openscad/src/dxfdata.cc

515 lines
16 KiB
C++

/*
* OpenSCAD (www.openscad.at)
* Copyright (C) 2009 Clifford Wolf <clifford@clifford.at>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
#include "openscad.h"
#include "printutils.h"
#include <QFile>
#include <QTextStream>
struct Line {
typedef DxfData::Point Point;
Point *p[2];
bool disabled;
Line(Point *p1, Point *p2) { p[0] = p1; p[1] = p2; disabled = false; }
Line() { p[0] = NULL; p[1] = NULL; disabled = false; }
};
DxfData::DxfData()
{
}
/*!
Reads a layer from the given file, or all layers if layename.isNull()
*/
DxfData::DxfData(double fn, double fs, double fa, QString filename, QString layername, double xorigin, double yorigin, double scale)
{
handle_dep(filename); // Register ourselves as a dependency
QFile f(filename);
if (!f.open(QIODevice::ReadOnly | QIODevice::Text)) {
PRINTF("WARNING: Can't open DXF file `%s'.", filename.toUtf8().data());
return;
}
QTextStream stream(&f);
Grid2d< QVector<int> > grid(GRID_COARSE);
QList<Line> lines; // Global lines
QHash< QString, QList<Line> > blockdata; // Lines in blocks
bool in_entities_section = false;
bool in_blocks_section = false;
QString current_block;
#define ADD_LINE(_x1, _y1, _x2, _y2) do { \
double _p1x = _x1, _p1y = _y1, _p2x = _x2, _p2y = _y2; \
if (!in_entities_section && !in_blocks_section) \
break; \
if (in_entities_section && \
!(layername.isNull() || layername == layer)) \
break; \
grid.align(_p1x, _p1y); \
grid.align(_p2x, _p2y); \
grid.data(_p1x, _p1y).append(lines.count()); \
grid.data(_p2x, _p2y).append(lines.count()); \
if (in_entities_section) \
lines.append( \
Line(addPoint(_p1x, _p1y), addPoint(_p2x, _p2y))); \
if (in_blocks_section && !current_block.isNull()) \
blockdata[current_block].append( \
Line(addPoint(_p1x, _p1y), addPoint(_p2x, _p2y))); \
} while (0)
QString mode, layer, name, iddata;
int dimtype = 0;
double coords[7][2]; // Used by DIMENSION entities
QVector<double> xverts;
QVector<double> yverts;
double radius = 0;
double arc_start_angle = 0, arc_stop_angle = 0;
double ellipse_start_angle = 0, ellipse_stop_angle = 0;
for (int i = 0; i < 7; i++)
for (int j = 0; j < 2; j++)
coords[i][j] = 0;
QHash<QString, int> unsupported_entities_list;
//
// Parse DXF file. Will populate this->points, this->dims, lines and blockdata
//
while (!stream.atEnd())
{
QString id_str = stream.readLine();
QString data = stream.readLine();
bool status;
int id = id_str.toInt(&status);
if (!status) {
PRINTA("WARNING: Illegal ID `%1' in `%3'.", id_str, filename);
break;
}
if (id >= 10 && id <= 16) {
if (in_blocks_section)
coords[id-10][0] = data.toDouble();
else if (id == 11 || id == 12 || id == 16)
coords[id-10][0] = data.toDouble() * scale;
else
coords[id-10][0] = (data.toDouble() - xorigin) * scale;
}
if (id >= 20 && id <= 26) {
if (in_blocks_section)
coords[id-20][1] = data.toDouble();
else if (id == 21 || id == 22 || id == 26)
coords[id-20][1] = data.toDouble() * scale;
else
coords[id-20][1] = (data.toDouble() - yorigin) * scale;
}
switch (id)
{
case 0:
if (mode == "SECTION") {
in_entities_section = iddata == "ENTITIES";
in_blocks_section = iddata == "BLOCKS";
}
else if (mode == "LINE") {
ADD_LINE(xverts[0], yverts[0], xverts[1], yverts[1]);
}
else if (mode == "LWPOLYLINE") {
assert(xverts.size() == yverts.size());
// polyline flag is stored in 'dimtype'
int numverts = xverts.size();
for (int i=1;i<numverts;i++) {
ADD_LINE(xverts[i-1], yverts[i-1], xverts[i%numverts], yverts[i%numverts]);
}
if (dimtype & 0x01) { // closed polyline
ADD_LINE(xverts[numverts-1], yverts[numverts-1], xverts[0], yverts[0]);
}
}
else if (mode == "CIRCLE") {
int n = get_fragments_from_r(radius, fn, fs, fa);
Point center(xverts[0], yverts[0]);
for (int i = 0; i < n; i++) {
double a1 = (2*M_PI*i)/n;
double a2 = (2*M_PI*(i+1))/n;
ADD_LINE(cos(a1)*radius + center.x, sin(a1)*radius + center.y,
cos(a2)*radius + center.x, sin(a2)*radius + center.y);
}
}
else if (mode == "ARC") {
Point center(xverts[0], yverts[0]);
int n = get_fragments_from_r(radius, fn, fs, fa);
while (arc_start_angle > arc_stop_angle)
arc_stop_angle += 360.0;
n = (int)ceil(n * (arc_stop_angle-arc_start_angle) / 360);
for (int i = 0; i < n; i++) {
double a1 = ((arc_stop_angle-arc_start_angle)*i)/n;
double a2 = ((arc_stop_angle-arc_start_angle)*(i+1))/n;
a1 = (arc_start_angle + a1) * M_PI / 180.0;
a2 = (arc_start_angle + a2) * M_PI / 180.0;
ADD_LINE(cos(a1)*radius + center.x, sin(a1)*radius + center.y,
cos(a2)*radius + center.x, sin(a2)*radius + center.y);
}
}
else if (mode == "ELLIPSE") {
// Commented code is meant as documentation of vector math
while (ellipse_start_angle > ellipse_stop_angle) ellipse_stop_angle += 2 * M_PI;
// Vector2d center(xverts[0], yverts[0]);
Point center(xverts[0], yverts[0]);
// Vector2d ce(xverts[1], yverts[1]);
Point ce(xverts[1], yverts[1]);
// double r_major = ce.length();
double r_major = sqrt(ce.x*ce.x + ce.y*ce.y);
// double rot_angle = ce.angle();
double rot_angle;
{
// double dot = ce.dot(Vector2d(1.0, 0.0));
double dot = ce.x;
double cosval = dot / r_major;
if (cosval > 1.0) cosval = 1.0;
if (cosval < -1.0) cosval = -1.0;
rot_angle = acos(cosval);
if (ce.y < 0.0) rot_angle = 2 * M_PI - rot_angle;
}
// the ratio stored in 'radius; due to the parser code not checking entity type
double r_minor = r_major * radius;
double sweep_angle = ellipse_stop_angle-ellipse_start_angle;
int n = get_fragments_from_r(r_major, fn, fs, fa);
n = (int)ceil(n * sweep_angle / (2 * M_PI));
// Vector2d p1;
Point p1;
for (int i=0;i<=n;i++) {
double a = (ellipse_start_angle + sweep_angle*i/n);
// Vector2d p2(cos(a)*r_major, sin(a)*r_minor);
Point p2(cos(a)*r_major, sin(a)*r_minor);
// p2.rotate(rot_angle);
Point p2_rot(cos(rot_angle)*p2.x - sin(rot_angle)*p2.y,
sin(rot_angle)*p2.x + cos(rot_angle)*p2.y);
// p2 += center;
p2_rot.x += center.x;
p2_rot.y += center.y;
if (i > 0) {
// ADD_LINE(p1[0], p1[1], p2[0], p2[1]);
ADD_LINE(p1.x, p1.y, p2_rot.x, p2_rot.y);
}
// p1 = p2;
p1.x = p2_rot.x;
p1.y = p2_rot.y;
}
}
else if (mode == "INSERT") {
// scale is stored in ellipse_start|stop_angle, rotation in arc_start_angle;
// due to the parser code not checking entity type
int n = blockdata[iddata].size();
for (int i = 0; i < n; i++) {
double a = arc_start_angle * M_PI / 180.0;
double lx1 = blockdata[iddata][i].p[0]->x * ellipse_start_angle;
double ly1 = blockdata[iddata][i].p[0]->y * ellipse_stop_angle;
double lx2 = blockdata[iddata][i].p[1]->x * ellipse_start_angle;
double ly2 = blockdata[iddata][i].p[1]->y * ellipse_stop_angle;
double px1 = (cos(a)*lx1 - sin(a)*ly1) * scale + xverts[0];
double py1 = (sin(a)*lx1 + cos(a)*ly1) * scale + yverts[0];
double px2 = (cos(a)*lx2 - sin(a)*ly2) * scale + xverts[0];
double py2 = (sin(a)*lx2 + cos(a)*ly2) * scale + yverts[0];
ADD_LINE(px1, py1, px2, py2);
}
}
else if (mode == "DIMENSION" &&
(layername.isNull() || layername == layer)) {
this->dims.append(Dim());
this->dims.last().type = dimtype;
for (int i = 0; i < 7; i++)
for (int j = 0; j < 2; j++)
this->dims.last().coords[i][j] = coords[i][j];
this->dims.last().angle = arc_start_angle;
this->dims.last().length = radius;
this->dims.last().name = name;
}
else if (mode == "BLOCK") {
current_block = iddata;
}
else if (mode == "ENDBLK") {
current_block = QString();
}
else if (mode == "ENDSEC") {
}
else if (in_blocks_section || (in_entities_section &&
(layername.isNull() || layername == layer))) {
unsupported_entities_list[mode]++;
}
mode = data;
layer = QString();
name = QString();
iddata = QString();
dimtype = 0;
for (int i = 0; i < 7; i++)
for (int j = 0; j < 2; j++)
coords[i][j] = 0;
xverts.clear();
yverts.clear();
radius = arc_start_angle = arc_stop_angle = 0;
ellipse_start_angle = ellipse_stop_angle = 0;
if (mode == "INSERT") {
ellipse_start_angle = ellipse_stop_angle = 1.0; // scale
}
break;
case 1:
name = data;
break;
case 2:
iddata = data;
break;
case 8:
layer = data;
break;
case 10:
if (in_blocks_section)
xverts.append((data.toDouble()));
else
xverts.append((data.toDouble() - xorigin) * scale);
break;
case 11:
if (in_blocks_section)
xverts.append((data.toDouble()));
else
xverts.append((data.toDouble() - xorigin) * scale);
break;
case 20:
if (in_blocks_section)
yverts.append((data.toDouble()));
else
yverts.append((data.toDouble() - yorigin) * scale);
break;
case 21:
if (in_blocks_section)
yverts.append((data.toDouble()));
else
yverts.append((data.toDouble() - yorigin) * scale);
break;
case 40:
// CIRCLE, ARC: radius
// ELLIPSE: minor to major ratio
// DIMENSION (radial, diameter): Leader length
radius = data.toDouble();
if (!in_blocks_section) radius *= scale;
break;
case 41:
// ELLIPSE: start_angle
// INSERT: X scale
ellipse_start_angle = data.toDouble();
break;
case 50:
// ARC: start_angle
// INSERT: rot angle
// DIMENSION: linear and rotated: angle
arc_start_angle = data.toDouble();
break;
case 42:
// ELLIPSE: stop_angle
// INSERT: Y scale
ellipse_stop_angle = data.toDouble();
break;
case 51: // ARC
arc_stop_angle = data.toDouble();
break;
case 70:
// LWPOLYLINE: polyline flag
// DIMENSION: dimension type
dimtype = data.toInt();
break;
}
}
QHashIterator<QString, int> i(unsupported_entities_list);
while (i.hasNext()) {
i.next();
if (layername.isNull()) {
PRINTA("WARNING: Unsupported DXF Entity `%1' (%2x) in `%3'.",
i.key(), QString::number(i.value()), filename);
} else {
PRINTA("WARNING: Unsupported DXF Entity `%1' (%2x) in layer `%3' of `%4'.",
i.key(), QString::number(i.value()), layername, filename);
}
}
// Extract paths from parsed data
QHash<int, int> enabled_lines;
for (int i = 0; i < lines.count(); i++) {
enabled_lines[i] = i;
}
// extract all open paths
while (enabled_lines.count() > 0)
{
int current_line, current_point;
foreach (int i, enabled_lines) {
for (int j = 0; j < 2; j++) {
QVector<int> *lv = &grid.data(lines[i].p[j]->x, lines[i].p[j]->y);
for (int ki = 0; ki < lv->count(); ki++) {
int k = lv->at(ki);
if (k == i || lines[k].disabled)
continue;
goto next_open_path_j;
}
current_line = i;
current_point = j;
goto create_open_path;
next_open_path_j:;
}
}
break;
create_open_path:
this->paths.append(Path());
Path *this_path = &this->paths.last();
this_path->points.append(lines[current_line].p[current_point]);
while (1) {
this_path->points.append(lines[current_line].p[!current_point]);
Point *ref_point = lines[current_line].p[!current_point];
lines[current_line].disabled = true;
enabled_lines.remove(current_line);
QVector<int> *lv = &grid.data(ref_point->x, ref_point->y);
for (int ki = 0; ki < lv->count(); ki++) {
int k = lv->at(ki);
if (lines[k].disabled)
continue;
if (grid.eq(ref_point->x, ref_point->y, lines[k].p[0]->x, lines[k].p[0]->y)) {
current_line = k;
current_point = 0;
goto found_next_line_in_open_path;
}
if (grid.eq(ref_point->x, ref_point->y, lines[k].p[1]->x, lines[k].p[1]->y)) {
current_line = k;
current_point = 1;
goto found_next_line_in_open_path;
}
}
break;
found_next_line_in_open_path:;
}
}
// extract all closed paths
while (enabled_lines.count() > 0)
{
int current_line = enabled_lines.begin().value(), current_point = 0;
this->paths.append(Path());
Path *this_path = &this->paths.last();
this_path->is_closed = true;
this_path->points.append(lines[current_line].p[current_point]);
while (1) {
this_path->points.append(lines[current_line].p[!current_point]);
Point *ref_point = lines[current_line].p[!current_point];
lines[current_line].disabled = true;
enabled_lines.remove(current_line);
QVector<int> *lv = &grid.data(ref_point->x, ref_point->y);
for (int ki = 0; ki < lv->count(); ki++) {
int k = lv->at(ki);
if (lines[k].disabled)
continue;
if (grid.eq(ref_point->x, ref_point->y, lines[k].p[0]->x, lines[k].p[0]->y)) {
current_line = k;
current_point = 0;
goto found_next_line_in_closed_path;
}
if (grid.eq(ref_point->x, ref_point->y, lines[k].p[1]->x, lines[k].p[1]->y)) {
current_line = k;
current_point = 1;
goto found_next_line_in_closed_path;
}
}
break;
found_next_line_in_closed_path:;
}
}
fixup_path_direction();
#if 0
printf("----- DXF Data -----\n");
for (int i = 0; i < this->paths.count(); i++) {
printf("Path %d (%s):\n", i, this->paths[i].is_closed ? "closed" : "open");
for (int j = 0; j < this->paths[i].points.count(); j++)
printf(" %f %f\n", this->paths[i].points[j]->x, this->paths[i].points[j]->y);
}
printf("--------------------\n");
fflush(stdout);
#endif
}
/*!
Ensures that all paths have the same vertex ordering.
FIXME: CW or CCW?
*/
void DxfData::fixup_path_direction()
{
for (int i = 0; i < this->paths.count(); i++) {
if (!this->paths[i].is_closed)
break;
this->paths[i].is_inner = true;
double min_x = this->paths[i].points[0]->x;
int min_x_point = 0;
for (int j = 1; j < this->paths[i].points.count(); j++) {
if (this->paths[i].points[j]->x < min_x) {
min_x = this->paths[i].points[j]->x;
min_x_point = j;
}
}
// rotate points if the path is in non-standard rotation
int b = min_x_point;
int a = b == 0 ? this->paths[i].points.count() - 2 : b - 1;
int c = b == this->paths[i].points.count() - 1 ? 1 : b + 1;
double ax = this->paths[i].points[a]->x - this->paths[i].points[b]->x;
double ay = this->paths[i].points[a]->y - this->paths[i].points[b]->y;
double cx = this->paths[i].points[c]->x - this->paths[i].points[b]->x;
double cy = this->paths[i].points[c]->y - this->paths[i].points[b]->y;
#if 0
printf("Rotate check:\n");
printf(" a/b/c indices = %d %d %d\n", a, b, c);
printf(" b->a vector = %f %f (%f)\n", ax, ay, atan2(ax, ay));
printf(" b->c vector = %f %f (%f)\n", cx, cy, atan2(cx, cy));
#endif
// FIXME: atan2() usually takes y,x. This variant probably makes the path clockwise..
if (atan2(ax, ay) < atan2(cx, cy)) {
for (int j = 0; j < this->paths[i].points.count()/2; j++)
this->paths[i].points.swap(j, this->paths[i].points.count()-1-j);
}
}
}
DxfData::Point *DxfData::addPoint(double x, double y)
{
this->points.append(Point(x, y));
return &this->points.last();
}