node->matrix = Transform3d::Identity();
AssignmentList args;
switch (this->type) {
case SCALE:
args += Assignment("v");
break;
case ROTATE:
args += Assignment("a"), Assignment("v");
break;
case MIRROR:
args += Assignment("v");
break;
case TRANSLATE:
args += Assignment("v");
break;
case MULTMATRIX:
args += Assignment("m");
break;
default:
assert(false);
}
Context c(ctx);
c.setVariables(args, evalctx);
inst->scope.apply(*evalctx);
if (this->type == SCALE)
{
Vector3d scalevec(1,1,1);
ValuePtr v = c.lookup_variable("v");
if (!v->getVec3(scalevec[0], scalevec[1], scalevec[2], 1.0)) {
double num;
if (v->getDouble(num)) scalevec.setConstant(num);
}
node->matrix.scale(scalevec);
}
else if (this->type == ROTATE)
{
ValuePtr val_a = c.lookup_variable("a");
if (val_a->type() == Value::VECTOR)
{
Eigen::AngleAxisd rotx(0, Vector3d::UnitX());
Eigen::AngleAxisd roty(0, Vector3d::UnitY());
Eigen::AngleAxisd rotz(0, Vector3d::UnitZ());
double a;
if (val_a->toVector().size() > 0) {
val_a->toVector()[0].getDouble(a);
rotx = Eigen::AngleAxisd(a*M_PI/180, Vector3d::UnitX());
}
if (val_a->toVector().size() > 1) {
val_a->toVector()[1].getDouble(a);
roty = Eigen::AngleAxisd(a*M_PI/180, Vector3d::UnitY());
}
if (val_a->toVector().size() > 2) {
val_a->toVector()[2].getDouble(a);
rotz = Eigen::AngleAxisd(a*M_PI/180, Vector3d::UnitZ());
}
node->matrix.rotate(rotz * roty * rotx);
}
else
{
ValuePtr val_v = c.lookup_variable("v");
double a = 0;
val_a->getDouble(a);
Vector3d axis(0,0,1);
if (val_v->getVec3(axis[0], axis[1], axis[2])) {
if (axis.squaredNorm() > 0) axis.normalize();
}
if (axis.squaredNorm() > 0) {
node->matrix = Eigen::AngleAxisd(a*M_PI/180, axis);
}
}
}
else if (this->type == MIRROR)
{
ValuePtr val_v = c.lookup_variable("v");
double x = 1, y = 0, z = 0;
if (val_v->getVec3(x, y, z)) {
if (x != 0.0 || y != 0.0 || z != 0.0) {
double sn = 1.0 / sqrt(x*x + y*y + z*z);
x *= sn, y *= sn, z *= sn;
}
}
if (x != 0.0 || y != 0.0 || z != 0.0)
{
Eigen::Matrix4d m;
m << 1-2*x*x, -2*y*x, -2*z*x, 0,
-2*x*y, 1-2*y*y, -2*z*y, 0,
-2*x*z, -2*y*z, 1-2*z*z, 0,
0, 0, 0, 1;
node->matrix = m;
}
}
else if (this->type == TRANSLATE)
{
ValuePtr v = c.lookup_variable("v");
Vector3d translatevec(0,0,0);
v->getVec3(translatevec[0], translatevec[1], translatevec[2]);
node->matrix.translate(translatevec);
}
else if (this->type == MULTMATRIX)
{
ValuePtr v = c.lookup_variable("m");
if (v->type() == Value::VECTOR) {
Matrix4d rawmatrix = Matrix4d::Identity();
for (int i = 0; i < 16; i++) {
size_t x = i / 4, y = i % 4;
if (y < v->toVector().size() && v->toVector()[y].type() ==
Value::VECTOR && x < v->toVector()[y].toVector().size())
v->toVector()[y].toVector()[x].getDouble(rawmatrix(y, x));
}
double w = rawmatrix(3,3);
if (w != 1.0) node->matrix = rawmatrix / w;
else node->matrix = rawmatrix;
}
}
std::vector<AbstractNode *> instantiatednodes = inst->instantiateChildren(evalctx);
node->children.insert(node->children.end(), instantiatednodes.begin(), instantiatednodes.end());
return node;
}
std::string TransformNode::toString() const
{
std::stringstream stream;
stream << "multmatrix([";
for (int j=0;j<4;j++) {
stream << "[";
for (int i=0;i<4;i++) {
Value v(this->matrix(j, i));
stream << v;
if (i != 3) stream << ", ";
}
stream << "]";
if (j != 3) stream << ", ";
}
stream << "])";
return stream.str();
}
std::string TransformNode::name() const
{
return "transform";
}
void register_builtin_transform()
{
Builtins::init("scale", new TransformModule(SCALE));
Builtins::init("rotate", new TransformModule(ROTATE));
Builtins::init("mirror", new TransformModule(MIRROR));
Builtins::init("translate", new TransformModule(TRANSLATE));
Builtins::init("multmatrix", new TransformModule(MULTMATRIX));
}