openscad/src/transform.cc

370 lines
8.9 KiB
C++

/*
* OpenSCAD (www.openscad.at)
* Copyright (C) 2009 Clifford Wolf <clifford@clifford.at>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
#define INCLUDE_ABSTRACT_NODE_DETAILS
#include "openscad.h"
#include "printutils.h"
enum transform_type_e {
SCALE,
ROTATE,
MIRROR,
TRANSLATE,
MULTMATRIX,
COLOR
};
class TransformModule : public AbstractModule
{
public:
transform_type_e type;
TransformModule(transform_type_e type) : type(type) { }
virtual AbstractNode *evaluate(const Context *ctx, const ModuleInstantiation *inst) const;
};
class TransformNode : public AbstractNode
{
public:
double m[20];
TransformNode(const ModuleInstantiation *mi) : AbstractNode(mi) { }
#ifdef ENABLE_CGAL
virtual CGAL_Nef_polyhedron render_cgal_nef_polyhedron() const;
#endif
virtual CSGTerm *render_csg_term(double m[20], QVector<CSGTerm*> *highlights, QVector<CSGTerm*> *background) const;
virtual QString dump(QString indent) const;
};
AbstractNode *TransformModule::evaluate(const Context *ctx, const ModuleInstantiation *inst) const
{
TransformNode *node = new TransformNode(inst);
for (int i = 0; i < 16; i++)
node->m[i] = i % 5 == 0 ? 1.0 : 0.0;
for (int i = 16; i < 20; i++)
node->m[i] = -1;
QVector<QString> argnames;
QVector<Expression*> argexpr;
if (type == SCALE) {
argnames = QVector<QString>() << "v";
}
if (type == ROTATE) {
argnames = QVector<QString>() << "a" << "v";
}
if (type == MIRROR) {
argnames = QVector<QString>() << "v";
}
if (type == TRANSLATE) {
argnames = QVector<QString>() << "v";
}
if (type == MULTMATRIX) {
argnames = QVector<QString>() << "m";
}
if (type == COLOR) {
argnames = QVector<QString>() << "c";
}
Context c(ctx);
c.args(argnames, argexpr, inst->argnames, inst->argvalues);
if (type == SCALE)
{
Value v = c.lookup_variable("v");
v.getnum(node->m[0]);
v.getnum(node->m[5]);
v.getnum(node->m[10]);
v.getv3(node->m[0], node->m[5], node->m[10]);
if (node->m[10] <= 0)
node->m[10] = 1;
}
if (type == ROTATE)
{
Value val_a = c.lookup_variable("a");
if (val_a.type == Value::VECTOR)
{
for (int i = 0; i < 3 && i < val_a.vec.size(); i++) {
double a;
val_a.vec[i]->getnum(a);
double c = cos(a*M_PI/180.0);
double s = sin(a*M_PI/180.0);
double x = i == 0, y = i == 1, z = i == 2;
double mr[16] = {
x*x*(1-c)+c,
y*x*(1-c)+z*s,
z*x*(1-c)-y*s,
0,
x*y*(1-c)-z*s,
y*y*(1-c)+c,
z*y*(1-c)+x*s,
0,
x*z*(1-c)+y*s,
y*z*(1-c)-x*s,
z*z*(1-c)+c,
0,
0, 0, 0, 1
};
double m[16];
for (int x = 0; x < 4; x++)
for (int y = 0; y < 4; y++)
{
m[x+y*4] = 0;
for (int i = 0; i < 4; i++)
m[x+y*4] += node->m[i+y*4] * mr[x+i*4];
}
for (int i = 0; i < 16; i++)
node->m[i] = m[i];
}
}
else
{
Value val_v = c.lookup_variable("v");
double a = 0, x = 0, y = 0, z = 1;
val_a.getnum(a);
if (val_v.getv3(x, y, z)) {
if (x != 0.0 || y != 0.0 || z != 0.0) {
double sn = 1.0 / sqrt(x*x + y*y + z*z);
x *= sn, y *= sn, z *= sn;
}
}
if (x != 0.0 || y != 0.0 || z != 0.0)
{
double c = cos(a*M_PI/180.0);
double s = sin(a*M_PI/180.0);
node->m[ 0] = x*x*(1-c)+c;
node->m[ 1] = y*x*(1-c)+z*s;
node->m[ 2] = z*x*(1-c)-y*s;
node->m[ 4] = x*y*(1-c)-z*s;
node->m[ 5] = y*y*(1-c)+c;
node->m[ 6] = z*y*(1-c)+x*s;
node->m[ 8] = x*z*(1-c)+y*s;
node->m[ 9] = y*z*(1-c)-x*s;
node->m[10] = z*z*(1-c)+c;
}
}
}
if (type == MIRROR)
{
Value val_v = c.lookup_variable("v");
double x = 1, y = 0, z = 0;
if (val_v.getv3(x, y, z)) {
if (x != 0.0 || y != 0.0 || z != 0.0) {
double sn = 1.0 / sqrt(x*x + y*y + z*z);
x *= sn, y *= sn, z *= sn;
}
}
if (x != 0.0 || y != 0.0 || z != 0.0)
{
node->m[ 0] = 1-2*x*x;
node->m[ 1] = -2*y*x;
node->m[ 2] = -2*z*x;
node->m[ 4] = -2*x*y;
node->m[ 5] = 1-2*y*y;
node->m[ 6] = -2*z*y;
node->m[ 8] = -2*x*z;
node->m[ 9] = -2*y*z;
node->m[10] = 1-2*z*z;
}
}
if (type == TRANSLATE)
{
Value v = c.lookup_variable("v");
v.getv3(node->m[12], node->m[13], node->m[14]);
}
if (type == MULTMATRIX)
{
Value v = c.lookup_variable("m");
if (v.type == Value::VECTOR) {
for (int i = 0; i < 16; i++) {
int x = i / 4, y = i % 4;
if (y < v.vec.size() && v.vec[y]->type == Value::VECTOR && x < v.vec[y]->vec.size())
v.vec[y]->vec[x]->getnum(node->m[i]);
}
}
}
if (type == COLOR)
{
Value v = c.lookup_variable("c");
if (v.type == Value::VECTOR) {
for (int i = 0; i < 4; i++)
node->m[16+i] = i < v.vec.size() ? v.vec[i]->num : 1.0;
}
}
foreach (ModuleInstantiation *v, inst->children) {
AbstractNode *n = v->evaluate(inst->ctx);
if (n != NULL)
node->children.append(n);
}
return node;
}
#ifdef ENABLE_CGAL
CGAL_Nef_polyhedron TransformNode::render_cgal_nef_polyhedron() const
{
QString cache_id = mk_cache_id();
if (cgal_nef_cache.contains(cache_id)) {
progress_report();
PRINT(cgal_nef_cache[cache_id]->msg);
return cgal_nef_cache[cache_id]->N;
}
print_messages_push();
bool first = true;
CGAL_Nef_polyhedron N;
foreach (AbstractNode *v, children) {
if (v->modinst->tag_background)
continue;
if (first) {
N = v->render_cgal_nef_polyhedron();
if (N.dim != 0)
first = false;
} else if (N.dim == 2) {
N.p2 += v->render_cgal_nef_polyhedron().p2;
} else if (N.dim == 3) {
N.p3 += v->render_cgal_nef_polyhedron().p3;
}
}
if (N.dim == 2)
{
// Unfortunately CGAL provides no transform method for CGAL_Nef_polyhedron2
// objects. So we convert in to our internal 2d data format, transform it,
// tesselate it and create a new CGAL_Nef_polyhedron2 from it.. What a hack!
CGAL_Aff_transformation2 t(
m[0], m[4], m[12],
m[1], m[5], m[13], m[15]);
DxfData dd(N);
for (int i=0; i < dd.points.size(); i++) {
CGAL_Kernel2::Point_2 p = CGAL_Kernel2::Point_2(dd.points[i].x, dd.points[i].y);
p = t.transform(p);
dd.points[i].x = to_double(p.x());
dd.points[i].y = to_double(p.y());
}
PolySet ps;
ps.is2d = true;
dxf_tesselate(&ps, &dd, 0, true, false, 0);
N = ps.render_cgal_nef_polyhedron();
ps.refcount = 0;
}
if (N.dim == 3) {
CGAL_Aff_transformation t(
m[0], m[4], m[ 8], m[12],
m[1], m[5], m[ 9], m[13],
m[2], m[6], m[10], m[14], m[15]);
N.p3.transform(t);
}
cgal_nef_cache.insert(cache_id, new cgal_nef_cache_entry(N), N.weight());
print_messages_pop();
progress_report();
return N;
}
#endif /* ENABLE_CGAL */
CSGTerm *TransformNode::render_csg_term(double c[20], QVector<CSGTerm*> *highlights, QVector<CSGTerm*> *background) const
{
double x[20];
for (int i = 0; i < 16; i++)
{
int c_row = i%4;
int m_col = i/4;
x[i] = 0;
for (int j = 0; j < 4; j++)
x[i] += c[c_row + j*4] * m[m_col*4 + j];
}
for (int i = 16; i < 20; i++)
x[i] = m[i] < 0 ? c[i] : m[i];
CSGTerm *t1 = NULL;
foreach(AbstractNode *v, children)
{
CSGTerm *t2 = v->render_csg_term(x, highlights, background);
if (t2 && !t1) {
t1 = t2;
} else if (t2 && t1) {
t1 = new CSGTerm(CSGTerm::TYPE_UNION, t1, t2);
}
}
if (t1 && modinst->tag_highlight && highlights)
highlights->append(t1->link());
if (t1 && modinst->tag_background && background) {
background->append(t1);
return NULL;
}
return t1;
}
QString TransformNode::dump(QString indent) const
{
if (dump_cache.isEmpty()) {
QString text;
if (m[16] >= 0 || m[17] >= 0 || m[18] >= 0 || m[19] >= 0)
text.sprintf("n%d: color([%g, %g, %g, %g])", idx,
m[16], m[17], m[18], m[19]);
else
text.sprintf("n%d: multmatrix([[%g, %g, %g, %g], [%g, %g, %g, %g], "
"[%g, %g, %g, %g], [%g, %g, %g, %g]])", idx,
m[0], m[4], m[ 8], m[12],
m[1], m[5], m[ 9], m[13],
m[2], m[6], m[10], m[14],
m[3], m[7], m[11], m[15]);
text = indent + text + " {\n";
foreach (AbstractNode *v, children)
text += v->dump(indent + QString("\t"));
((AbstractNode*)this)->dump_cache = text + indent + "}\n";
}
return dump_cache;
}
void register_builtin_transform()
{
builtin_modules["scale"] = new TransformModule(SCALE);
builtin_modules["rotate"] = new TransformModule(ROTATE);
builtin_modules["mirror"] = new TransformModule(MIRROR);
builtin_modules["translate"] = new TransformModule(TRANSLATE);
builtin_modules["multmatrix"] = new TransformModule(MULTMATRIX);
builtin_modules["color"] = new TransformModule(COLOR);
}