openscad/src/transform.cc

215 lines
5.5 KiB
C++

/*
* OpenSCAD (www.openscad.org)
* Copyright (C) 2009-2011 Clifford Wolf <clifford@clifford.at> and
* Marius Kintel <marius@kintel.net>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* As a special exception, you have permission to link this program
* with the CGAL library and distribute executables, as long as you
* follow the requirements of the GNU GPL in regard to all of the
* software in the executable aside from CGAL.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
#include "transformnode.h"
#include "module.h"
#include "context.h"
#include "polyset.h"
#include "builtin.h"
#include <sstream>
#include <vector>
#include <assert.h>
#include <boost/assign/std/vector.hpp>
using namespace boost::assign; // bring 'operator+=()' into scope
enum transform_type_e {
SCALE,
ROTATE,
MIRROR,
TRANSLATE,
MULTMATRIX
};
class TransformModule : public AbstractModule
{
public:
transform_type_e type;
TransformModule(transform_type_e type) : type(type) { }
virtual AbstractNode *evaluate(const Context *ctx, const ModuleInstantiation *inst) const;
};
AbstractNode *TransformModule::evaluate(const Context *ctx, const ModuleInstantiation *inst) const
{
TransformNode *node = new TransformNode(inst);
node->matrix = Transform3d::Identity();
std::vector<std::string> argnames;
std::vector<Expression*> argexpr;
switch (this->type) {
case SCALE:
argnames += "v";
break;
case ROTATE:
argnames += "a", "v";
break;
case MIRROR:
argnames += "v";
break;
case TRANSLATE:
argnames += "v";
break;
case MULTMATRIX:
argnames += "m";
break;
default:
assert(false);
}
Context c(ctx);
c.args(argnames, argexpr, inst->argnames, inst->argvalues);
if (this->type == SCALE)
{
Vector3d scalevec(1,1,1);
Value v = c.lookup_variable("v");
v.getnum(scalevec[0]);
v.getnum(scalevec[1]);
v.getnum(scalevec[2]);
v.getv3(scalevec[0], scalevec[1], scalevec[2]);
if (scalevec[2] == 0) scalevec[2] = 1;
node->matrix.scale(scalevec);
}
else if (this->type == ROTATE)
{
Value val_a = c.lookup_variable("a");
if (val_a.type == Value::VECTOR)
{
Eigen::AngleAxisd rotx, roty, rotz;
double a;
if (val_a.vec.size() > 0) {
val_a.vec[0]->getnum(a);
rotx = Eigen::AngleAxisd(a*M_PI/180, Vector3d::UnitX());
}
if (val_a.vec.size() > 1) {
val_a.vec[1]->getnum(a);
roty = Eigen::AngleAxisd(a*M_PI/180, Vector3d::UnitY());
}
if (val_a.vec.size() > 2) {
val_a.vec[2]->getnum(a);
rotz = Eigen::AngleAxisd(a*M_PI/180, Vector3d::UnitZ());
}
node->matrix.rotate(rotz * roty * rotx);
}
else
{
Value val_v = c.lookup_variable("v");
double a = 0;
val_a.getnum(a);
Vector3d axis(0,0,1);
if (val_v.getv3(axis[0], axis[1], axis[2])) {
if (axis.squaredNorm() > 0) axis.normalize();
}
if (axis.squaredNorm() > 0) {
node->matrix = Eigen::AngleAxisd(a*M_PI/180, axis);
}
}
}
else if (this->type == MIRROR)
{
Value val_v = c.lookup_variable("v");
double x = 1, y = 0, z = 0;
if (val_v.getv3(x, y, z)) {
if (x != 0.0 || y != 0.0 || z != 0.0) {
double sn = 1.0 / sqrt(x*x + y*y + z*z);
x *= sn, y *= sn, z *= sn;
}
}
if (x != 0.0 || y != 0.0 || z != 0.0)
{
Eigen::Matrix4d m;
m << 1-2*x*x, -2*y*x, -2*z*x, 0,
-2*x*y, 1-2*y*y, -2*z*y, 0,
-2*x*z, -2*y*z, 1-2*z*z, 0,
0, 0, 0, 1;
node->matrix = m;
}
}
else if (this->type == TRANSLATE)
{
Value v = c.lookup_variable("v");
Vector3d translatevec(0,0,0);
v.getv3(translatevec[0], translatevec[1], translatevec[2]);
node->matrix.translate(translatevec);
}
else if (this->type == MULTMATRIX)
{
Value v = c.lookup_variable("m");
if (v.type == Value::VECTOR) {
for (int i = 0; i < 16; i++) {
size_t x = i / 4, y = i % 4;
if (y < v.vec.size() && v.vec[y]->type == Value::VECTOR && x < v.vec[y]->vec.size())
v.vec[y]->vec[x]->getnum(node->matrix(y, x));
}
}
}
std::vector<AbstractNode *> evaluatednodes = inst->evaluateChildren();
node->children.insert(node->children.end(), evaluatednodes.begin(), evaluatednodes.end());
return node;
}
std::string TransformNode::toString() const
{
std::stringstream stream;
stream << "multmatrix([";
for (int j=0;j<4;j++) {
stream << "[";
for (int i=0;i<4;i++) {
// FIXME: The 0 test is to avoid a leading minus before a single 0 (cosmetics)
stream << ((this->matrix(j, i)==0)?0:this->matrix(j, i));
if (i != 3) stream << ", ";
}
stream << "]";
if (j != 3) stream << ", ";
}
stream << "])";
return stream.str();
}
std::string TransformNode::name() const
{
return "transform";
}
void register_builtin_transform()
{
builtin_modules["scale"] = new TransformModule(SCALE);
builtin_modules["rotate"] = new TransformModule(ROTATE);
builtin_modules["mirror"] = new TransformModule(MIRROR);
builtin_modules["translate"] = new TransformModule(TRANSLATE);
builtin_modules["multmatrix"] = new TransformModule(MULTMATRIX);
}