openscad/src/func.cc

952 lines
28 KiB
C++

/*
* OpenSCAD (www.openscad.org)
* Copyright (C) 2009-2011 Clifford Wolf <clifford@clifford.at> and
* Marius Kintel <marius@kintel.net>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* As a special exception, you have permission to link this program
* with the CGAL library and distribute executables, as long as you
* follow the requirements of the GNU GPL in regard to all of the
* software in the executable aside from CGAL.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
#include "function.h"
#include "expression.h"
#include "evalcontext.h"
#include "builtin.h"
#include <sstream>
#include <ctime>
#include "mathc99.h"
#include <limits>
#include <algorithm>
#include "stl-utils.h"
#include "printutils.h"
#include <boost/foreach.hpp>
#include <boost/math/special_functions/fpclassify.hpp>
using boost::math::isnan;
using boost::math::isinf;
/*
Random numbers
Newer versions of boost/C++ include a non-deterministic random_device and
auto/bind()s for random function objects, but we are supporting older systems.
*/
#include <boost/random/mersenne_twister.hpp>
#include <boost/random/uniform_real.hpp>
/*Unicode support for string lengths and array accesses*/
#include <glib.h>
#ifdef __WIN32__
#include <process.h>
int process_id = _getpid();
#else
#include <sys/types.h>
#include <unistd.h>
int process_id = getpid();
#endif
boost::mt19937 deterministic_rng;
boost::mt19937 lessdeterministic_rng( std::time(0) + process_id );
AbstractFunction::~AbstractFunction()
{
}
Value AbstractFunction::evaluate(const Context*, const EvalContext *evalctx) const
{
(void)evalctx; // unusued parameter
return Value();
}
std::string AbstractFunction::dump(const std::string &indent, const std::string &name) const
{
std::stringstream dump;
dump << indent << "abstract function " << name << "();\n";
return dump.str();
}
Function::~Function()
{
delete expr;
}
Value Function::evaluate(const Context *ctx, const EvalContext *evalctx) const
{
if (!expr) return Value();
Context c(ctx);
c.setVariables(definition_arguments, evalctx);
return expr->evaluate(&c);
}
std::string Function::dump(const std::string &indent, const std::string &name) const
{
std::stringstream dump;
dump << indent << "function " << name << "(";
for (size_t i=0; i < definition_arguments.size(); i++) {
const Assignment &arg = definition_arguments[i];
if (i > 0) dump << ", ";
dump << arg.first;
if (arg.second) dump << " = " << *arg.second;
}
dump << ") = " << *expr << ";\n";
return dump.str();
}
BuiltinFunction::~BuiltinFunction()
{
}
Value BuiltinFunction::evaluate(const Context *ctx, const EvalContext *evalctx) const
{
return eval_func(ctx, evalctx);
}
std::string BuiltinFunction::dump(const std::string &indent, const std::string &name) const
{
std::stringstream dump;
dump << indent << "builtin function " << name << "();\n";
return dump.str();
}
static inline double deg2rad(double x)
{
return x * M_PI / 180.0;
}
static inline double rad2deg(double x)
{
return x * 180.0 / M_PI;
}
Value builtin_abs(const Context *, const EvalContext *evalctx)
{
if (evalctx->numArgs() == 1) {
const Value &v = evalctx->getArgValue(0);
if (v.type() == Value::NUMBER)
return Value(fabs(v.toDouble()));
}
return Value();
}
Value builtin_sign(const Context *, const EvalContext *evalctx)
{
if (evalctx->numArgs() == 1) {
const Value &v = evalctx->getArgValue(0);
if (v.type() == Value::NUMBER) {
register double x = v.toDouble();
return Value((x<0) ? -1.0 : ((x>0) ? 1.0 : 0.0));
}
}
return Value();
}
Value builtin_rands(const Context *, const EvalContext *evalctx)
{
size_t n = evalctx->numArgs();
if (n == 3 || n == 4) {
const Value &v0 = evalctx->getArgValue(0);
if (v0.type() != Value::NUMBER) goto quit;
double min = v0.toDouble();
const Value &v1 = evalctx->getArgValue(1);
if (v1.type() != Value::NUMBER) goto quit;
double max = v1.toDouble();
if (max < min) {
register double tmp = min; min = max; max = tmp;
}
const Value &v2 = evalctx->getArgValue(2);
if (v2.type() != Value::NUMBER) goto quit;
size_t numresults = std::max( 0, static_cast<int>( v2.toDouble() ) );
bool deterministic = false;
if (n > 3) {
const Value &v3 = evalctx->getArgValue(3);
if (v3.type() != Value::NUMBER) goto quit;
deterministic_rng.seed( (unsigned int) v3.toDouble() );
deterministic = true;
}
boost::uniform_real<> distributor( min, max );
Value::VectorType vec;
if (min==max) { // workaround boost bug
for (size_t i=0; i < numresults; i++)
vec.push_back( Value( min ) );
} else {
for (size_t i=0; i < numresults; i++) {
if ( deterministic ) {
vec.push_back( Value( distributor( deterministic_rng ) ) );
} else {
vec.push_back( Value( distributor( lessdeterministic_rng ) ) );
}
}
}
return Value(vec);
}
quit:
return Value();
}
Value builtin_min(const Context *, const EvalContext *evalctx)
{
// preserve special handling of the first argument
// as a template for vector processing
size_t n = evalctx->numArgs();
if (n >= 1) {
const Value &v0 = evalctx->getArgValue(0);
if (n == 1 && v0.type() == Value::VECTOR && !v0.toVector().empty()) {
Value min = v0.toVector()[0];
for (size_t i = 1; i < v0.toVector().size(); i++) {
if (v0.toVector()[i] < min)
min = v0.toVector()[i];
}
return min;
}
if (v0.type() == Value::NUMBER) {
double val = v0.toDouble();
for (size_t i = 1; i < n; ++i) {
const Value &v = evalctx->getArgValue(i);
// 4/20/14 semantic change per discussion:
// break on any non-number
if (v.type() != Value::NUMBER) goto quit;
register double x = v.toDouble();
if (x < val) val = x;
}
return Value(val);
}
}
quit:
return Value();
}
Value builtin_max(const Context *, const EvalContext *evalctx)
{
// preserve special handling of the first argument
// as a template for vector processing
size_t n = evalctx->numArgs();
if (n >= 1) {
const Value &v0 = evalctx->getArgValue(0);
if (n == 1 && v0.type() == Value::VECTOR && !v0.toVector().empty()) {
Value max = v0.toVector()[0];
for (size_t i = 1; i < v0.toVector().size(); i++) {
if (v0.toVector()[i] > max)
max = v0.toVector()[i];
}
return max;
}
if (v0.type() == Value::NUMBER) {
double val = v0.toDouble();
for (size_t i = 1; i < n; ++i) {
const Value &v = evalctx->getArgValue(i);
// 4/20/14 semantic change per discussion:
// break on any non-number
if (v.type() != Value::NUMBER) goto quit;
register double x = v.toDouble();
if (x > val) val = x;
}
return Value(val);
}
}
quit:
return Value();
}
// this limit assumes 26+26=52 bits mantissa
// comment/undefine it to disable domain check
#define TRIG_HUGE_VAL ((1L<<26)*360.0*(1L<<26))
double sin_degrees(register double x)
{
// use positive tests because of possible Inf/NaN
if (x < 360.0 && x >= 0.0) {
// Ok for now
} else
#ifdef TRIG_HUGE_VAL
if (x < TRIG_HUGE_VAL && x > -TRIG_HUGE_VAL)
#endif
{
register double revolutions = floor(x/360.0);
x -= 360.0*revolutions;
}
#ifdef TRIG_HUGE_VAL
else {
// total loss of computational accuracy
// the result would be meaningless
return std::numeric_limits<double>::quiet_NaN();
}
#endif
register bool oppose = x >= 180.0;
if (oppose) x -= 180.0;
if (x > 90.0) x = 180.0 - x;
if (x < 45.0) {
if (x == 30.0) x = 0.5;
else x = sin(deg2rad(x));
} else if (x == 45.0)
x = M_SQRT1_2;
else // Inf/Nan would fall here
x = cos(deg2rad(90.0-x));
return oppose ? -x : x;
}
Value builtin_sin(const Context *, const EvalContext *evalctx)
{
if (evalctx->numArgs() == 1) {
const Value &v = evalctx->getArgValue(0);
if (v.type() == Value::NUMBER)
return Value(sin_degrees(v.toDouble()));
}
return Value();
}
double cos_degrees(register double x)
{
// use positive tests because of possible Inf/NaN
if (x < 360.0 && x >= 0.0) {
// Ok for now
} else
#ifdef TRIG_HUGE_VAL
if (x < TRIG_HUGE_VAL && x > -TRIG_HUGE_VAL)
#endif
{
register double revolutions = floor(x/360.0);
x -= 360.0*revolutions;
}
#ifdef TRIG_HUGE_VAL
else {
// total loss of computational accuracy
// the result would be meaningless
return std::numeric_limits<double>::quiet_NaN();
}
#endif
register bool oppose = x >= 180.0;
if (oppose) x -= 180.0;
if (x > 90.0) {
x = 180.0 - x;
oppose = !oppose;
}
if (x > 45.0) {
if (x == 60.0) x = 0.5;
else x = sin(deg2rad(90.0-x));
} else if (x == 45.0)
x = M_SQRT1_2;
else // Inf/Nan would fall here
x = cos(deg2rad(x));
return oppose ? -x : x;
}
Value builtin_cos(const Context *, const EvalContext *evalctx)
{
if (evalctx->numArgs() == 1) {
const Value &v = evalctx->getArgValue(0);
if (v.type() == Value::NUMBER)
return Value(cos_degrees(v.toDouble()));
}
return Value();
}
Value builtin_asin(const Context *, const EvalContext *evalctx)
{
if (evalctx->numArgs() == 1) {
const Value &v = evalctx->getArgValue(0);
if (v.type() == Value::NUMBER)
return Value(rad2deg(asin(v.toDouble())));
}
return Value();
}
Value builtin_acos(const Context *, const EvalContext *evalctx)
{
if (evalctx->numArgs() == 1) {
const Value &v = evalctx->getArgValue(0);
if (v.type() == Value::NUMBER)
return Value(rad2deg(acos(v.toDouble())));
}
return Value();
}
Value builtin_tan(const Context *, const EvalContext *evalctx)
{
if (evalctx->numArgs() == 1) {
const Value &v = evalctx->getArgValue(0);
if (v.type() == Value::NUMBER)
return Value(tan(deg2rad(v.toDouble())));
}
return Value();
}
Value builtin_atan(const Context *, const EvalContext *evalctx)
{
if (evalctx->numArgs() == 1) {
const Value &v = evalctx->getArgValue(0);
if (v.type() == Value::NUMBER)
return Value(rad2deg(atan(v.toDouble())));
}
return Value();
}
Value builtin_atan2(const Context *, const EvalContext *evalctx)
{
if (evalctx->numArgs() == 2) {
Value v0 = evalctx->getArgValue(0), v1 = evalctx->getArgValue(1);
if (v0.type() == Value::NUMBER && v1.type() == Value::NUMBER)
return Value(rad2deg(atan2(v0.toDouble(), v1.toDouble())));
}
return Value();
}
Value builtin_pow(const Context *, const EvalContext *evalctx)
{
if (evalctx->numArgs() == 2) {
Value v0 = evalctx->getArgValue(0), v1 = evalctx->getArgValue(1);
if (v0.type() == Value::NUMBER && v1.type() == Value::NUMBER)
return Value(pow(v0.toDouble(), v1.toDouble()));
}
return Value();
}
Value builtin_round(const Context *, const EvalContext *evalctx)
{
if (evalctx->numArgs() == 1) {
const Value &v = evalctx->getArgValue(0);
if (v.type() == Value::NUMBER)
return Value(round(v.toDouble()));
}
return Value();
}
Value builtin_ceil(const Context *, const EvalContext *evalctx)
{
if (evalctx->numArgs() == 1) {
const Value &v = evalctx->getArgValue(0);
if (v.type() == Value::NUMBER)
return Value(ceil(v.toDouble()));
}
return Value();
}
Value builtin_floor(const Context *, const EvalContext *evalctx)
{
if (evalctx->numArgs() == 1) {
const Value &v = evalctx->getArgValue(0);
if (v.type() == Value::NUMBER)
return Value(floor(v.toDouble()));
}
return Value();
}
Value builtin_sqrt(const Context *, const EvalContext *evalctx)
{
if (evalctx->numArgs() == 1) {
const Value &v = evalctx->getArgValue(0);
if (v.type() == Value::NUMBER)
return Value(sqrt(v.toDouble()));
}
return Value();
}
Value builtin_exp(const Context *, const EvalContext *evalctx)
{
if (evalctx->numArgs() == 1) {
const Value &v = evalctx->getArgValue(0);
if (v.type() == Value::NUMBER)
return Value(exp(v.toDouble()));
}
return Value();
}
Value builtin_length(const Context *, const EvalContext *evalctx)
{
if (evalctx->numArgs() == 1) {
const Value &v = evalctx->getArgValue(0);
if (v.type() == Value::VECTOR) return Value(int(v.toVector().size()));
if (v.type() == Value::STRING) {
//Unicode glyph count for the length -- rather than the string (num. of bytes) length.
std::string text = v.toString();
return Value(int( g_utf8_strlen( text.c_str(), text.size() ) ));
}
}
return Value();
}
Value builtin_log(const Context *, const EvalContext *evalctx)
{
size_t n = evalctx->numArgs();
if (n == 1 || n == 2) {
const Value &v0 = evalctx->getArgValue(0);
if (v0.type() == Value::NUMBER) {
double x = 10.0, y = v0.toDouble();
if (n > 1) {
const Value &v1 = evalctx->getArgValue(1);
if (v1.type() != Value::NUMBER) goto quit;
x = y; y = v1.toDouble();
}
return Value(log(y) / log(x));
}
}
quit:
return Value();
}
Value builtin_ln(const Context *, const EvalContext *evalctx)
{
if (evalctx->numArgs() == 1) {
const Value &v = evalctx->getArgValue(0);
if (v.type() == Value::NUMBER)
return Value(log(v.toDouble()));
}
return Value();
}
Value builtin_str(const Context *, const EvalContext *evalctx)
{
std::stringstream stream;
for (size_t i = 0; i < evalctx->numArgs(); i++) {
stream << evalctx->getArgValue(i).toString();
}
return Value(stream.str());
}
Value builtin_chr(const Context *, const EvalContext *evalctx)
{
std::stringstream stream;
for (size_t i = 0; i < evalctx->numArgs(); i++) {
const Value v = evalctx->getArgValue(i);
stream << v.chrString();
}
return Value(stream.str());
}
Value builtin_concat(const Context *, const EvalContext *evalctx)
{
Value::VectorType result;
for (size_t i = 0; i < evalctx->numArgs(); i++) {
const Value v = evalctx->getArgValue(i);
if (v.type() == Value::VECTOR) {
Value::VectorType vec = v.toVector();
for (Value::VectorType::const_iterator it = vec.begin(); it != vec.end(); it++) {
result.push_back(*it);
}
} else {
result.push_back(v);
}
}
return Value(result);
}
Value builtin_lookup(const Context *, const EvalContext *evalctx)
{
double p, low_p, low_v, high_p, high_v;
if (evalctx->numArgs() < 2 || // Needs two args
!evalctx->getArgValue(0).getDouble(p)) // First must be a number
return Value();
const Value::VectorType vec = evalctx->getArgValue(1).toVector();
if (vec[0].toVector().size() < 2) // Second must be a vector of vectors
return Value();
if (!vec[0].getVec2(low_p, low_v) || !vec[0].getVec2(high_p, high_v))
return Value();
for (size_t i = 1; i < vec.size(); i++) {
double this_p, this_v;
if (vec[i].getVec2(this_p, this_v)) {
if (this_p <= p && (this_p > low_p || low_p > p)) {
low_p = this_p;
low_v = this_v;
}
if (this_p >= p && (this_p < high_p || high_p < p)) {
high_p = this_p;
high_v = this_v;
}
}
}
if (p <= low_p)
return Value(high_v);
if (p >= high_p)
return Value(low_v);
double f = (p-low_p) / (high_p-low_p);
return Value(high_v * f + low_v * (1-f));
}
/*
Pattern:
"search" "(" ( match_value | list_of_match_values ) "," vector_of_vectors
("," num_returns_per_match
("," index_col_num )? )?
")";
match_value : ( Value::NUMBER | Value::STRING );
list_of_values : "[" match_value ("," match_value)* "]";
vector_of_vectors : "[" ("[" Value ("," Value)* "]")+ "]";
num_returns_per_match : int;
index_col_num : int;
The search string and searched strings can be unicode strings.
Examples:
Index values return as list:
search("a","abcdabcd");
- returns [0]
search("Л","Л"); //A unicode string
- returns [0]
search("🂡aЛ","a🂡Л🂡a🂡Л🂡a",0);
- returns [[1,3,5,7],[0,4,8],[2,6]]
search("a","abcdabcd",0); //Search up to all matches
- returns [[0,4]]
search("a","abcdabcd",1);
- returns [0]
search("e","abcdabcd",1);
- returns []
search("a",[ ["a",1],["b",2],["c",3],["d",4],["a",5],["b",6],["c",7],["d",8],["e",9] ]);
- returns [0,4]
Search on different column; return Index values:
search(3,[ ["a",1],["b",2],["c",3],["d",4],["a",5],["b",6],["c",7],["d",8],["e",3] ], 0, 1);
- returns [0,8]
Search on list of values:
Return all matches per search vector element:
search("abc",[ ["a",1],["b",2],["c",3],["d",4],["a",5],["b",6],["c",7],["d",8],["e",9] ], 0);
- returns [[0,4],[1,5],[2,6]]
Return first match per search vector element; special case return vector:
search("abc",[ ["a",1],["b",2],["c",3],["d",4],["a",5],["b",6],["c",7],["d",8],["e",9] ], 1);
- returns [0,1,2]
Return first two matches per search vector element; vector of vectors:
search("abce",[ ["a",1],["b",2],["c",3],["d",4],["a",5],["b",6],["c",7],["d",8],["e",9] ], 2);
- returns [[0,4],[1,5],[2,6],[8]]
*/
static Value::VectorType search(const std::string &find, const std::string &table,
unsigned int num_returns_per_match, unsigned int index_col_num)
{
Value::VectorType returnvec;
//Unicode glyph count for the length
size_t findThisSize = g_utf8_strlen(find.c_str(), find.size());
size_t searchTableSize = g_utf8_strlen(table.c_str(), table.size());
for (size_t i = 0; i < findThisSize; i++) {
unsigned int matchCount = 0;
Value::VectorType resultvec;
const gchar *ptr_ft = g_utf8_offset_to_pointer(find.c_str(), i);
for (size_t j = 0; j < searchTableSize; j++) {
const gchar *ptr_st = g_utf8_offset_to_pointer(table.c_str(), j);
if (ptr_ft && ptr_st && (g_utf8_get_char(ptr_ft) == g_utf8_get_char(ptr_st)) ) {
matchCount++;
if (num_returns_per_match == 1) {
returnvec.push_back(Value(double(j)));
break;
} else {
resultvec.push_back(Value(double(j)));
}
if (num_returns_per_match > 1 && matchCount >= num_returns_per_match) {
break;
}
}
}
if (matchCount == 0) {
gchar utf8_of_cp[6] = ""; //A buffer for a single unicode character to be copied into
if (ptr_ft) g_utf8_strncpy(utf8_of_cp, ptr_ft, 1);
PRINTB(" WARNING: search term not found: \"%s\"", utf8_of_cp);
}
if (num_returns_per_match == 0 || num_returns_per_match > 1) {
returnvec.push_back(Value(resultvec));
}
}
return returnvec;
}
static Value::VectorType search(const std::string &find, const Value::VectorType &table,
unsigned int num_returns_per_match, unsigned int index_col_num)
{
Value::VectorType returnvec;
//Unicode glyph count for the length
unsigned int findThisSize = g_utf8_strlen(find.c_str(), find.size());
unsigned int searchTableSize = table.size();
for (size_t i = 0; i < findThisSize; i++) {
unsigned int matchCount = 0;
Value::VectorType resultvec;
const gchar *ptr_ft = g_utf8_offset_to_pointer(find.c_str(), i);
for (size_t j = 0; j < searchTableSize; j++) {
const gchar *ptr_st = g_utf8_offset_to_pointer(table[j].toVector()[index_col_num].toString().c_str(), 0);
if (ptr_ft && ptr_st && (g_utf8_get_char(ptr_ft) == g_utf8_get_char(ptr_st)) ) {
matchCount++;
if (num_returns_per_match == 1) {
returnvec.push_back(Value(double(j)));
break;
} else {
resultvec.push_back(Value(double(j)));
}
if (num_returns_per_match > 1 && matchCount >= num_returns_per_match) {
break;
}
}
}
if (matchCount == 0) {
gchar utf8_of_cp[6] = ""; //A buffer for a single unicode character to be copied into
if (ptr_ft) g_utf8_strncpy(utf8_of_cp, ptr_ft, 1);
PRINTB(" WARNING: search term not found: \"%s\"", utf8_of_cp);
}
if (num_returns_per_match == 0 || num_returns_per_match > 1) {
returnvec.push_back(Value(resultvec));
}
}
return returnvec;
}
Value builtin_search(const Context *, const EvalContext *evalctx)
{
if (evalctx->numArgs() < 2) return Value();
const Value &findThis = evalctx->getArgValue(0);
const Value &searchTable = evalctx->getArgValue(1);
unsigned int num_returns_per_match = (evalctx->numArgs() > 2) ? evalctx->getArgValue(2).toDouble() : 1;
unsigned int index_col_num = (evalctx->numArgs() > 3) ? evalctx->getArgValue(3).toDouble() : 0;
Value::VectorType returnvec;
if (findThis.type() == Value::NUMBER) {
unsigned int matchCount = 0;
for (size_t j = 0; j < searchTable.toVector().size(); j++) {
const Value& search_element = searchTable.toVector()[j];
if ((index_col_num == 0 && findThis == search_element) ||
(index_col_num < search_element.toVector().size() &&
findThis == search_element.toVector()[index_col_num])) {
returnvec.push_back(Value(double(j)));
matchCount++;
if (num_returns_per_match != 0 && matchCount >= num_returns_per_match) break;
}
}
} else if (findThis.type() == Value::STRING) {
if (searchTable.type() == Value::STRING) {
returnvec = search(findThis.toString(), searchTable.toString(), num_returns_per_match, index_col_num);
}
else {
returnvec = search(findThis.toString(), searchTable.toVector(), num_returns_per_match, index_col_num);
}
} else if (findThis.type() == Value::VECTOR) {
for (size_t i = 0; i < findThis.toVector().size(); i++) {
unsigned int matchCount = 0;
Value::VectorType resultvec;
Value const& find_value = findThis.toVector()[i];
for (size_t j = 0; j < searchTable.toVector().size(); j++) {
Value const& search_element = searchTable.toVector()[j];
if ((index_col_num == 0 && find_value == search_element) ||
(index_col_num < search_element.toVector().size() &&
find_value == search_element.toVector()[index_col_num])) {
Value resultValue((double(j)));
matchCount++;
if (num_returns_per_match == 1) {
returnvec.push_back(resultValue);
break;
} else {
resultvec.push_back(resultValue);
}
if (num_returns_per_match > 1 && matchCount >= num_returns_per_match) break;
}
}
if (num_returns_per_match == 1 && matchCount == 0) {
if (findThis.toVector()[i].type() == Value::NUMBER) {
PRINTB(" WARNING: search term not found: %s",findThis.toVector()[i].toDouble());
}
else if (findThis.toVector()[i].type() == Value::STRING) {
PRINTB(" WARNING: search term not found: \"%s\"",findThis.toVector()[i].toString());
}
returnvec.push_back(Value(resultvec));
}
if (num_returns_per_match == 0 || num_returns_per_match > 1) {
returnvec.push_back(Value(resultvec));
}
}
} else {
PRINTB(" WARNING: search: none performed on input %s", findThis);
return Value();
}
return Value(returnvec);
}
#define QUOTE(x__) # x__
#define QUOTED(x__) QUOTE(x__)
Value builtin_version(const Context *, const EvalContext *evalctx)
{
(void)evalctx; // unusued parameter
Value::VectorType val;
val.push_back(Value(double(OPENSCAD_YEAR)));
val.push_back(Value(double(OPENSCAD_MONTH)));
#ifdef OPENSCAD_DAY
val.push_back(Value(double(OPENSCAD_DAY)));
#endif
return Value(val);
}
Value builtin_version_num(const Context *ctx, const EvalContext *evalctx)
{
Value val = (evalctx->numArgs() == 0) ? builtin_version(ctx, evalctx) : evalctx->getArgValue(0);
double y, m, d = 0;
if (!val.getVec3(y, m, d)) {
if (!val.getVec2(y, m)) {
return Value();
}
}
return Value(y * 10000 + m * 100 + d);
}
Value builtin_parent_module(const Context *, const EvalContext *evalctx)
{
int n;
double d;
int s = Module::stack_size();
if (evalctx->numArgs() == 0)
d=1; // parent module
else if (evalctx->numArgs() == 1) {
const Value &v = evalctx->getArgValue(0);
if (v.type() != Value::NUMBER) return Value();
v.getDouble(d);
} else
return Value();
n=trunc(d);
if (n < 0) {
PRINTB("WARNING: Negative parent module index (%d) not allowed", n);
return Value();
}
if (n >= s) {
PRINTB("WARNING: Parent module index (%d) greater than the number of modules on the stack", n);
return Value();
}
return Value(Module::stack_element(s - 1 - n));
}
Value builtin_norm(const Context *, const EvalContext *evalctx)
{
if (evalctx->numArgs() == 1) {
const Value &val = evalctx->getArgValue(0);
if (val.type() == Value::VECTOR) {
double sum = 0;
Value::VectorType v = val.toVector();
size_t n = v.size();
for (size_t i = 0; i < n; i++)
if (v[i].type() == Value::NUMBER) {
// sum += pow(v[i].toDouble(),2);
register double x = v[i].toDouble();
sum += x*x;
} else {
PRINT(" WARNING: Incorrect arguments to norm()");
return Value();
}
return Value(sqrt(sum));
}
}
return Value();
}
Value builtin_cross(const Context *, const EvalContext *evalctx)
{
if (evalctx->numArgs() != 2) {
PRINT("WARNING: Invalid number of parameters for cross()");
return Value();
}
Value arg0 = evalctx->getArgValue(0);
Value arg1 = evalctx->getArgValue(1);
if ((arg0.type() != Value::VECTOR) || (arg1.type() != Value::VECTOR)) {
PRINT("WARNING: Invalid type of parameters for cross()");
return Value();
}
Value::VectorType v0 = arg0.toVector();
Value::VectorType v1 = arg1.toVector();
if ((v0.size() != 3) || (v1.size() != 3)) {
PRINT("WARNING: Invalid vector size of parameter for cross()");
return Value();
}
for (unsigned int a = 0;a < 3;a++) {
if ((v0[a].type() != Value::NUMBER) || (v1[a].type() != Value::NUMBER)) {
PRINT("WARNING: Invalid value in parameter vector for cross()");
return Value();
}
double d0 = v0[a].toDouble();
double d1 = v1[a].toDouble();
if (boost::math::isnan(d0) || boost::math::isnan(d1)) {
PRINT("WARNING: Invalid value (NaN) in parameter vector for cross()");
return Value();
}
if (boost::math::isinf(d0) || boost::math::isinf(d1)) {
PRINT("WARNING: Invalid value (INF) in parameter vector for cross()");
return Value();
}
}
double x = v0[1].toDouble() * v1[2].toDouble() - v0[2].toDouble() * v1[1].toDouble();
double y = v0[2].toDouble() * v1[0].toDouble() - v0[0].toDouble() * v1[2].toDouble();
double z = v0[0].toDouble() * v1[1].toDouble() - v0[1].toDouble() * v1[0].toDouble();
Value::VectorType result;
result.push_back(Value(x));
result.push_back(Value(y));
result.push_back(Value(z));
return Value(result);
}
void register_builtin_functions()
{
Builtins::init("abs", new BuiltinFunction(&builtin_abs));
Builtins::init("sign", new BuiltinFunction(&builtin_sign));
Builtins::init("rands", new BuiltinFunction(&builtin_rands));
Builtins::init("min", new BuiltinFunction(&builtin_min));
Builtins::init("max", new BuiltinFunction(&builtin_max));
Builtins::init("sin", new BuiltinFunction(&builtin_sin));
Builtins::init("cos", new BuiltinFunction(&builtin_cos));
Builtins::init("asin", new BuiltinFunction(&builtin_asin));
Builtins::init("acos", new BuiltinFunction(&builtin_acos));
Builtins::init("tan", new BuiltinFunction(&builtin_tan));
Builtins::init("atan", new BuiltinFunction(&builtin_atan));
Builtins::init("atan2", new BuiltinFunction(&builtin_atan2));
Builtins::init("round", new BuiltinFunction(&builtin_round));
Builtins::init("ceil", new BuiltinFunction(&builtin_ceil));
Builtins::init("floor", new BuiltinFunction(&builtin_floor));
Builtins::init("pow", new BuiltinFunction(&builtin_pow));
Builtins::init("sqrt", new BuiltinFunction(&builtin_sqrt));
Builtins::init("exp", new BuiltinFunction(&builtin_exp));
Builtins::init("len", new BuiltinFunction(&builtin_length));
Builtins::init("log", new BuiltinFunction(&builtin_log));
Builtins::init("ln", new BuiltinFunction(&builtin_ln));
Builtins::init("str", new BuiltinFunction(&builtin_str));
Builtins::init("chr", new BuiltinFunction(&builtin_chr));
Builtins::init("concat", new BuiltinFunction(&builtin_concat));
Builtins::init("lookup", new BuiltinFunction(&builtin_lookup));
Builtins::init("search", new BuiltinFunction(&builtin_search));
Builtins::init("version", new BuiltinFunction(&builtin_version));
Builtins::init("version_num", new BuiltinFunction(&builtin_version_num));
Builtins::init("norm", new BuiltinFunction(&builtin_norm));
Builtins::init("cross", new BuiltinFunction(&builtin_cross));
Builtins::init("parent_module", new BuiltinFunction(&builtin_parent_module));
}