openscad/tests/yee_compare.cpp

682 lines
18 KiB
C++

// modified from PerceptualDiff source for OpenSCAD, 2011 September
#include "yee_compare.h"
#include "lodepng.h"
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <math.h>
static const char* copyright =
"PerceptualDiff version 1.1.1, Copyright (C) 2006 Yangli Hector Yee\n\
PerceptualDiff comes with ABSOLUTELY NO WARRANTY;\n\
This is free software, and you are welcome\n\
to redistribute it under certain conditions;\n\
See the GPL page for details: http://www.gnu.org/copyleft/gpl.html\n\n";
static const char *usage =
"PeceptualDiff image1.tif image2.tif\n\n\
Compares image1.tif and image2.tif using a perceptually based image metric\n\
Options:\n\
\t-verbose : Turns on verbose mode\n\
\t-fov deg : Field of view in degrees (0.1 to 89.9)\n\
\t-threshold p : #pixels p below which differences are ignored\n\
\t-gamma g : Value to convert rgb into linear space (default 2.2)\n\
\t-luminance l : White luminance (default 100.0 cdm^-2)\n\
\t-luminanceonly : Only consider luminance; ignore chroma (color) in the comparison\n\
\t-colorfactor : How much of color to use, 0.0 to 1.0, 0.0 = ignore color.\n\
\t-downsample : How many powers of two to down sample the image.\n\
\t-output o.ppm : Write difference to the file o.ppm\n\
\n\
\n Note: Input or Output files can also be in the PNG or JPG format or any format\
\n that FreeImage supports.\
\n";
CompareArgs::CompareArgs()
{
ImgA = NULL;
ImgB = NULL;
ImgDiff = NULL;
Verbose = false;
LuminanceOnly = false;
FieldOfView = 45.0f;
Gamma = 2.2f;
ThresholdPixels = 100;
Luminance = 100.0f;
ColorFactor = 1.0f;
DownSample = 0;
}
CompareArgs::~CompareArgs()
{
if (ImgA) delete ImgA;
if (ImgB) delete ImgB;
if (ImgDiff) delete ImgDiff;
}
bool CompareArgs::Parse_Args(int argc, char **argv)
{
if (argc < 3) {
ErrorStr = copyright;
ErrorStr += usage;
return false;
}
int image_count = 0;
const char* output_file_name = NULL;
for (int i = 1; i < argc; i++) {
if (strcmp(argv[i], "-fov") == 0) {
if (++i < argc) {
FieldOfView = (float) atof(argv[i]);
}
} else if (strcmp(argv[i], "-verbose") == 0) {
Verbose = true;
} else if (strcmp(argv[i], "-threshold") == 0) {
if (++i < argc) {
ThresholdPixels = atoi(argv[i]);
}
} else if (strcmp(argv[i], "-gamma") == 0) {
if (++i < argc) {
Gamma = (float) atof(argv[i]);
}
} else if (strcmp(argv[i], "-luminance") == 0) {
if (++i < argc) {
Luminance = (float) atof(argv[i]);
}
} else if (strcmp(argv[i], "-luminanceonly") == 0) {
LuminanceOnly = true;
} else if (strcmp(argv[i], "-colorfactor") == 0) {
if (++i < argc) {
ColorFactor = (float) atof(argv[i]);
}
} else if (strcmp(argv[i], "-downsample") == 0) {
if (++i < argc) {
DownSample = (int) atoi(argv[i]);
}
} else if (strcmp(argv[i], "-output") == 0) {
if (++i < argc) {
output_file_name = argv[i];
}
} else if (image_count < 2) {
RGBAImage* img = RGBAImage::ReadFromFile(argv[i]);
if (!img) {
ErrorStr = "FAIL: Cannot open ";
ErrorStr += argv[i];
ErrorStr += "\n";
return false;
} else {
++image_count;
if(image_count == 1)
ImgA = img;
else
ImgB = img;
}
} else {
fprintf(stderr, "Warning: option/file \"%s\" ignored\n", argv[i]);
}
} // i
if(!ImgA || !ImgB) {
ErrorStr = "FAIL: Not enough image files specified\n";
return false;
}
for (int i = 0; i < DownSample; i++) {
if (Verbose) printf("Downsampling by %d\n", 1 << (i+1));
RGBAImage *tmp = ImgA->DownSample();
if (tmp) {
delete ImgA;
ImgA = tmp;
}
tmp = ImgB->DownSample();
if (tmp) {
delete ImgB;
ImgB = tmp;
}
}
if(output_file_name) {
ImgDiff = new RGBAImage(ImgA->Get_Width(), ImgA->Get_Height(), output_file_name);
}
return true;
}
void CompareArgs::Print_Args()
{
printf("Field of view is %f degrees\n", FieldOfView);
printf("Threshold pixels is %d pixels\n", ThresholdPixels);
printf("The Gamma is %f\n", Gamma);
printf("The Display's luminance is %f candela per meter squared\n", Luminance);
}
//////////////////////////////////////////////////////////////////////
// Construction/Destruction
//////////////////////////////////////////////////////////////////////
LPyramid::LPyramid(float *image, int width, int height) :
Width(width),
Height(height)
{
// Make the Laplacian pyramid by successively
// copying the earlier levels and blurring them
for (int i=0; i<MAX_PYR_LEVELS; i++) {
if (i == 0) {
Levels[i] = Copy(image);
} else {
Levels[i] = new float[Width * Height];
Convolve(Levels[i], Levels[i - 1]);
}
}
}
LPyramid::~LPyramid()
{
for (int i=0; i<MAX_PYR_LEVELS; i++) {
if (Levels[i]) delete Levels[i];
}
}
float *LPyramid::Copy(float *img)
{
int max = Width * Height;
float *out = new float[max];
for (int i = 0; i < max; i++) out[i] = img[i];
return out;
}
void LPyramid::Convolve(float *a, float *b)
// convolves image b with the filter kernel and stores it in a
{
int y,x,i,j,nx,ny;
const float Kernel[] = {0.05f, 0.25f, 0.4f, 0.25f, 0.05f};
for (y=0; y<Height; y++) {
for (x=0; x<Width; x++) {
int index = y * Width + x;
a[index] = 0.0f;
for (i=-2; i<=2; i++) {
for (j=-2; j<=2; j++) {
nx=x+i;
ny=y+j;
if (nx<0) nx=-nx;
if (ny<0) ny=-ny;
if (nx>=Width) nx=2*Width-nx-1;
if (ny>=Height) ny=2*Height-ny-1;
a[index] += Kernel[i+2] * Kernel[j+2] * b[ny * Width + nx];
}
}
}
}
}
float LPyramid::Get_Value(int x, int y, int level)
{
int index = x + y * Width;
int l = level;
if (l > MAX_PYR_LEVELS) l = MAX_PYR_LEVELS;
return Levels[level][index];
}
#ifndef M_PI
#define M_PI 3.14159265f
#endif
/*
* Given the adaptation luminance, this function returns the
* threshold of visibility in cd per m^2
* TVI means Threshold vs Intensity function
* This version comes from Ward Larson Siggraph 1997
*/
float tvi(float adaptation_luminance)
{
// returns the threshold luminance given the adaptation luminance
// units are candelas per meter squared
float log_a, r, result;
log_a = log10f(adaptation_luminance);
if (log_a < -3.94f) {
r = -2.86f;
} else if (log_a < -1.44f) {
r = powf(0.405f * log_a + 1.6f , 2.18f) - 2.86f;
} else if (log_a < -0.0184f) {
r = log_a - 0.395f;
} else if (log_a < 1.9f) {
r = powf(0.249f * log_a + 0.65f, 2.7f) - 0.72f;
} else {
r = log_a - 1.255f;
}
result = powf(10.0f , r);
return result;
}
// computes the contrast sensitivity function (Barten SPIE 1989)
// given the cycles per degree (cpd) and luminance (lum)
float csf(float cpd, float lum)
{
float a, b, result;
a = 440.0f * powf((1.0f + 0.7f / lum), -0.2f);
b = 0.3f * powf((1.0f + 100.0f / lum), 0.15f);
result = a * cpd * expf(-b * cpd) * sqrtf(1.0f + 0.06f * expf(b * cpd));
return result;
}
/*
* Visual Masking Function
* from Daly 1993
*/
float mask(float contrast)
{
float a, b, result;
a = powf(392.498f * contrast, 0.7f);
b = powf(0.0153f * a, 4.0f);
result = powf(1.0f + b, 0.25f);
return result;
}
// convert Adobe RGB (1998) with reference white D65 to XYZ
void AdobeRGBToXYZ(float r, float g, float b, float &x, float &y, float &z)
{
// matrix is from http://www.brucelindbloom.com/
x = r * 0.576700f + g * 0.185556f + b * 0.188212f;
y = r * 0.297361f + g * 0.627355f + b * 0.0752847f;
z = r * 0.0270328f + g * 0.0706879f + b * 0.991248f;
}
void XYZToLAB(float x, float y, float z, float &L, float &A, float &B)
{
static float xw = -1;
static float yw;
static float zw;
// reference white
if (xw < 0) {
AdobeRGBToXYZ(1, 1, 1, xw, yw, zw);
}
const float epsilon = 216.0f / 24389.0f;
const float kappa = 24389.0f / 27.0f;
float f[3];
float r[3];
r[0] = x / xw;
r[1] = y / yw;
r[2] = z / zw;
for (int i = 0; i < 3; i++) {
if (r[i] > epsilon) {
f[i] = powf(r[i], 1.0f / 3.0f);
} else {
f[i] = (kappa * r[i] + 16.0f) / 116.0f;
}
}
L = 116.0f * f[1] - 16.0f;
A = 500.0f * (f[0] - f[1]);
B = 200.0f * (f[1] - f[2]);
}
bool Yee_Compare(CompareArgs &args)
{
if ((args.ImgA->Get_Width() != args.ImgB->Get_Width()) ||
(args.ImgA->Get_Height() != args.ImgB->Get_Height())) {
args.ErrorStr = "Image dimensions do not match\n";
return false;
}
unsigned int i, dim;
dim = args.ImgA->Get_Width() * args.ImgA->Get_Height();
bool identical = true;
for (i = 0; i < dim; i++) {
if (args.ImgA->Get(i) != args.ImgB->Get(i)) {
identical = false;
break;
}
}
if (identical) {
args.ErrorStr = "Images are binary identical\n";
return true;
}
// assuming colorspaces are in Adobe RGB (1998) convert to XYZ
float *aX = new float[dim];
float *aY = new float[dim];
float *aZ = new float[dim];
float *bX = new float[dim];
float *bY = new float[dim];
float *bZ = new float[dim];
float *aLum = new float[dim];
float *bLum = new float[dim];
float *aA = new float[dim];
float *bA = new float[dim];
float *aB = new float[dim];
float *bB = new float[dim];
if (args.Verbose) printf("Converting RGB to XYZ\n");
unsigned int x, y, w, h;
w = args.ImgA->Get_Width();
h = args.ImgA->Get_Height();
for (y = 0; y < h; y++) {
for (x = 0; x < w; x++) {
float r, g, b, l;
i = x + y * w;
r = powf(args.ImgA->Get_Red(i) / 255.0f, args.Gamma);
g = powf(args.ImgA->Get_Green(i) / 255.0f, args.Gamma);
b = powf(args.ImgA->Get_Blue(i) / 255.0f, args.Gamma);
AdobeRGBToXYZ(r,g,b,aX[i],aY[i],aZ[i]);
XYZToLAB(aX[i], aY[i], aZ[i], l, aA[i], aB[i]);
r = powf(args.ImgB->Get_Red(i) / 255.0f, args.Gamma);
g = powf(args.ImgB->Get_Green(i) / 255.0f, args.Gamma);
b = powf(args.ImgB->Get_Blue(i) / 255.0f, args.Gamma);
AdobeRGBToXYZ(r,g,b,bX[i],bY[i],bZ[i]);
XYZToLAB(bX[i], bY[i], bZ[i], l, bA[i], bB[i]);
aLum[i] = aY[i] * args.Luminance;
bLum[i] = bY[i] * args.Luminance;
}
}
if (args.Verbose) printf("Constructing Laplacian Pyramids\n");
LPyramid *la = new LPyramid(aLum, w, h);
LPyramid *lb = new LPyramid(bLum, w, h);
float num_one_degree_pixels = (float) (2 * tan( args.FieldOfView * 0.5 * M_PI / 180) * 180 / M_PI);
float pixels_per_degree = w / num_one_degree_pixels;
if (args.Verbose) printf("Performing test\n");
float num_pixels = 1;
unsigned int adaptation_level = 0;
for (i = 0; i < MAX_PYR_LEVELS; i++) {
adaptation_level = i;
if (num_pixels > num_one_degree_pixels) break;
num_pixels *= 2;
}
float cpd[MAX_PYR_LEVELS];
cpd[0] = 0.5f * pixels_per_degree;
for (i = 1; i < MAX_PYR_LEVELS; i++) cpd[i] = 0.5f * cpd[i - 1];
float csf_max = csf(3.248f, 100.0f);
float F_freq[MAX_PYR_LEVELS - 2];
for (i = 0; i < MAX_PYR_LEVELS - 2; i++) F_freq[i] = csf_max / csf( cpd[i], 100.0f);
unsigned int pixels_failed = 0;
for (y = 0; y < h; y++) {
for (x = 0; x < w; x++) {
int index = x + y * w;
float contrast[MAX_PYR_LEVELS - 2];
float sum_contrast = 0;
for (i = 0; i < MAX_PYR_LEVELS - 2; i++) {
float n1 = fabsf(la->Get_Value(x,y,i) - la->Get_Value(x,y,i + 1));
float n2 = fabsf(lb->Get_Value(x,y,i) - lb->Get_Value(x,y,i + 1));
float numerator = (n1 > n2) ? n1 : n2;
float d1 = fabsf(la->Get_Value(x,y,i+2));
float d2 = fabsf(lb->Get_Value(x,y,i+2));
float denominator = (d1 > d2) ? d1 : d2;
if (denominator < 1e-5f) denominator = 1e-5f;
contrast[i] = numerator / denominator;
sum_contrast += contrast[i];
}
if (sum_contrast < 1e-5) sum_contrast = 1e-5f;
float F_mask[MAX_PYR_LEVELS - 2];
float adapt = la->Get_Value(x,y,adaptation_level) + lb->Get_Value(x,y,adaptation_level);
adapt *= 0.5f;
if (adapt < 1e-5) adapt = 1e-5f;
for (i = 0; i < MAX_PYR_LEVELS - 2; i++) {
F_mask[i] = mask(contrast[i] * csf(cpd[i], adapt));
}
float factor = 0;
for (i = 0; i < MAX_PYR_LEVELS - 2; i++) {
factor += contrast[i] * F_freq[i] * F_mask[i] / sum_contrast;
}
if (factor < 1) factor = 1;
if (factor > 10) factor = 10;
float delta = fabsf(la->Get_Value(x,y,0) - lb->Get_Value(x,y,0));
bool pass = true;
// pure luminance test
if (delta > factor * tvi(adapt)) {
pass = false;
} else if (!args.LuminanceOnly) {
// CIE delta E test with modifications
float color_scale = args.ColorFactor;
// ramp down the color test in scotopic regions
if (adapt < 10.0f) {
// Don't do color test at all.
color_scale = 0.0;
}
float da = aA[index] - bA[index];
float db = aB[index] - bB[index];
da = da * da;
db = db * db;
float delta_e = (da + db) * color_scale;
if (delta_e > factor) {
pass = false;
}
}
if (!pass) {
pixels_failed++;
if (args.ImgDiff) {
args.ImgDiff->Set(255, 0, 0, 255, index);
}
} else {
if (args.ImgDiff) {
args.ImgDiff->Set(0, 0, 0, 255, index);
}
}
}
}
if (aX) delete[] aX;
if (aY) delete[] aY;
if (aZ) delete[] aZ;
if (bX) delete[] bX;
if (bY) delete[] bY;
if (bZ) delete[] bZ;
if (aLum) delete[] aLum;
if (bLum) delete[] bLum;
if (la) delete la;
if (lb) delete lb;
if (aA) delete aA;
if (bA) delete bA;
if (aB) delete aB;
if (bB) delete bB;
char different[100];
sprintf(different, "%d pixels are different\n", pixels_failed);
// Always output image difference if requested.
if (args.ImgDiff) {
if (args.ImgDiff->WriteToFile(args.ImgDiff->Get_Name().c_str())) {
args.ErrorStr += "Wrote difference image to ";
args.ErrorStr+= args.ImgDiff->Get_Name();
args.ErrorStr += "\n";
} else {
args.ErrorStr += "Could not write difference image to ";
args.ErrorStr+= args.ImgDiff->Get_Name();
args.ErrorStr += "\n";
}
}
if (pixels_failed < args.ThresholdPixels) {
args.ErrorStr = "Images are perceptually indistinguishable\n";
args.ErrorStr += different;
return true;
}
args.ErrorStr = "Images are visibly different\n";
args.ErrorStr += different;
return false;
}
RGBAImage* RGBAImage::DownSample() const {
if (Width <=1 || Height <=1) return NULL;
int nw = Width / 2;
int nh = Height / 2;
RGBAImage* img = new RGBAImage(nw, nh, Name.c_str());
for (int y = 0; y < nh; y++) {
for (int x = 0; x < nw; x++) {
int d[4];
// Sample a 2x2 patch from the parent image.
d[0] = Get(2 * x + 0, 2 * y + 0);
d[1] = Get(2 * x + 1, 2 * y + 0);
d[2] = Get(2 * x + 0, 2 * y + 1);
d[3] = Get(2 * x + 1, 2 * y + 1);
int rgba = 0;
// Find the average color.
for (int i = 0; i < 4; i++) {
int c = (d[0] >> (8 * i)) & 0xFF;
c += (d[1] >> (8 * i)) & 0xFF;
c += (d[2] >> (8 * i)) & 0xFF;
c += (d[3] >> (8 * i)) & 0xFF;
c /= 4;
rgba |= (c & 0xFF) << (8 * i);
}
img->Set(x, y, rgba);
}
}
return img;
}
bool RGBAImage::WriteToFile(const char* filename)
{
LodePNG::Encoder encoder;
encoder.addText("Comment","lodepng");
encoder.getSettings().zlibsettings.windowSize = 2048;
/*
const FREE_IMAGE_FORMAT fileType = FreeImage_GetFIFFromFilename(filename);
if(FIF_UNKNOWN == fileType)
{
printf("Can't save to unknown filetype %s\n", filename);
return false;
}
FIBITMAP* bitmap = FreeImage_Allocate(Width, Height, 32, 0x000000ff, 0x0000ff00, 0x00ff0000);
if(!bitmap)
{
printf("Failed to create freeimage for %s\n", filename);
return false;
}
const unsigned int* source = Data;
for( int y=0; y < Height; y++, source += Width )
{
unsigned int* scanline = (unsigned int*)FreeImage_GetScanLine(bitmap, Height - y - 1 );
memcpy(scanline, source, sizeof(source[0]) * Width);
}
FreeImage_SetTransparent(bitmap, false);
FIBITMAP* converted = FreeImage_ConvertTo24Bits(bitmap);
const bool result = !!FreeImage_Save(fileType, converted, filename);
if(!result)
printf("Failed to save to %s\n", filename);
FreeImage_Unload(converted);
FreeImage_Unload(bitmap);
return result;
*/
return true;
}
RGBAImage* RGBAImage::ReadFromFile(const char* filename)
{
unsigned char* buffer;
unsigned char* image;
size_t buffersize, imagesize, i;
LodePNG_Decoder decoder;
LodePNG_loadFile(&buffer, &buffersize, filename); /*load the image file with given filename*/
LodePNG_Decoder_init(&decoder);
LodePNG_Decoder_decode(&decoder, &image, &imagesize, buffer, buffersize); /*decode the png*/
/*load and decode*/
/*if there's an error, display it, otherwise display information about the image*/
if(decoder.error) printf("error %u: %s\n", decoder.error, LodePNG_error_text(decoder.error));
int w = decoder.infoPng.width;
int h = decoder.infoPng.height;
RGBAImage* result = new RGBAImage(w, h, filename);
// Copy the image over to our internal format, FreeImage has the scanlines bottom to top though.
unsigned int* dest = result->Data;
memcpy(dest, (void *)image, h*w*4);
/*cleanup decoder*/
free(image);
free(buffer);
LodePNG_Decoder_cleanup(&decoder);
return result;
/*
const FREE_IMAGE_FORMAT fileType = FreeImage_GetFileType(filename);
if(FIF_UNKNOWN == fileType)
{
printf("Unknown filetype %s\n", filename);
return 0;
}
FIBITMAP* freeImage = 0;
if(FIBITMAP* temporary = FreeImage_Load(fileType, filename, 0))
{
freeImage = FreeImage_ConvertTo32Bits(temporary);
FreeImage_Unload(temporary);
}
if(!freeImage)
{
printf( "Failed to load the image %s\n", filename);
return 0;
}
const int w = FreeImage_GetWidth(freeImage);
const int h = FreeImage_GetHeight(freeImage);
RGBAImage* result = new RGBAImage(w, h, filename);
// Copy the image over to our internal format, FreeImage has the scanlines bottom to top though.
unsigned int* dest = result->Data;
for( int y=0; y < h; y++, dest += w )
{
const unsigned int* scanline = (const unsigned int*)FreeImage_GetScanLine(freeImage, h - y - 1 );
memcpy(dest, scanline, sizeof(dest[0]) * w);
}
FreeImage_Unload(freeImage);
return result;
return NULL;
*/
}
int main(int argc, char **argv)
{
CompareArgs args;
if (!args.Parse_Args(argc, argv)) {
printf("%s", args.ErrorStr.c_str());
return -1;
} else {
if (args.Verbose) args.Print_Args();
}
const bool passed = Yee_Compare(args);
if (passed) {
if(args.Verbose)
printf("PASS: %s\n", args.ErrorStr.c_str());
} else {
printf("FAIL: %s\n", args.ErrorStr.c_str());
}
return passed ? 0 : 1;
}