phantomjs/src/qt/src/3rdparty/webkit/Source/WebCore/rendering/RenderBlock.cpp

6384 lines
276 KiB
C++

/*
* Copyright (C) 1999 Lars Knoll (knoll@kde.org)
* (C) 1999 Antti Koivisto (koivisto@kde.org)
* (C) 2007 David Smith (catfish.man@gmail.com)
* Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 Apple Inc. All rights reserved.
* Copyright (C) Research In Motion Limited 2010. All rights reserved.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public License
* along with this library; see the file COPYING.LIB. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*/
#include "config.h"
#include "RenderBlock.h"
#include "ColumnInfo.h"
#include "Document.h"
#include "Element.h"
#include "FloatQuad.h"
#include "Frame.h"
#include "FrameView.h"
#include "GraphicsContext.h"
#include "HTMLFormElement.h"
#include "HTMLNames.h"
#include "HitTestResult.h"
#include "InlineIterator.h"
#include "InlineTextBox.h"
#include "PaintInfo.h"
#include "RenderCombineText.h"
#include "RenderFlexibleBox.h"
#include "RenderImage.h"
#include "RenderInline.h"
#include "RenderLayer.h"
#include "RenderMarquee.h"
#include "RenderReplica.h"
#include "RenderTableCell.h"
#include "RenderTextFragment.h"
#include "RenderTheme.h"
#include "RenderView.h"
#include "SelectionController.h"
#include "Settings.h"
#include "TextRun.h"
#include "TransformState.h"
#include <wtf/StdLibExtras.h>
using namespace std;
using namespace WTF;
using namespace Unicode;
namespace WebCore {
using namespace HTMLNames;
typedef WTF::HashMap<const RenderBox*, ColumnInfo*> ColumnInfoMap;
static ColumnInfoMap* gColumnInfoMap = 0;
typedef WTF::HashMap<const RenderBlock*, HashSet<RenderBox*>*> PercentHeightDescendantsMap;
static PercentHeightDescendantsMap* gPercentHeightDescendantsMap = 0;
typedef WTF::HashMap<const RenderBox*, HashSet<RenderBlock*>*> PercentHeightContainerMap;
static PercentHeightContainerMap* gPercentHeightContainerMap = 0;
typedef WTF::HashMap<RenderBlock*, ListHashSet<RenderInline*>*> ContinuationOutlineTableMap;
typedef WTF::HashSet<RenderBlock*> DelayedUpdateScrollInfoSet;
static int gDelayUpdateScrollInfo = 0;
static DelayedUpdateScrollInfoSet* gDelayedUpdateScrollInfoSet = 0;
bool RenderBlock::s_canPropagateFloatIntoSibling = false;
// Our MarginInfo state used when laying out block children.
RenderBlock::MarginInfo::MarginInfo(RenderBlock* block, int beforeBorderPadding, int afterBorderPadding)
: m_atBeforeSideOfBlock(true)
, m_atAfterSideOfBlock(false)
, m_marginBeforeQuirk(false)
, m_marginAfterQuirk(false)
, m_determinedMarginBeforeQuirk(false)
{
// Whether or not we can collapse our own margins with our children. We don't do this
// if we had any border/padding (obviously), if we're the root or HTML elements, or if
// we're positioned, floating, a table cell.
m_canCollapseWithChildren = !block->isRenderView() && !block->isRoot() && !block->isPositioned()
&& !block->isFloating() && !block->isTableCell() && !block->hasOverflowClip() && !block->isInlineBlockOrInlineTable()
&& !block->isWritingModeRoot();
m_canCollapseMarginBeforeWithChildren = m_canCollapseWithChildren && (beforeBorderPadding == 0) && block->style()->marginBeforeCollapse() != MSEPARATE;
// If any height other than auto is specified in CSS, then we don't collapse our bottom
// margins with our children's margins. To do otherwise would be to risk odd visual
// effects when the children overflow out of the parent block and yet still collapse
// with it. We also don't collapse if we have any bottom border/padding.
m_canCollapseMarginAfterWithChildren = m_canCollapseWithChildren && (afterBorderPadding == 0) &&
(block->style()->logicalHeight().isAuto() && block->style()->logicalHeight().value() == 0) && block->style()->marginAfterCollapse() != MSEPARATE;
m_quirkContainer = block->isTableCell() || block->isBody() || block->style()->marginBeforeCollapse() == MDISCARD ||
block->style()->marginAfterCollapse() == MDISCARD;
m_positiveMargin = m_canCollapseMarginBeforeWithChildren ? block->maxPositiveMarginBefore() : 0;
m_negativeMargin = m_canCollapseMarginBeforeWithChildren ? block->maxNegativeMarginBefore() : 0;
}
// -------------------------------------------------------------------------------------------------------
RenderBlock::RenderBlock(Node* node)
: RenderBox(node)
, m_lineHeight(-1)
, m_beingDestroyed(false)
{
setChildrenInline(true);
}
RenderBlock::~RenderBlock()
{
if (m_floatingObjects)
deleteAllValues(m_floatingObjects->set());
if (hasColumns())
delete gColumnInfoMap->take(this);
if (gPercentHeightDescendantsMap) {
if (HashSet<RenderBox*>* descendantSet = gPercentHeightDescendantsMap->take(this)) {
HashSet<RenderBox*>::iterator end = descendantSet->end();
for (HashSet<RenderBox*>::iterator descendant = descendantSet->begin(); descendant != end; ++descendant) {
HashSet<RenderBlock*>* containerSet = gPercentHeightContainerMap->get(*descendant);
ASSERT(containerSet);
if (!containerSet)
continue;
ASSERT(containerSet->contains(this));
containerSet->remove(this);
if (containerSet->isEmpty()) {
gPercentHeightContainerMap->remove(*descendant);
delete containerSet;
}
}
delete descendantSet;
}
}
}
void RenderBlock::destroy()
{
// Mark as being destroyed to avoid trouble with merges in removeChild().
m_beingDestroyed = true;
// Make sure to destroy anonymous children first while they are still connected to the rest of the tree, so that they will
// properly dirty line boxes that they are removed from. Effects that do :before/:after only on hover could crash otherwise.
children()->destroyLeftoverChildren();
// Destroy our continuation before anything other than anonymous children.
// The reason we don't destroy it before anonymous children is that they may
// have continuations of their own that are anonymous children of our continuation.
RenderBoxModelObject* continuation = this->continuation();
if (continuation) {
continuation->destroy();
setContinuation(0);
}
if (!documentBeingDestroyed()) {
if (firstLineBox()) {
// We can't wait for RenderBox::destroy to clear the selection,
// because by then we will have nuked the line boxes.
// FIXME: The SelectionController should be responsible for this when it
// is notified of DOM mutations.
if (isSelectionBorder())
view()->clearSelection();
// If we are an anonymous block, then our line boxes might have children
// that will outlast this block. In the non-anonymous block case those
// children will be destroyed by the time we return from this function.
if (isAnonymousBlock()) {
for (InlineFlowBox* box = firstLineBox(); box; box = box->nextLineBox()) {
while (InlineBox* childBox = box->firstChild())
childBox->remove();
}
}
} else if (parent())
parent()->dirtyLinesFromChangedChild(this);
}
m_lineBoxes.deleteLineBoxes(renderArena());
RenderBox::destroy();
}
void RenderBlock::styleWillChange(StyleDifference diff, const RenderStyle* newStyle)
{
s_canPropagateFloatIntoSibling = style() ? !isFloatingOrPositioned() && !avoidsFloats() : false;
setReplaced(newStyle->isDisplayInlineType());
if (style() && parent() && diff == StyleDifferenceLayout && style()->position() != newStyle->position()) {
if (newStyle->position() == StaticPosition)
// Clear our positioned objects list. Our absolutely positioned descendants will be
// inserted into our containing block's positioned objects list during layout.
removePositionedObjects(0);
else if (style()->position() == StaticPosition) {
// Remove our absolutely positioned descendants from their current containing block.
// They will be inserted into our positioned objects list during layout.
RenderObject* cb = parent();
while (cb && (cb->style()->position() == StaticPosition || (cb->isInline() && !cb->isReplaced())) && !cb->isRenderView()) {
if (cb->style()->position() == RelativePosition && cb->isInline() && !cb->isReplaced()) {
cb = cb->containingBlock();
break;
}
cb = cb->parent();
}
if (cb->isRenderBlock())
toRenderBlock(cb)->removePositionedObjects(this);
}
if (containsFloats() && !isFloating() && !isPositioned() && (newStyle->position() == AbsolutePosition || newStyle->position() == FixedPosition))
markAllDescendantsWithFloatsForLayout();
}
RenderBox::styleWillChange(diff, newStyle);
}
void RenderBlock::styleDidChange(StyleDifference diff, const RenderStyle* oldStyle)
{
RenderBox::styleDidChange(diff, oldStyle);
if (!isAnonymousBlock()) {
// Ensure that all of our continuation blocks pick up the new style.
for (RenderBlock* currCont = blockElementContinuation(); currCont; currCont = currCont->blockElementContinuation()) {
RenderBoxModelObject* nextCont = currCont->continuation();
currCont->setContinuation(0);
currCont->setStyle(style());
currCont->setContinuation(nextCont);
}
}
propagateStyleToAnonymousChildren(true);
m_lineHeight = -1;
// Update pseudos for :before and :after now.
if (!isAnonymous() && document()->usesBeforeAfterRules() && canHaveChildren()) {
updateBeforeAfterContent(BEFORE);
updateBeforeAfterContent(AFTER);
}
// After our style changed, if we lose our ability to propagate floats into next sibling
// blocks, then we need to find the top most parent containing that overhanging float and
// then mark its descendants with floats for layout and clear all floats from its next
// sibling blocks that exist in our floating objects list. See bug 56299 and 62875.
bool canPropagateFloatIntoSibling = !isFloatingOrPositioned() && !avoidsFloats();
if (diff == StyleDifferenceLayout && s_canPropagateFloatIntoSibling && !canPropagateFloatIntoSibling && hasOverhangingFloats()) {
RenderBlock* parentBlock = this;
FloatingObjectSet& floatingObjectSet = m_floatingObjects->set();
FloatingObjectSetIterator end = floatingObjectSet.end();
for (RenderObject* curr = parent(); curr && !curr->isRenderView(); curr = curr->parent()) {
if (curr->isRenderBlock()) {
RenderBlock* currBlock = toRenderBlock(curr);
if (currBlock->hasOverhangingFloats()) {
for (FloatingObjectSetIterator it = floatingObjectSet.begin(); it != end; ++it) {
RenderBox* renderer = (*it)->renderer();
if (currBlock->hasOverhangingFloat(renderer)) {
parentBlock = currBlock;
break;
}
}
}
}
}
parentBlock->markAllDescendantsWithFloatsForLayout();
parentBlock->markSiblingsWithFloatsForLayout();
}
}
void RenderBlock::updateBeforeAfterContent(PseudoId pseudoId)
{
// If this is an anonymous wrapper, then the parent applies its own pseudo-element style to it.
if (parent() && parent()->createsAnonymousWrapper())
return;
return children()->updateBeforeAfterContent(this, pseudoId);
}
RenderBlock* RenderBlock::continuationBefore(RenderObject* beforeChild)
{
if (beforeChild && beforeChild->parent() == this)
return this;
RenderBlock* curr = toRenderBlock(continuation());
RenderBlock* nextToLast = this;
RenderBlock* last = this;
while (curr) {
if (beforeChild && beforeChild->parent() == curr) {
if (curr->firstChild() == beforeChild)
return last;
return curr;
}
nextToLast = last;
last = curr;
curr = toRenderBlock(curr->continuation());
}
if (!beforeChild && !last->firstChild())
return nextToLast;
return last;
}
void RenderBlock::addChildToContinuation(RenderObject* newChild, RenderObject* beforeChild)
{
RenderBlock* flow = continuationBefore(beforeChild);
ASSERT(!beforeChild || beforeChild->parent()->isAnonymousColumnSpanBlock() || beforeChild->parent()->isRenderBlock());
RenderBoxModelObject* beforeChildParent = 0;
if (beforeChild)
beforeChildParent = toRenderBoxModelObject(beforeChild->parent());
else {
RenderBoxModelObject* cont = flow->continuation();
if (cont)
beforeChildParent = cont;
else
beforeChildParent = flow;
}
if (newChild->isFloatingOrPositioned())
return beforeChildParent->addChildIgnoringContinuation(newChild, beforeChild);
// A continuation always consists of two potential candidates: a block or an anonymous
// column span box holding column span children.
bool childIsNormal = newChild->isInline() || !newChild->style()->columnSpan();
bool bcpIsNormal = beforeChildParent->isInline() || !beforeChildParent->style()->columnSpan();
bool flowIsNormal = flow->isInline() || !flow->style()->columnSpan();
if (flow == beforeChildParent)
return flow->addChildIgnoringContinuation(newChild, beforeChild);
// The goal here is to match up if we can, so that we can coalesce and create the
// minimal # of continuations needed for the inline.
if (childIsNormal == bcpIsNormal)
return beforeChildParent->addChildIgnoringContinuation(newChild, beforeChild);
if (flowIsNormal == childIsNormal)
return flow->addChildIgnoringContinuation(newChild, 0); // Just treat like an append.
return beforeChildParent->addChildIgnoringContinuation(newChild, beforeChild);
}
void RenderBlock::addChildToAnonymousColumnBlocks(RenderObject* newChild, RenderObject* beforeChild)
{
ASSERT(!continuation()); // We don't yet support column spans that aren't immediate children of the multi-column block.
// The goal is to locate a suitable box in which to place our child.
RenderBlock* beforeChildParent = toRenderBlock(beforeChild && beforeChild->parent()->isRenderBlock() ? beforeChild->parent() : lastChild());
// If the new child is floating or positioned it can just go in that block.
if (newChild->isFloatingOrPositioned())
return beforeChildParent->addChildIgnoringAnonymousColumnBlocks(newChild, beforeChild);
// See if the child can be placed in the box.
bool newChildHasColumnSpan = newChild->style()->columnSpan() && !newChild->isInline();
bool beforeChildParentHoldsColumnSpans = beforeChildParent->isAnonymousColumnSpanBlock();
if (newChildHasColumnSpan == beforeChildParentHoldsColumnSpans)
return beforeChildParent->addChildIgnoringAnonymousColumnBlocks(newChild, beforeChild);
if (!beforeChild) {
// Create a new block of the correct type.
RenderBlock* newBox = newChildHasColumnSpan ? createAnonymousColumnSpanBlock() : createAnonymousColumnsBlock();
children()->appendChildNode(this, newBox);
newBox->addChildIgnoringAnonymousColumnBlocks(newChild, 0);
return;
}
RenderObject* immediateChild = beforeChild;
bool isPreviousBlockViable = true;
while (immediateChild->parent() != this) {
if (isPreviousBlockViable)
isPreviousBlockViable = !immediateChild->previousSibling();
immediateChild = immediateChild->parent();
}
if (isPreviousBlockViable && immediateChild->previousSibling())
return toRenderBlock(immediateChild->previousSibling())->addChildIgnoringAnonymousColumnBlocks(newChild, 0); // Treat like an append.
// Split our anonymous blocks.
RenderObject* newBeforeChild = splitAnonymousBlocksAroundChild(beforeChild);
// Create a new anonymous box of the appropriate type.
RenderBlock* newBox = newChildHasColumnSpan ? createAnonymousColumnSpanBlock() : createAnonymousColumnsBlock();
children()->insertChildNode(this, newBox, newBeforeChild);
newBox->addChildIgnoringAnonymousColumnBlocks(newChild, 0);
return;
}
RenderBlock* RenderBlock::containingColumnsBlock(bool allowAnonymousColumnBlock)
{
for (RenderObject* curr = this; curr; curr = curr->parent()) {
if (!curr->isRenderBlock() || curr->isFloatingOrPositioned() || curr->isTableCell() || curr->isRoot() || curr->isRenderView() || curr->hasOverflowClip()
|| curr->isInlineBlockOrInlineTable())
return 0;
RenderBlock* currBlock = toRenderBlock(curr);
if (currBlock->style()->specifiesColumns() && (allowAnonymousColumnBlock || !currBlock->isAnonymousColumnsBlock()))
return currBlock;
if (currBlock->isAnonymousColumnSpanBlock())
return 0;
}
return 0;
}
RenderBlock* RenderBlock::clone() const
{
RenderBlock* cloneBlock;
if (isAnonymousBlock())
cloneBlock = createAnonymousBlock();
else {
cloneBlock = new (renderArena()) RenderBlock(node());
cloneBlock->setStyle(style());
}
cloneBlock->setChildrenInline(childrenInline());
return cloneBlock;
}
void RenderBlock::splitBlocks(RenderBlock* fromBlock, RenderBlock* toBlock,
RenderBlock* middleBlock,
RenderObject* beforeChild, RenderBoxModelObject* oldCont)
{
// Create a clone of this inline.
RenderBlock* cloneBlock = clone();
if (!isAnonymousBlock())
cloneBlock->setContinuation(oldCont);
// Now take all of the children from beforeChild to the end and remove
// them from |this| and place them in the clone.
if (!beforeChild && isAfterContent(lastChild()))
beforeChild = lastChild();
moveChildrenTo(cloneBlock, beforeChild, 0);
// Hook |clone| up as the continuation of the middle block.
if (!cloneBlock->isAnonymousBlock())
middleBlock->setContinuation(cloneBlock);
// We have been reparented and are now under the fromBlock. We need
// to walk up our block parent chain until we hit the containing anonymous columns block.
// Once we hit the anonymous columns block we're done.
RenderBoxModelObject* curr = toRenderBoxModelObject(parent());
RenderBoxModelObject* currChild = this;
while (curr && curr != fromBlock) {
ASSERT(curr->isRenderBlock());
RenderBlock* blockCurr = toRenderBlock(curr);
// Create a new clone.
RenderBlock* cloneChild = cloneBlock;
cloneBlock = blockCurr->clone();
// Insert our child clone as the first child.
cloneBlock->children()->appendChildNode(cloneBlock, cloneChild);
// Hook the clone up as a continuation of |curr|. Note we do encounter
// anonymous blocks possibly as we walk up the block chain. When we split an
// anonymous block, there's no need to do any continuation hookup, since we haven't
// actually split a real element.
if (!blockCurr->isAnonymousBlock()) {
oldCont = blockCurr->continuation();
blockCurr->setContinuation(cloneBlock);
cloneBlock->setContinuation(oldCont);
}
// Someone may have indirectly caused a <q> to split. When this happens, the :after content
// has to move into the inline continuation. Call updateBeforeAfterContent to ensure that the inline's :after
// content gets properly destroyed.
if (document()->usesBeforeAfterRules())
blockCurr->children()->updateBeforeAfterContent(blockCurr, AFTER);
// Now we need to take all of the children starting from the first child
// *after* currChild and append them all to the clone.
RenderObject* afterContent = isAfterContent(cloneBlock->lastChild()) ? cloneBlock->lastChild() : 0;
blockCurr->moveChildrenTo(cloneBlock, currChild->nextSibling(), 0, afterContent);
// Keep walking up the chain.
currChild = curr;
curr = toRenderBoxModelObject(curr->parent());
}
// Now we are at the columns block level. We need to put the clone into the toBlock.
toBlock->children()->appendChildNode(toBlock, cloneBlock);
// Now take all the children after currChild and remove them from the fromBlock
// and put them in the toBlock.
fromBlock->moveChildrenTo(toBlock, currChild->nextSibling(), 0);
}
void RenderBlock::splitFlow(RenderObject* beforeChild, RenderBlock* newBlockBox,
RenderObject* newChild, RenderBoxModelObject* oldCont)
{
RenderBlock* pre = 0;
RenderBlock* block = containingColumnsBlock();
// Delete our line boxes before we do the inline split into continuations.
block->deleteLineBoxTree();
bool madeNewBeforeBlock = false;
if (block->isAnonymousColumnsBlock()) {
// We can reuse this block and make it the preBlock of the next continuation.
pre = block;
pre->removePositionedObjects(0);
block = toRenderBlock(block->parent());
} else {
// No anonymous block available for use. Make one.
pre = block->createAnonymousColumnsBlock();
pre->setChildrenInline(false);
madeNewBeforeBlock = true;
}
RenderBlock* post = block->createAnonymousColumnsBlock();
post->setChildrenInline(false);
RenderObject* boxFirst = madeNewBeforeBlock ? block->firstChild() : pre->nextSibling();
if (madeNewBeforeBlock)
block->children()->insertChildNode(block, pre, boxFirst);
block->children()->insertChildNode(block, newBlockBox, boxFirst);
block->children()->insertChildNode(block, post, boxFirst);
block->setChildrenInline(false);
if (madeNewBeforeBlock)
block->moveChildrenTo(pre, boxFirst, 0);
splitBlocks(pre, post, newBlockBox, beforeChild, oldCont);
// We already know the newBlockBox isn't going to contain inline kids, so avoid wasting
// time in makeChildrenNonInline by just setting this explicitly up front.
newBlockBox->setChildrenInline(false);
// We delayed adding the newChild until now so that the |newBlockBox| would be fully
// connected, thus allowing newChild access to a renderArena should it need
// to wrap itself in additional boxes (e.g., table construction).
newBlockBox->addChild(newChild);
// Always just do a full layout in order to ensure that line boxes (especially wrappers for images)
// get deleted properly. Because objects moves from the pre block into the post block, we want to
// make new line boxes instead of leaving the old line boxes around.
pre->setNeedsLayoutAndPrefWidthsRecalc();
block->setNeedsLayoutAndPrefWidthsRecalc();
post->setNeedsLayoutAndPrefWidthsRecalc();
}
RenderObject* RenderBlock::splitAnonymousBlocksAroundChild(RenderObject* beforeChild)
{
while (beforeChild->parent() != this) {
RenderBlock* blockToSplit = toRenderBlock(beforeChild->parent());
if (blockToSplit->firstChild() != beforeChild) {
// We have to split the parentBlock into two blocks.
RenderBlock* post = createAnonymousBlockWithSameTypeAs(blockToSplit);
post->setChildrenInline(blockToSplit->childrenInline());
RenderBlock* parentBlock = toRenderBlock(blockToSplit->parent());
parentBlock->children()->insertChildNode(parentBlock, post, blockToSplit->nextSibling());
blockToSplit->moveChildrenTo(post, beforeChild, 0, blockToSplit->hasLayer());
post->setNeedsLayoutAndPrefWidthsRecalc();
blockToSplit->setNeedsLayoutAndPrefWidthsRecalc();
beforeChild = post;
} else
beforeChild = blockToSplit;
}
return beforeChild;
}
void RenderBlock::makeChildrenAnonymousColumnBlocks(RenderObject* beforeChild, RenderBlock* newBlockBox, RenderObject* newChild)
{
RenderBlock* pre = 0;
RenderBlock* post = 0;
RenderBlock* block = this; // Eventually block will not just be |this|, but will also be a block nested inside |this|. Assign to a variable
// so that we don't have to patch all of the rest of the code later on.
// Delete the block's line boxes before we do the split.
block->deleteLineBoxTree();
if (beforeChild && beforeChild->parent() != this)
beforeChild = splitAnonymousBlocksAroundChild(beforeChild);
if (beforeChild != firstChild()) {
pre = block->createAnonymousColumnsBlock();
pre->setChildrenInline(block->childrenInline());
}
if (beforeChild) {
post = block->createAnonymousColumnsBlock();
post->setChildrenInline(block->childrenInline());
}
RenderObject* boxFirst = block->firstChild();
if (pre)
block->children()->insertChildNode(block, pre, boxFirst);
block->children()->insertChildNode(block, newBlockBox, boxFirst);
if (post)
block->children()->insertChildNode(block, post, boxFirst);
block->setChildrenInline(false);
// The pre/post blocks always have layers, so we know to always do a full insert/remove (so we pass true as the last argument).
block->moveChildrenTo(pre, boxFirst, beforeChild, true);
block->moveChildrenTo(post, beforeChild, 0, true);
// We already know the newBlockBox isn't going to contain inline kids, so avoid wasting
// time in makeChildrenNonInline by just setting this explicitly up front.
newBlockBox->setChildrenInline(false);
// We delayed adding the newChild until now so that the |newBlockBox| would be fully
// connected, thus allowing newChild access to a renderArena should it need
// to wrap itself in additional boxes (e.g., table construction).
newBlockBox->addChild(newChild);
// Always just do a full layout in order to ensure that line boxes (especially wrappers for images)
// get deleted properly. Because objects moved from the pre block into the post block, we want to
// make new line boxes instead of leaving the old line boxes around.
if (pre)
pre->setNeedsLayoutAndPrefWidthsRecalc();
block->setNeedsLayoutAndPrefWidthsRecalc();
if (post)
post->setNeedsLayoutAndPrefWidthsRecalc();
}
RenderBlock* RenderBlock::columnsBlockForSpanningElement(RenderObject* newChild)
{
// FIXME: This function is the gateway for the addition of column-span support. It will
// be added to in three stages:
// (1) Immediate children of a multi-column block can span.
// (2) Nested block-level children with only block-level ancestors between them and the multi-column block can span.
// (3) Nested children with block or inline ancestors between them and the multi-column block can span (this is when we
// cross the streams and have to cope with both types of continuations mixed together).
// This function currently supports (1) and (2).
RenderBlock* columnsBlockAncestor = 0;
if (!newChild->isText() && newChild->style()->columnSpan() && !newChild->isFloatingOrPositioned()
&& !newChild->isInline() && !isAnonymousColumnSpanBlock()) {
if (style()->specifiesColumns())
columnsBlockAncestor = this;
else if (!isInline() && parent() && parent()->isRenderBlock()) {
columnsBlockAncestor = toRenderBlock(parent())->containingColumnsBlock(false);
if (columnsBlockAncestor) {
// Make sure that none of the parent ancestors have a continuation.
// If yes, we do not want split the block into continuations.
RenderObject* curr = this;
while (curr && curr != columnsBlockAncestor) {
if (curr->isRenderBlock() && toRenderBlock(curr)->continuation()) {
columnsBlockAncestor = 0;
break;
}
curr = curr->parent();
}
}
}
}
return columnsBlockAncestor;
}
void RenderBlock::addChildIgnoringAnonymousColumnBlocks(RenderObject* newChild, RenderObject* beforeChild)
{
// Make sure we don't append things after :after-generated content if we have it.
if (!beforeChild) {
RenderObject* lastRenderer = lastChild();
while (lastRenderer && lastRenderer->isAnonymous() && !isAfterContent(lastRenderer))
lastRenderer = lastRenderer->lastChild();
if (lastRenderer && isAfterContent(lastRenderer))
beforeChild = lastRenderer;
}
// If the requested beforeChild is not one of our children, then this is because
// there is an anonymous container within this object that contains the beforeChild.
if (beforeChild && beforeChild->parent() != this) {
RenderObject* anonymousChild = beforeChild->parent();
ASSERT(anonymousChild);
while (anonymousChild->parent() != this)
anonymousChild = anonymousChild->parent();
ASSERT(anonymousChild->isAnonymous());
if (anonymousChild->isAnonymousBlock()) {
// Insert the child into the anonymous block box instead of here.
if (newChild->isInline() || beforeChild->parent()->firstChild() != beforeChild)
beforeChild->parent()->addChild(newChild, beforeChild);
else
addChild(newChild, beforeChild->parent());
return;
}
ASSERT(anonymousChild->isTable());
if ((newChild->isTableCol() && newChild->style()->display() == TABLE_COLUMN_GROUP)
|| (newChild->isRenderBlock() && newChild->style()->display() == TABLE_CAPTION)
|| newChild->isTableSection()
|| newChild->isTableRow()
|| newChild->isTableCell()) {
// Insert into the anonymous table.
anonymousChild->addChild(newChild, beforeChild);
return;
}
// Go on to insert before the anonymous table.
beforeChild = anonymousChild;
}
// Check for a spanning element in columns.
RenderBlock* columnsBlockAncestor = columnsBlockForSpanningElement(newChild);
if (columnsBlockAncestor) {
// We are placing a column-span element inside a block.
RenderBlock* newBox = createAnonymousColumnSpanBlock();
if (columnsBlockAncestor != this) {
// We are nested inside a multi-column element and are being split by the span. We have to break up
// our block into continuations.
RenderBoxModelObject* oldContinuation = continuation();
setContinuation(newBox);
// Someone may have put a <p> inside a <q>, causing a split. When this happens, the :after content
// has to move into the inline continuation. Call updateBeforeAfterContent to ensure that our :after
// content gets properly destroyed.
bool isLastChild = (beforeChild == lastChild());
if (document()->usesBeforeAfterRules())
children()->updateBeforeAfterContent(this, AFTER);
if (isLastChild && beforeChild != lastChild())
beforeChild = 0; // We destroyed the last child, so now we need to update our insertion
// point to be 0. It's just a straight append now.
splitFlow(beforeChild, newBox, newChild, oldContinuation);
return;
}
// We have to perform a split of this block's children. This involves creating an anonymous block box to hold
// the column-spanning |newChild|. We take all of the children from before |newChild| and put them into
// one anonymous columns block, and all of the children after |newChild| go into another anonymous block.
makeChildrenAnonymousColumnBlocks(beforeChild, newBox, newChild);
return;
}
bool madeBoxesNonInline = false;
// A block has to either have all of its children inline, or all of its children as blocks.
// So, if our children are currently inline and a block child has to be inserted, we move all our
// inline children into anonymous block boxes.
if (childrenInline() && !newChild->isInline() && !newChild->isFloatingOrPositioned()) {
// This is a block with inline content. Wrap the inline content in anonymous blocks.
makeChildrenNonInline(beforeChild);
madeBoxesNonInline = true;
if (beforeChild && beforeChild->parent() != this) {
beforeChild = beforeChild->parent();
ASSERT(beforeChild->isAnonymousBlock());
ASSERT(beforeChild->parent() == this);
}
} else if (!childrenInline() && (newChild->isFloatingOrPositioned() || newChild->isInline())) {
// If we're inserting an inline child but all of our children are blocks, then we have to make sure
// it is put into an anomyous block box. We try to use an existing anonymous box if possible, otherwise
// a new one is created and inserted into our list of children in the appropriate position.
RenderObject* afterChild = beforeChild ? beforeChild->previousSibling() : lastChild();
if (afterChild && afterChild->isAnonymousBlock()) {
afterChild->addChild(newChild);
return;
}
if (newChild->isInline()) {
// No suitable existing anonymous box - create a new one.
RenderBlock* newBox = createAnonymousBlock();
RenderBox::addChild(newBox, beforeChild);
newBox->addChild(newChild);
return;
}
}
RenderBox::addChild(newChild, beforeChild);
if (madeBoxesNonInline && parent() && isAnonymousBlock() && parent()->isRenderBlock())
toRenderBlock(parent())->removeLeftoverAnonymousBlock(this);
// this object may be dead here
}
void RenderBlock::addChild(RenderObject* newChild, RenderObject* beforeChild)
{
if (continuation() && !isAnonymousBlock())
return addChildToContinuation(newChild, beforeChild);
return addChildIgnoringContinuation(newChild, beforeChild);
}
void RenderBlock::addChildIgnoringContinuation(RenderObject* newChild, RenderObject* beforeChild)
{
if (!isAnonymousBlock() && firstChild() && (firstChild()->isAnonymousColumnsBlock() || firstChild()->isAnonymousColumnSpanBlock()))
return addChildToAnonymousColumnBlocks(newChild, beforeChild);
return addChildIgnoringAnonymousColumnBlocks(newChild, beforeChild);
}
static void getInlineRun(RenderObject* start, RenderObject* boundary,
RenderObject*& inlineRunStart,
RenderObject*& inlineRunEnd)
{
// Beginning at |start| we find the largest contiguous run of inlines that
// we can. We denote the run with start and end points, |inlineRunStart|
// and |inlineRunEnd|. Note that these two values may be the same if
// we encounter only one inline.
//
// We skip any non-inlines we encounter as long as we haven't found any
// inlines yet.
//
// |boundary| indicates a non-inclusive boundary point. Regardless of whether |boundary|
// is inline or not, we will not include it in a run with inlines before it. It's as though we encountered
// a non-inline.
// Start by skipping as many non-inlines as we can.
RenderObject * curr = start;
bool sawInline;
do {
while (curr && !(curr->isInline() || curr->isFloatingOrPositioned()))
curr = curr->nextSibling();
inlineRunStart = inlineRunEnd = curr;
if (!curr)
return; // No more inline children to be found.
sawInline = curr->isInline();
curr = curr->nextSibling();
while (curr && (curr->isInline() || curr->isFloatingOrPositioned()) && (curr != boundary)) {
inlineRunEnd = curr;
if (curr->isInline())
sawInline = true;
curr = curr->nextSibling();
}
} while (!sawInline);
}
void RenderBlock::deleteLineBoxTree()
{
m_lineBoxes.deleteLineBoxTree(renderArena());
}
RootInlineBox* RenderBlock::createRootInlineBox()
{
return new (renderArena()) RootInlineBox(this);
}
RootInlineBox* RenderBlock::createAndAppendRootInlineBox()
{
RootInlineBox* rootBox = createRootInlineBox();
m_lineBoxes.appendLineBox(rootBox);
return rootBox;
}
void RenderBlock::moveChildTo(RenderBlock* to, RenderObject* child, RenderObject* beforeChild, bool fullRemoveInsert)
{
ASSERT(this == child->parent());
ASSERT(!beforeChild || to == beforeChild->parent());
to->children()->insertChildNode(to, children()->removeChildNode(this, child, fullRemoveInsert), beforeChild, fullRemoveInsert);
}
void RenderBlock::moveChildrenTo(RenderBlock* to, RenderObject* startChild, RenderObject* endChild, RenderObject* beforeChild, bool fullRemoveInsert)
{
ASSERT(!beforeChild || to == beforeChild->parent());
RenderObject* nextChild = startChild;
while (nextChild && nextChild != endChild) {
RenderObject* child = nextChild;
nextChild = child->nextSibling();
to->children()->insertChildNode(to, children()->removeChildNode(this, child, fullRemoveInsert), beforeChild, fullRemoveInsert);
if (child == endChild)
return;
}
}
void RenderBlock::makeChildrenNonInline(RenderObject *insertionPoint)
{
// makeChildrenNonInline takes a block whose children are *all* inline and it
// makes sure that inline children are coalesced under anonymous
// blocks. If |insertionPoint| is defined, then it represents the insertion point for
// the new block child that is causing us to have to wrap all the inlines. This
// means that we cannot coalesce inlines before |insertionPoint| with inlines following
// |insertionPoint|, because the new child is going to be inserted in between the inlines,
// splitting them.
ASSERT(isInlineBlockOrInlineTable() || !isInline());
ASSERT(!insertionPoint || insertionPoint->parent() == this);
setChildrenInline(false);
RenderObject *child = firstChild();
if (!child)
return;
deleteLineBoxTree();
while (child) {
RenderObject *inlineRunStart, *inlineRunEnd;
getInlineRun(child, insertionPoint, inlineRunStart, inlineRunEnd);
if (!inlineRunStart)
break;
child = inlineRunEnd->nextSibling();
RenderBlock* block = createAnonymousBlock();
children()->insertChildNode(this, block, inlineRunStart);
moveChildrenTo(block, inlineRunStart, child);
}
#ifndef NDEBUG
for (RenderObject *c = firstChild(); c; c = c->nextSibling())
ASSERT(!c->isInline());
#endif
repaint();
}
void RenderBlock::removeLeftoverAnonymousBlock(RenderBlock* child)
{
ASSERT(child->isAnonymousBlock());
ASSERT(!child->childrenInline());
if (child->continuation() || (child->firstChild() && (child->isAnonymousColumnSpanBlock() || child->isAnonymousColumnsBlock())))
return;
RenderObject* firstAnChild = child->m_children.firstChild();
RenderObject* lastAnChild = child->m_children.lastChild();
if (firstAnChild) {
RenderObject* o = firstAnChild;
while (o) {
o->setParent(this);
o = o->nextSibling();
}
firstAnChild->setPreviousSibling(child->previousSibling());
lastAnChild->setNextSibling(child->nextSibling());
if (child->previousSibling())
child->previousSibling()->setNextSibling(firstAnChild);
if (child->nextSibling())
child->nextSibling()->setPreviousSibling(lastAnChild);
if (child == m_children.firstChild())
m_children.setFirstChild(firstAnChild);
if (child == m_children.lastChild())
m_children.setLastChild(lastAnChild);
} else {
if (child == m_children.firstChild())
m_children.setFirstChild(child->nextSibling());
if (child == m_children.lastChild())
m_children.setLastChild(child->previousSibling());
if (child->previousSibling())
child->previousSibling()->setNextSibling(child->nextSibling());
if (child->nextSibling())
child->nextSibling()->setPreviousSibling(child->previousSibling());
}
child->setParent(0);
child->setPreviousSibling(0);
child->setNextSibling(0);
child->children()->setFirstChild(0);
child->m_next = 0;
child->destroy();
}
static bool canMergeContiguousAnonymousBlocks(RenderObject* oldChild, RenderObject* prev, RenderObject* next)
{
if (oldChild->documentBeingDestroyed() || oldChild->isInline() || oldChild->virtualContinuation())
return false;
#if ENABLE(DETAILS)
if (oldChild->parent() && oldChild->parent()->isDetails())
return false;
#endif
if ((prev && (!prev->isAnonymousBlock() || toRenderBlock(prev)->continuation() || toRenderBlock(prev)->beingDestroyed()))
|| (next && (!next->isAnonymousBlock() || toRenderBlock(next)->continuation() || toRenderBlock(next)->beingDestroyed())))
return false;
// FIXME: This check isn't required when inline run-ins can't be split into continuations.
if (prev && prev->firstChild() && prev->firstChild()->isInline() && prev->firstChild()->isRunIn())
return false;
if ((prev && (prev->isRubyRun() || prev->isRubyBase()))
|| (next && (next->isRubyRun() || next->isRubyBase())))
return false;
if (!prev || !next)
return true;
// Make sure the types of the anonymous blocks match up.
return prev->isAnonymousColumnsBlock() == next->isAnonymousColumnsBlock()
&& prev->isAnonymousColumnSpanBlock() == next->isAnonymousColumnSpanBlock();
}
void RenderBlock::removeChild(RenderObject* oldChild)
{
// If this child is a block, and if our previous and next siblings are
// both anonymous blocks with inline content, then we can go ahead and
// fold the inline content back together.
RenderObject* prev = oldChild->previousSibling();
RenderObject* next = oldChild->nextSibling();
bool canMergeAnonymousBlocks = canMergeContiguousAnonymousBlocks(oldChild, prev, next);
if (canMergeAnonymousBlocks && prev && next) {
prev->setNeedsLayoutAndPrefWidthsRecalc();
RenderBlock* nextBlock = toRenderBlock(next);
RenderBlock* prevBlock = toRenderBlock(prev);
if (prev->childrenInline() != next->childrenInline()) {
RenderBlock* inlineChildrenBlock = prev->childrenInline() ? prevBlock : nextBlock;
RenderBlock* blockChildrenBlock = prev->childrenInline() ? nextBlock : prevBlock;
// Place the inline children block inside of the block children block instead of deleting it.
// In order to reuse it, we have to reset it to just be a generic anonymous block. Make sure
// to clear out inherited column properties by just making a new style, and to also clear the
// column span flag if it is set.
ASSERT(!inlineChildrenBlock->continuation());
RefPtr<RenderStyle> newStyle = RenderStyle::createAnonymousStyle(style());
children()->removeChildNode(this, inlineChildrenBlock, inlineChildrenBlock->hasLayer());
inlineChildrenBlock->setStyle(newStyle);
// Now just put the inlineChildrenBlock inside the blockChildrenBlock.
blockChildrenBlock->children()->insertChildNode(blockChildrenBlock, inlineChildrenBlock, prev == inlineChildrenBlock ? blockChildrenBlock->firstChild() : 0,
inlineChildrenBlock->hasLayer() || blockChildrenBlock->hasLayer());
next->setNeedsLayoutAndPrefWidthsRecalc();
// inlineChildrenBlock got reparented to blockChildrenBlock, so it is no longer a child
// of "this". we null out prev or next so that is not used later in the function.
if (inlineChildrenBlock == prevBlock)
prev = 0;
else
next = 0;
} else {
// Take all the children out of the |next| block and put them in
// the |prev| block.
nextBlock->moveAllChildrenTo(prevBlock, nextBlock->hasLayer() || prevBlock->hasLayer());
// Delete the now-empty block's lines and nuke it.
nextBlock->deleteLineBoxTree();
nextBlock->destroy();
next = 0;
}
}
RenderBox::removeChild(oldChild);
RenderObject* child = prev ? prev : next;
if (canMergeAnonymousBlocks && child && !child->previousSibling() && !child->nextSibling() && !isFlexibleBox()) {
// The removal has knocked us down to containing only a single anonymous
// box. We can go ahead and pull the content right back up into our
// box.
setNeedsLayoutAndPrefWidthsRecalc();
setChildrenInline(child->childrenInline());
RenderBlock* anonBlock = toRenderBlock(children()->removeChildNode(this, child, child->hasLayer()));
anonBlock->moveAllChildrenTo(this, child->hasLayer());
// Delete the now-empty block's lines and nuke it.
anonBlock->deleteLineBoxTree();
anonBlock->destroy();
}
if (!firstChild() && !documentBeingDestroyed()) {
// If this was our last child be sure to clear out our line boxes.
if (childrenInline())
lineBoxes()->deleteLineBoxes(renderArena());
}
}
bool RenderBlock::isSelfCollapsingBlock() const
{
// We are not self-collapsing if we
// (a) have a non-zero height according to layout (an optimization to avoid wasting time)
// (b) are a table,
// (c) have border/padding,
// (d) have a min-height
// (e) have specified that one of our margins can't collapse using a CSS extension
if (logicalHeight() > 0
|| isTable() || borderAndPaddingLogicalHeight()
|| style()->logicalMinHeight().isPositive()
|| style()->marginBeforeCollapse() == MSEPARATE || style()->marginAfterCollapse() == MSEPARATE)
return false;
Length logicalHeightLength = style()->logicalHeight();
bool hasAutoHeight = logicalHeightLength.isAuto();
if (logicalHeightLength.isPercent() && !document()->inQuirksMode()) {
hasAutoHeight = true;
for (RenderBlock* cb = containingBlock(); !cb->isRenderView(); cb = cb->containingBlock()) {
if (cb->style()->logicalHeight().isFixed() || cb->isTableCell())
hasAutoHeight = false;
}
}
// If the height is 0 or auto, then whether or not we are a self-collapsing block depends
// on whether we have content that is all self-collapsing or not.
if (hasAutoHeight || ((logicalHeightLength.isFixed() || logicalHeightLength.isPercent()) && logicalHeightLength.isZero())) {
// If the block has inline children, see if we generated any line boxes. If we have any
// line boxes, then we can't be self-collapsing, since we have content.
if (childrenInline())
return !firstLineBox();
// Whether or not we collapse is dependent on whether all our normal flow children
// are also self-collapsing.
for (RenderBox* child = firstChildBox(); child; child = child->nextSiblingBox()) {
if (child->isFloatingOrPositioned())
continue;
if (!child->isSelfCollapsingBlock())
return false;
}
return true;
}
return false;
}
void RenderBlock::startDelayUpdateScrollInfo()
{
if (gDelayUpdateScrollInfo == 0) {
ASSERT(!gDelayedUpdateScrollInfoSet);
gDelayedUpdateScrollInfoSet = new DelayedUpdateScrollInfoSet;
}
ASSERT(gDelayedUpdateScrollInfoSet);
++gDelayUpdateScrollInfo;
}
void RenderBlock::finishDelayUpdateScrollInfo()
{
--gDelayUpdateScrollInfo;
ASSERT(gDelayUpdateScrollInfo >= 0);
if (gDelayUpdateScrollInfo == 0) {
ASSERT(gDelayedUpdateScrollInfoSet);
OwnPtr<DelayedUpdateScrollInfoSet> infoSet(adoptPtr(gDelayedUpdateScrollInfoSet));
gDelayedUpdateScrollInfoSet = 0;
for (DelayedUpdateScrollInfoSet::iterator it = infoSet->begin(); it != infoSet->end(); ++it) {
RenderBlock* block = *it;
if (block->hasOverflowClip()) {
block->layer()->updateScrollInfoAfterLayout();
}
}
}
}
void RenderBlock::updateScrollInfoAfterLayout()
{
if (hasOverflowClip()) {
if (gDelayUpdateScrollInfo)
gDelayedUpdateScrollInfoSet->add(this);
else
layer()->updateScrollInfoAfterLayout();
}
}
void RenderBlock::layout()
{
// Update our first letter info now.
updateFirstLetter();
// Table cells call layoutBlock directly, so don't add any logic here. Put code into
// layoutBlock().
layoutBlock(false);
// It's safe to check for control clip here, since controls can never be table cells.
// If we have a lightweight clip, there can never be any overflow from children.
if (hasControlClip() && m_overflow)
clearLayoutOverflow();
}
void RenderBlock::layoutBlock(bool relayoutChildren, int pageLogicalHeight)
{
ASSERT(needsLayout());
if (isInline() && !isInlineBlockOrInlineTable()) // Inline <form>s inside various table elements can
return; // cause us to come in here. Just bail.
if (!relayoutChildren && simplifiedLayout())
return;
LayoutRepainter repainter(*this, m_everHadLayout && checkForRepaintDuringLayout());
int oldWidth = logicalWidth();
int oldColumnWidth = desiredColumnWidth();
computeLogicalWidth();
calcColumnWidth();
m_overflow.clear();
if (oldWidth != logicalWidth() || oldColumnWidth != desiredColumnWidth())
relayoutChildren = true;
clearFloats();
int previousHeight = logicalHeight();
setLogicalHeight(0);
bool hasSpecifiedPageLogicalHeight = false;
bool pageLogicalHeightChanged = false;
ColumnInfo* colInfo = columnInfo();
if (hasColumns()) {
if (!pageLogicalHeight) {
// We need to go ahead and set our explicit page height if one exists, so that we can
// avoid doing two layout passes.
computeLogicalHeight();
int columnHeight = contentLogicalHeight();
if (columnHeight > 0) {
pageLogicalHeight = columnHeight;
hasSpecifiedPageLogicalHeight = true;
}
setLogicalHeight(0);
}
if (colInfo->columnHeight() != pageLogicalHeight && m_everHadLayout) {
colInfo->setColumnHeight(pageLogicalHeight);
pageLogicalHeightChanged = true;
}
if (!hasSpecifiedPageLogicalHeight && !pageLogicalHeight)
colInfo->clearForcedBreaks();
}
LayoutStateMaintainer statePusher(view(), this, IntSize(x(), y()), hasColumns() || hasTransform() || hasReflection() || style()->isFlippedBlocksWritingMode(), pageLogicalHeight, pageLogicalHeightChanged, colInfo);
// We use four values, maxTopPos, maxTopNeg, maxBottomPos, and maxBottomNeg, to track
// our current maximal positive and negative margins. These values are used when we
// are collapsed with adjacent blocks, so for example, if you have block A and B
// collapsing together, then you'd take the maximal positive margin from both A and B
// and subtract it from the maximal negative margin from both A and B to get the
// true collapsed margin. This algorithm is recursive, so when we finish layout()
// our block knows its current maximal positive/negative values.
//
// Start out by setting our margin values to our current margins. Table cells have
// no margins, so we don't fill in the values for table cells.
bool isCell = isTableCell();
if (!isCell) {
initMaxMarginValues();
setMarginBeforeQuirk(style()->marginBefore().quirk());
setMarginAfterQuirk(style()->marginAfter().quirk());
Node* n = node();
if (n && n->hasTagName(formTag) && static_cast<HTMLFormElement*>(n)->isMalformed()) {
// See if this form is malformed (i.e., unclosed). If so, don't give the form
// a bottom margin.
setMaxMarginAfterValues(0, 0);
}
setPaginationStrut(0);
}
// For overflow:scroll blocks, ensure we have both scrollbars in place always.
if (scrollsOverflow()) {
if (style()->overflowX() == OSCROLL)
layer()->setHasHorizontalScrollbar(true);
if (style()->overflowY() == OSCROLL)
layer()->setHasVerticalScrollbar(true);
}
int repaintLogicalTop = 0;
int repaintLogicalBottom = 0;
int maxFloatLogicalBottom = 0;
if (!firstChild() && !isAnonymousBlock())
setChildrenInline(true);
if (childrenInline())
layoutInlineChildren(relayoutChildren, repaintLogicalTop, repaintLogicalBottom);
else
layoutBlockChildren(relayoutChildren, maxFloatLogicalBottom);
// Expand our intrinsic height to encompass floats.
int toAdd = borderAfter() + paddingAfter() + scrollbarLogicalHeight();
if (lowestFloatLogicalBottom() > (logicalHeight() - toAdd) && expandsToEncloseOverhangingFloats())
setLogicalHeight(lowestFloatLogicalBottom() + toAdd);
if (layoutColumns(hasSpecifiedPageLogicalHeight, pageLogicalHeight, statePusher))
return;
// Calculate our new height.
int oldHeight = logicalHeight();
int oldClientAfterEdge = clientLogicalBottom();
computeLogicalHeight();
int newHeight = logicalHeight();
if (oldHeight != newHeight) {
if (oldHeight > newHeight && maxFloatLogicalBottom > newHeight && !childrenInline()) {
// One of our children's floats may have become an overhanging float for us. We need to look for it.
for (RenderObject* child = firstChild(); child; child = child->nextSibling()) {
if (child->isBlockFlow() && !child->isFloatingOrPositioned()) {
RenderBlock* block = toRenderBlock(child);
if (block->lowestFloatLogicalBottom() + block->logicalTop() > newHeight)
addOverhangingFloats(block, -block->logicalLeft(), -block->logicalTop(), false);
}
}
}
}
if (previousHeight != newHeight)
relayoutChildren = true;
layoutPositionedObjects(relayoutChildren || isRoot());
// Add overflow from children (unless we're multi-column, since in that case all our child overflow is clipped anyway).
computeOverflow(oldClientAfterEdge);
statePusher.pop();
if (view()->layoutState()->m_pageLogicalHeight)
setPageLogicalOffset(view()->layoutState()->pageLogicalOffset(logicalTop()));
updateLayerTransform();
// Update our scroll information if we're overflow:auto/scroll/hidden now that we know if
// we overflow or not.
updateScrollInfoAfterLayout();
// Repaint with our new bounds if they are different from our old bounds.
bool didFullRepaint = repainter.repaintAfterLayout();
if (!didFullRepaint && repaintLogicalTop != repaintLogicalBottom && (style()->visibility() == VISIBLE || enclosingLayer()->hasVisibleContent())) {
// FIXME: We could tighten up the left and right invalidation points if we let layoutInlineChildren fill them in based off the particular lines
// it had to lay out. We wouldn't need the hasOverflowClip() hack in that case either.
int repaintLogicalLeft = logicalLeftVisualOverflow();
int repaintLogicalRight = logicalRightVisualOverflow();
if (hasOverflowClip()) {
// If we have clipped overflow, we should use layout overflow as well, since visual overflow from lines didn't propagate to our block's overflow.
// Note the old code did this as well but even for overflow:visible. The addition of hasOverflowClip() at least tightens up the hack a bit.
// layoutInlineChildren should be patched to compute the entire repaint rect.
repaintLogicalLeft = min(repaintLogicalLeft, logicalLeftLayoutOverflow());
repaintLogicalRight = max(repaintLogicalRight, logicalRightLayoutOverflow());
}
IntRect repaintRect;
if (isHorizontalWritingMode())
repaintRect = IntRect(repaintLogicalLeft, repaintLogicalTop, repaintLogicalRight - repaintLogicalLeft, repaintLogicalBottom - repaintLogicalTop);
else
repaintRect = IntRect(repaintLogicalTop, repaintLogicalLeft, repaintLogicalBottom - repaintLogicalTop, repaintLogicalRight - repaintLogicalLeft);
// The repaint rect may be split across columns, in which case adjustRectForColumns() will return the union.
adjustRectForColumns(repaintRect);
repaintRect.inflate(maximalOutlineSize(PaintPhaseOutline));
if (hasOverflowClip()) {
// Adjust repaint rect for scroll offset
repaintRect.move(-layer()->scrolledContentOffset());
// Don't allow this rect to spill out of our overflow box.
repaintRect.intersect(IntRect(0, 0, width(), height()));
}
// Make sure the rect is still non-empty after intersecting for overflow above
if (!repaintRect.isEmpty()) {
repaintRectangle(repaintRect); // We need to do a partial repaint of our content.
if (hasReflection())
repaintRectangle(reflectedRect(repaintRect));
}
}
setNeedsLayout(false);
if (document()->printing()) {
// PHANTOMJS CUSTOM: reset pagination counter for printing
StyledElement* elem = dynamic_cast<StyledElement*>(generatingNode());
if (elem && elem->hasClass() && elem->classNames().contains("phantomjs_reset_pagination")) {
frame()->addResetPage(y() / view()->layoutState()->m_pageLogicalHeight);
}
}
}
void RenderBlock::addOverflowFromChildren()
{
if (!hasColumns()) {
if (childrenInline())
addOverflowFromInlineChildren();
else
addOverflowFromBlockChildren();
} else {
ColumnInfo* colInfo = columnInfo();
if (columnCount(colInfo)) {
IntRect lastRect = columnRectAt(colInfo, columnCount(colInfo) - 1);
if (isHorizontalWritingMode()) {
int overflowLeft = !style()->isLeftToRightDirection() ? min(0, lastRect.x()) : 0;
int overflowRight = style()->isLeftToRightDirection() ? max(width(), lastRect.maxX()) : 0;
int overflowHeight = borderBefore() + paddingBefore() + colInfo->columnHeight();
addLayoutOverflow(IntRect(overflowLeft, 0, overflowRight - overflowLeft, overflowHeight));
if (!hasOverflowClip())
addVisualOverflow(IntRect(overflowLeft, 0, overflowRight - overflowLeft, overflowHeight));
} else {
IntRect lastRect = columnRectAt(colInfo, columnCount(colInfo) - 1);
int overflowTop = !style()->isLeftToRightDirection() ? min(0, lastRect.y()) : 0;
int overflowBottom = style()->isLeftToRightDirection() ? max(height(), lastRect.maxY()) : 0;
int overflowWidth = borderBefore() + paddingBefore() + colInfo->columnHeight();
addLayoutOverflow(IntRect(0, overflowTop, overflowWidth, overflowBottom - overflowTop));
if (!hasOverflowClip())
addVisualOverflow(IntRect(0, overflowTop, overflowWidth, overflowBottom - overflowTop));
}
}
}
}
void RenderBlock::computeOverflow(int oldClientAfterEdge, bool recomputeFloats)
{
// Add overflow from children.
addOverflowFromChildren();
if (!hasColumns() && (recomputeFloats || isRoot() || expandsToEncloseOverhangingFloats() || hasSelfPaintingLayer()))
addOverflowFromFloats();
// Add in the overflow from positioned objects.
addOverflowFromPositionedObjects();
if (hasOverflowClip()) {
// When we have overflow clip, propagate the original spillout since it will include collapsed bottom margins
// and bottom padding. Set the axis we don't care about to be 1, since we want this overflow to always
// be considered reachable.
IntRect clientRect(clientBoxRect());
IntRect rectToApply;
if (isHorizontalWritingMode())
rectToApply = IntRect(clientRect.x(), clientRect.y(), 1, max(0, oldClientAfterEdge - clientRect.y()));
else
rectToApply = IntRect(clientRect.x(), clientRect.y(), max(0, oldClientAfterEdge - clientRect.x()), 1);
addLayoutOverflow(rectToApply);
}
// Add visual overflow from box-shadow and reflections.
addShadowOverflow();
}
void RenderBlock::addOverflowFromBlockChildren()
{
for (RenderBox* child = firstChildBox(); child; child = child->nextSiblingBox()) {
if (!child->isFloatingOrPositioned())
addOverflowFromChild(child);
}
}
void RenderBlock::addOverflowFromFloats()
{
if (!m_floatingObjects)
return;
FloatingObjectSet& floatingObjectSet = m_floatingObjects->set();
FloatingObjectSetIterator end = floatingObjectSet.end();
for (FloatingObjectSetIterator it = floatingObjectSet.begin(); it != end; ++it) {
FloatingObject* r = *it;
if (r->m_isDescendant)
addOverflowFromChild(r->m_renderer, IntSize(xPositionForFloatIncludingMargin(r), yPositionForFloatIncludingMargin(r)));
}
return;
}
void RenderBlock::addOverflowFromPositionedObjects()
{
if (!m_positionedObjects)
return;
RenderBox* positionedObject;
Iterator end = m_positionedObjects->end();
for (Iterator it = m_positionedObjects->begin(); it != end; ++it) {
positionedObject = *it;
// Fixed positioned elements don't contribute to layout overflow, since they don't scroll with the content.
if (positionedObject->style()->position() != FixedPosition)
addOverflowFromChild(positionedObject);
}
}
bool RenderBlock::expandsToEncloseOverhangingFloats() const
{
return isInlineBlockOrInlineTable() || isFloatingOrPositioned() || hasOverflowClip() || (parent() && parent()->isFlexibleBox())
|| hasColumns() || isTableCell() || isFieldset() || isWritingModeRoot() || isRoot();
}
void RenderBlock::adjustPositionedBlock(RenderBox* child, const MarginInfo& marginInfo)
{
bool isHorizontal = isHorizontalWritingMode();
bool hasStaticBlockPosition = child->style()->hasStaticBlockPosition(isHorizontal);
RenderLayer* childLayer = child->layer();
childLayer->setStaticInlinePosition(borderAndPaddingStart());
int logicalTop = logicalHeight();
if (!marginInfo.canCollapseWithMarginBefore()) {
child->computeBlockDirectionMargins(this);
int marginBefore = marginBeforeForChild(child);
int collapsedBeforePos = marginInfo.positiveMargin();
int collapsedBeforeNeg = marginInfo.negativeMargin();
if (marginBefore > 0) {
if (marginBefore > collapsedBeforePos)
collapsedBeforePos = marginBefore;
} else {
if (-marginBefore > collapsedBeforeNeg)
collapsedBeforeNeg = -marginBefore;
}
logicalTop += (collapsedBeforePos - collapsedBeforeNeg) - marginBefore;
}
if (childLayer->staticBlockPosition() != logicalTop) {
childLayer->setStaticBlockPosition(logicalTop);
if (hasStaticBlockPosition)
child->setChildNeedsLayout(true, false);
}
}
void RenderBlock::adjustFloatingBlock(const MarginInfo& marginInfo)
{
// The float should be positioned taking into account the bottom margin
// of the previous flow. We add that margin into the height, get the
// float positioned properly, and then subtract the margin out of the
// height again. In the case of self-collapsing blocks, we always just
// use the top margins, since the self-collapsing block collapsed its
// own bottom margin into its top margin.
//
// Note also that the previous flow may collapse its margin into the top of
// our block. If this is the case, then we do not add the margin in to our
// height when computing the position of the float. This condition can be tested
// for by simply calling canCollapseWithMarginBefore. See
// http://www.hixie.ch/tests/adhoc/css/box/block/margin-collapse/046.html for
// an example of this scenario.
int marginOffset = marginInfo.canCollapseWithMarginBefore() ? 0 : marginInfo.margin();
setLogicalHeight(logicalHeight() + marginOffset);
positionNewFloats();
setLogicalHeight(logicalHeight() - marginOffset);
}
bool RenderBlock::handleSpecialChild(RenderBox* child, const MarginInfo& marginInfo)
{
// Handle in the given order
return handlePositionedChild(child, marginInfo)
|| handleFloatingChild(child, marginInfo)
|| handleRunInChild(child);
}
bool RenderBlock::handlePositionedChild(RenderBox* child, const MarginInfo& marginInfo)
{
if (child->isPositioned()) {
child->containingBlock()->insertPositionedObject(child);
adjustPositionedBlock(child, marginInfo);
return true;
}
return false;
}
bool RenderBlock::handleFloatingChild(RenderBox* child, const MarginInfo& marginInfo)
{
if (child->isFloating()) {
insertFloatingObject(child);
adjustFloatingBlock(marginInfo);
return true;
}
return false;
}
bool RenderBlock::handleRunInChild(RenderBox* child)
{
// See if we have a run-in element with inline children. If the
// children aren't inline, then just treat the run-in as a normal
// block.
if (!child->isRunIn() || !child->childrenInline())
return false;
// FIXME: We don't handle non-block elements with run-in for now.
if (!child->isRenderBlock())
return false;
// Get the next non-positioned/non-floating RenderBlock.
RenderBlock* blockRunIn = toRenderBlock(child);
RenderObject* curr = blockRunIn->nextSibling();
while (curr && curr->isFloatingOrPositioned())
curr = curr->nextSibling();
if (!curr || !curr->isRenderBlock() || !curr->childrenInline() || curr->isRunIn() || curr->isAnonymous())
return false;
RenderBlock* currBlock = toRenderBlock(curr);
// Remove the old child.
children()->removeChildNode(this, blockRunIn);
// Create an inline.
Node* runInNode = blockRunIn->node();
RenderInline* inlineRunIn = new (renderArena()) RenderInline(runInNode ? runInNode : document());
inlineRunIn->setStyle(blockRunIn->style());
bool runInIsGenerated = child->style()->styleType() == BEFORE || child->style()->styleType() == AFTER;
// Move the nodes from the old child to the new child, but skip any :before/:after content. It has already
// been regenerated by the new inline.
for (RenderObject* runInChild = blockRunIn->firstChild(); runInChild;) {
RenderObject* nextSibling = runInChild->nextSibling();
if (runInIsGenerated || (runInChild->style()->styleType() != BEFORE && runInChild->style()->styleType() != AFTER)) {
blockRunIn->children()->removeChildNode(blockRunIn, runInChild, false);
inlineRunIn->addChild(runInChild); // Use addChild instead of appendChildNode since it handles correct placement of the children relative to :after-generated content.
}
runInChild = nextSibling;
}
// Now insert the new child under |currBlock|. Use addChild instead of insertChildNode since it handles correct placement of the children, esp where we cannot insert
// anything before the first child. e.g. details tag. See https://bugs.webkit.org/show_bug.cgi?id=58228.
currBlock->addChild(inlineRunIn, currBlock->firstChild());
// If the run-in had an element, we need to set the new renderer.
if (runInNode)
runInNode->setRenderer(inlineRunIn);
// Destroy the block run-in, which includes deleting its line box tree.
blockRunIn->deleteLineBoxTree();
blockRunIn->destroy();
// The block acts like an inline, so just null out its
// position.
return true;
}
int RenderBlock::collapseMargins(RenderBox* child, MarginInfo& marginInfo)
{
// Get the four margin values for the child and cache them.
const MarginValues childMargins = marginValuesForChild(child);
// Get our max pos and neg top margins.
int posTop = childMargins.positiveMarginBefore();
int negTop = childMargins.negativeMarginBefore();
// For self-collapsing blocks, collapse our bottom margins into our
// top to get new posTop and negTop values.
if (child->isSelfCollapsingBlock()) {
posTop = max(posTop, childMargins.positiveMarginAfter());
negTop = max(negTop, childMargins.negativeMarginAfter());
}
// See if the top margin is quirky. We only care if this child has
// margins that will collapse with us.
bool topQuirk = child->isMarginBeforeQuirk() || style()->marginBeforeCollapse() == MDISCARD;
if (marginInfo.canCollapseWithMarginBefore()) {
// This child is collapsing with the top of the
// block. If it has larger margin values, then we need to update
// our own maximal values.
if (!document()->inQuirksMode() || !marginInfo.quirkContainer() || !topQuirk)
setMaxMarginBeforeValues(max(posTop, maxPositiveMarginBefore()), max(negTop, maxNegativeMarginBefore()));
// The minute any of the margins involved isn't a quirk, don't
// collapse it away, even if the margin is smaller (www.webreference.com
// has an example of this, a <dt> with 0.8em author-specified inside
// a <dl> inside a <td>.
if (!marginInfo.determinedMarginBeforeQuirk() && !topQuirk && (posTop - negTop)) {
setMarginBeforeQuirk(false);
marginInfo.setDeterminedMarginBeforeQuirk(true);
}
if (!marginInfo.determinedMarginBeforeQuirk() && topQuirk && !marginBefore())
// We have no top margin and our top child has a quirky margin.
// We will pick up this quirky margin and pass it through.
// This deals with the <td><div><p> case.
// Don't do this for a block that split two inlines though. You do
// still apply margins in this case.
setMarginBeforeQuirk(true);
}
if (marginInfo.quirkContainer() && marginInfo.atBeforeSideOfBlock() && (posTop - negTop))
marginInfo.setMarginBeforeQuirk(topQuirk);
int beforeCollapseLogicalTop = logicalHeight();
int logicalTop = beforeCollapseLogicalTop;
if (child->isSelfCollapsingBlock()) {
// This child has no height. We need to compute our
// position before we collapse the child's margins together,
// so that we can get an accurate position for the zero-height block.
int collapsedBeforePos = max(marginInfo.positiveMargin(), childMargins.positiveMarginBefore());
int collapsedBeforeNeg = max(marginInfo.negativeMargin(), childMargins.negativeMarginBefore());
marginInfo.setMargin(collapsedBeforePos, collapsedBeforeNeg);
// Now collapse the child's margins together, which means examining our
// bottom margin values as well.
marginInfo.setPositiveMarginIfLarger(childMargins.positiveMarginAfter());
marginInfo.setNegativeMarginIfLarger(childMargins.negativeMarginAfter());
if (!marginInfo.canCollapseWithMarginBefore())
// We need to make sure that the position of the self-collapsing block
// is correct, since it could have overflowing content
// that needs to be positioned correctly (e.g., a block that
// had a specified height of 0 but that actually had subcontent).
logicalTop = logicalHeight() + collapsedBeforePos - collapsedBeforeNeg;
}
else {
if (child->style()->marginBeforeCollapse() == MSEPARATE) {
setLogicalHeight(logicalHeight() + marginInfo.margin() + marginBeforeForChild(child));
logicalTop = logicalHeight();
}
else if (!marginInfo.atBeforeSideOfBlock() ||
(!marginInfo.canCollapseMarginBeforeWithChildren()
&& (!document()->inQuirksMode() || !marginInfo.quirkContainer() || !marginInfo.marginBeforeQuirk()))) {
// We're collapsing with a previous sibling's margins and not
// with the top of the block.
setLogicalHeight(logicalHeight() + max(marginInfo.positiveMargin(), posTop) - max(marginInfo.negativeMargin(), negTop));
logicalTop = logicalHeight();
}
marginInfo.setPositiveMargin(childMargins.positiveMarginAfter());
marginInfo.setNegativeMargin(childMargins.negativeMarginAfter());
if (marginInfo.margin())
marginInfo.setMarginAfterQuirk(child->isMarginAfterQuirk() || style()->marginAfterCollapse() == MDISCARD);
}
// If margins would pull us past the top of the next page, then we need to pull back and pretend like the margins
// collapsed into the page edge.
bool paginated = view()->layoutState()->isPaginated();
if (paginated && logicalTop > beforeCollapseLogicalTop) {
int oldLogicalTop = logicalTop;
logicalTop = min(logicalTop, nextPageLogicalTop(beforeCollapseLogicalTop));
setLogicalHeight(logicalHeight() + (logicalTop - oldLogicalTop));
}
return logicalTop;
}
int RenderBlock::clearFloatsIfNeeded(RenderBox* child, MarginInfo& marginInfo, int oldTopPosMargin, int oldTopNegMargin, int yPos)
{
int heightIncrease = getClearDelta(child, yPos);
if (!heightIncrease)
return yPos;
if (child->isSelfCollapsingBlock()) {
// For self-collapsing blocks that clear, they can still collapse their
// margins with following siblings. Reset the current margins to represent
// the self-collapsing block's margins only.
// CSS2.1 states:
// "An element that has had clearance applied to it never collapses its top margin with its parent block's bottom margin.
// Therefore if we are at the bottom of the block, let's go ahead and reset margins to only include the
// self-collapsing block's bottom margin.
bool atBottomOfBlock = true;
for (RenderBox* curr = child->nextSiblingBox(); curr && atBottomOfBlock; curr = curr->nextSiblingBox()) {
if (!curr->isFloatingOrPositioned())
atBottomOfBlock = false;
}
MarginValues childMargins = marginValuesForChild(child);
if (atBottomOfBlock) {
marginInfo.setPositiveMargin(childMargins.positiveMarginAfter());
marginInfo.setNegativeMargin(childMargins.negativeMarginAfter());
} else {
marginInfo.setPositiveMargin(max(childMargins.positiveMarginBefore(), childMargins.positiveMarginAfter()));
marginInfo.setNegativeMargin(max(childMargins.negativeMarginBefore(), childMargins.negativeMarginAfter()));
}
// Adjust our height such that we are ready to be collapsed with subsequent siblings (or the bottom
// of the parent block).
setLogicalHeight(child->y() - max(0, marginInfo.margin()));
} else
// Increase our height by the amount we had to clear.
setLogicalHeight(height() + heightIncrease);
if (marginInfo.canCollapseWithMarginBefore()) {
// We can no longer collapse with the top of the block since a clear
// occurred. The empty blocks collapse into the cleared block.
// FIXME: This isn't quite correct. Need clarification for what to do
// if the height the cleared block is offset by is smaller than the
// margins involved.
setMaxMarginBeforeValues(oldTopPosMargin, oldTopNegMargin);
marginInfo.setAtBeforeSideOfBlock(false);
}
return yPos + heightIncrease;
}
int RenderBlock::estimateLogicalTopPosition(RenderBox* child, const MarginInfo& marginInfo)
{
// FIXME: We need to eliminate the estimation of vertical position, because when it's wrong we sometimes trigger a pathological
// relayout if there are intruding floats.
int logicalTopEstimate = logicalHeight();
if (!marginInfo.canCollapseWithMarginBefore()) {
int childMarginBefore = child->selfNeedsLayout() ? marginBeforeForChild(child) : collapsedMarginBeforeForChild(child);
logicalTopEstimate += max(marginInfo.margin(), childMarginBefore);
}
bool paginated = view()->layoutState()->isPaginated();
// Adjust logicalTopEstimate down to the next page if the margins are so large that we don't fit on the current
// page.
if (paginated && logicalTopEstimate > logicalHeight())
logicalTopEstimate = min(logicalTopEstimate, nextPageLogicalTop(logicalHeight()));
logicalTopEstimate += getClearDelta(child, logicalTopEstimate);
if (paginated) {
// If the object has a page or column break value of "before", then we should shift to the top of the next page.
logicalTopEstimate = applyBeforeBreak(child, logicalTopEstimate);
// For replaced elements and scrolled elements, we want to shift them to the next page if they don't fit on the current one.
logicalTopEstimate = adjustForUnsplittableChild(child, logicalTopEstimate);
if (!child->selfNeedsLayout() && child->isRenderBlock())
logicalTopEstimate += toRenderBlock(child)->paginationStrut();
}
return logicalTopEstimate;
}
void RenderBlock::determineLogicalLeftPositionForChild(RenderBox* child)
{
int startPosition = borderStart() + paddingStart();
int totalAvailableLogicalWidth = borderAndPaddingLogicalWidth() + availableLogicalWidth();
// Add in our start margin.
int childMarginStart = marginStartForChild(child);
int newPosition = startPosition + childMarginStart;
// Some objects (e.g., tables, horizontal rules, overflow:auto blocks) avoid floats. They need
// to shift over as necessary to dodge any floats that might get in the way.
if (child->avoidsFloats()) {
int startOff = style()->isLeftToRightDirection() ? logicalLeftOffsetForLine(logicalHeight(), false) : totalAvailableLogicalWidth - logicalRightOffsetForLine(logicalHeight(), false);
if (style()->textAlign() != WEBKIT_CENTER && !child->style()->marginStartUsing(style()).isAuto()) {
if (childMarginStart < 0)
startOff += childMarginStart;
newPosition = max(newPosition, startOff); // Let the float sit in the child's margin if it can fit.
} else if (startOff != startPosition) {
// The object is shifting to the "end" side of the block. The object might be centered, so we need to
// recalculate our inline direction margins. Note that the containing block content
// width computation will take into account the delta between |startOff| and |startPosition|
// so that we can just pass the content width in directly to the |computeMarginsInContainingBlockInlineDirection|
// function.
child->computeInlineDirectionMargins(this, availableLogicalWidthForLine(logicalTopForChild(child), false), logicalWidthForChild(child));
newPosition = startOff + marginStartForChild(child);
}
}
setLogicalLeftForChild(child, style()->isLeftToRightDirection() ? newPosition : totalAvailableLogicalWidth - newPosition - logicalWidthForChild(child), ApplyLayoutDelta);
}
void RenderBlock::setCollapsedBottomMargin(const MarginInfo& marginInfo)
{
if (marginInfo.canCollapseWithMarginAfter() && !marginInfo.canCollapseWithMarginBefore()) {
// Update our max pos/neg bottom margins, since we collapsed our bottom margins
// with our children.
setMaxMarginAfterValues(max(maxPositiveMarginAfter(), marginInfo.positiveMargin()), max(maxNegativeMarginAfter(), marginInfo.negativeMargin()));
if (!marginInfo.marginAfterQuirk())
setMarginAfterQuirk(false);
if (marginInfo.marginAfterQuirk() && marginAfter() == 0)
// We have no bottom margin and our last child has a quirky margin.
// We will pick up this quirky margin and pass it through.
// This deals with the <td><div><p> case.
setMarginAfterQuirk(true);
}
}
void RenderBlock::handleAfterSideOfBlock(int beforeSide, int afterSide, MarginInfo& marginInfo)
{
marginInfo.setAtAfterSideOfBlock(true);
// If we can't collapse with children then go ahead and add in the bottom margin.
if (!marginInfo.canCollapseWithMarginAfter() && !marginInfo.canCollapseWithMarginBefore()
&& (!document()->inQuirksMode() || !marginInfo.quirkContainer() || !marginInfo.marginAfterQuirk()))
setLogicalHeight(logicalHeight() + marginInfo.margin());
// Now add in our bottom border/padding.
setLogicalHeight(logicalHeight() + afterSide);
// Negative margins can cause our height to shrink below our minimal height (border/padding).
// If this happens, ensure that the computed height is increased to the minimal height.
setLogicalHeight(max(logicalHeight(), beforeSide + afterSide));
// Update our bottom collapsed margin info.
setCollapsedBottomMargin(marginInfo);
}
void RenderBlock::setLogicalLeftForChild(RenderBox* child, int logicalLeft, ApplyLayoutDeltaMode applyDelta)
{
if (isHorizontalWritingMode()) {
if (applyDelta == ApplyLayoutDelta)
view()->addLayoutDelta(IntSize(child->x() - logicalLeft, 0));
child->setX(logicalLeft);
} else {
if (applyDelta == ApplyLayoutDelta)
view()->addLayoutDelta(IntSize(0, child->y() - logicalLeft));
child->setY(logicalLeft);
}
}
void RenderBlock::setLogicalTopForChild(RenderBox* child, int logicalTop, ApplyLayoutDeltaMode applyDelta)
{
if (isHorizontalWritingMode()) {
if (applyDelta == ApplyLayoutDelta)
view()->addLayoutDelta(IntSize(0, child->y() - logicalTop));
child->setY(logicalTop);
} else {
if (applyDelta == ApplyLayoutDelta)
view()->addLayoutDelta(IntSize(child->x() - logicalTop, 0));
child->setX(logicalTop);
}
}
void RenderBlock::layoutBlockChildren(bool relayoutChildren, int& maxFloatLogicalBottom)
{
if (gPercentHeightDescendantsMap) {
if (HashSet<RenderBox*>* descendants = gPercentHeightDescendantsMap->get(this)) {
HashSet<RenderBox*>::iterator end = descendants->end();
for (HashSet<RenderBox*>::iterator it = descendants->begin(); it != end; ++it) {
RenderBox* box = *it;
while (box != this) {
if (box->normalChildNeedsLayout())
break;
box->setChildNeedsLayout(true, false);
box = box->containingBlock();
ASSERT(box);
if (!box)
break;
}
}
}
}
int beforeEdge = borderBefore() + paddingBefore();
int afterEdge = borderAfter() + paddingAfter() + scrollbarLogicalHeight();
setLogicalHeight(beforeEdge);
// The margin struct caches all our current margin collapsing state. The compact struct caches state when we encounter compacts,
MarginInfo marginInfo(this, beforeEdge, afterEdge);
// Fieldsets need to find their legend and position it inside the border of the object.
// The legend then gets skipped during normal layout. The same is true for ruby text.
// It doesn't get included in the normal layout process but is instead skipped.
RenderObject* childToExclude = layoutSpecialExcludedChild(relayoutChildren);
int previousFloatLogicalBottom = 0;
maxFloatLogicalBottom = 0;
RenderBox* next = firstChildBox();
while (next) {
RenderBox* child = next;
next = child->nextSiblingBox();
if (childToExclude == child)
continue; // Skip this child, since it will be positioned by the specialized subclass (fieldsets and ruby runs).
// Make sure we layout children if they need it.
// FIXME: Technically percentage height objects only need a relayout if their percentage isn't going to be turned into
// an auto value. Add a method to determine this, so that we can avoid the relayout.
if (relayoutChildren || ((child->style()->logicalHeight().isPercent() || child->style()->logicalMinHeight().isPercent() || child->style()->logicalMaxHeight().isPercent()) && !isRenderView()))
child->setChildNeedsLayout(true, false);
// If relayoutChildren is set and the child has percentage padding, we also need to invalidate the child's pref widths.
if (relayoutChildren && (child->style()->paddingStart().isPercent() || child->style()->paddingEnd().isPercent()))
child->setPreferredLogicalWidthsDirty(true, false);
// Handle the four types of special elements first. These include positioned content, floating content, compacts and
// run-ins. When we encounter these four types of objects, we don't actually lay them out as normal flow blocks.
if (handleSpecialChild(child, marginInfo))
continue;
// Lay out the child.
layoutBlockChild(child, marginInfo, previousFloatLogicalBottom, maxFloatLogicalBottom);
}
// Now do the handling of the bottom of the block, adding in our bottom border/padding and
// determining the correct collapsed bottom margin information.
handleAfterSideOfBlock(beforeEdge, afterEdge, marginInfo);
}
void RenderBlock::layoutBlockChild(RenderBox* child, MarginInfo& marginInfo, int& previousFloatLogicalBottom, int& maxFloatLogicalBottom)
{
int oldPosMarginBefore = maxPositiveMarginBefore();
int oldNegMarginBefore = maxNegativeMarginBefore();
// The child is a normal flow object. Compute the margins we will use for collapsing now.
child->computeBlockDirectionMargins(this);
// Do not allow a collapse if the margin-before-collapse style is set to SEPARATE.
if (child->style()->marginBeforeCollapse() == MSEPARATE) {
marginInfo.setAtBeforeSideOfBlock(false);
marginInfo.clearMargin();
}
// Try to guess our correct logical top position. In most cases this guess will
// be correct. Only if we're wrong (when we compute the real logical top position)
// will we have to potentially relayout.
int logicalTopEstimate = estimateLogicalTopPosition(child, marginInfo);
// Cache our old rect so that we can dirty the proper repaint rects if the child moves.
IntRect oldRect(child->x(), child->y() , child->width(), child->height());
int oldLogicalTop = logicalTopForChild(child);
#ifndef NDEBUG
IntSize oldLayoutDelta = view()->layoutDelta();
#endif
// Go ahead and position the child as though it didn't collapse with the top.
setLogicalTopForChild(child, logicalTopEstimate, ApplyLayoutDelta);
RenderBlock* childRenderBlock = child->isRenderBlock() ? toRenderBlock(child) : 0;
bool markDescendantsWithFloats = false;
if (logicalTopEstimate != oldLogicalTop && !child->avoidsFloats() && childRenderBlock && childRenderBlock->containsFloats())
markDescendantsWithFloats = true;
else if (!child->avoidsFloats() || child->shrinkToAvoidFloats()) {
// If an element might be affected by the presence of floats, then always mark it for
// layout.
int fb = max(previousFloatLogicalBottom, lowestFloatLogicalBottom());
if (fb > logicalTopEstimate)
markDescendantsWithFloats = true;
}
if (childRenderBlock) {
if (markDescendantsWithFloats)
childRenderBlock->markAllDescendantsWithFloatsForLayout();
if (!child->isWritingModeRoot())
previousFloatLogicalBottom = max(previousFloatLogicalBottom, oldLogicalTop + childRenderBlock->lowestFloatLogicalBottom());
}
if (!child->needsLayout())
child->markForPaginationRelayoutIfNeeded();
bool childHadLayout = child->m_everHadLayout;
bool childNeededLayout = child->needsLayout();
if (childNeededLayout)
child->layout();
// Cache if we are at the top of the block right now.
bool atBeforeSideOfBlock = marginInfo.atBeforeSideOfBlock();
// Now determine the correct ypos based off examination of collapsing margin
// values.
int logicalTopBeforeClear = collapseMargins(child, marginInfo);
// Now check for clear.
int logicalTopAfterClear = clearFloatsIfNeeded(child, marginInfo, oldPosMarginBefore, oldNegMarginBefore, logicalTopBeforeClear);
bool paginated = view()->layoutState()->isPaginated();
if (paginated) {
int oldTop = logicalTopAfterClear;
// If the object has a page or column break value of "before", then we should shift to the top of the next page.
logicalTopAfterClear = applyBeforeBreak(child, logicalTopAfterClear);
// For replaced elements and scrolled elements, we want to shift them to the next page if they don't fit on the current one.
int logicalTopBeforeUnsplittableAdjustment = logicalTopAfterClear;
int logicalTopAfterUnsplittableAdjustment = adjustForUnsplittableChild(child, logicalTopAfterClear);
int paginationStrut = 0;
int unsplittableAdjustmentDelta = logicalTopAfterUnsplittableAdjustment - logicalTopBeforeUnsplittableAdjustment;
if (unsplittableAdjustmentDelta)
paginationStrut = unsplittableAdjustmentDelta;
else if (childRenderBlock && childRenderBlock->paginationStrut())
paginationStrut = childRenderBlock->paginationStrut();
if (paginationStrut) {
// We are willing to propagate out to our parent block as long as we were at the top of the block prior
// to collapsing our margins, and as long as we didn't clear or move as a result of other pagination.
if (atBeforeSideOfBlock && oldTop == logicalTopBeforeClear && !isPositioned() && !isTableCell()) {
// FIXME: Should really check if we're exceeding the page height before propagating the strut, but we don't
// have all the information to do so (the strut only has the remaining amount to push). Gecko gets this wrong too
// and pushes to the next page anyway, so not too concerned about it.
setPaginationStrut(logicalTopAfterClear + paginationStrut);
if (childRenderBlock)
childRenderBlock->setPaginationStrut(0);
} else
logicalTopAfterClear += paginationStrut;
}
// Similar to how we apply clearance. Go ahead and boost height() to be the place where we're going to position the child.
setLogicalHeight(logicalHeight() + (logicalTopAfterClear - oldTop));
}
setLogicalTopForChild(child, logicalTopAfterClear, ApplyLayoutDelta);
// Now we have a final top position. See if it really does end up being different from our estimate.
if (logicalTopAfterClear != logicalTopEstimate) {
if (child->shrinkToAvoidFloats()) {
// The child's width depends on the line width.
// When the child shifts to clear an item, its width can
// change (because it has more available line width).
// So go ahead and mark the item as dirty.
child->setChildNeedsLayout(true, false);
}
if (childRenderBlock) {
if (!child->avoidsFloats() && childRenderBlock->containsFloats())
childRenderBlock->markAllDescendantsWithFloatsForLayout();
if (!child->needsLayout())
child->markForPaginationRelayoutIfNeeded();
}
// Our guess was wrong. Make the child lay itself out again.
child->layoutIfNeeded();
}
// We are no longer at the top of the block if we encounter a non-empty child.
// This has to be done after checking for clear, so that margins can be reset if a clear occurred.
if (marginInfo.atBeforeSideOfBlock() && !child->isSelfCollapsingBlock())
marginInfo.setAtBeforeSideOfBlock(false);
// Now place the child in the correct left position
determineLogicalLeftPositionForChild(child);
// Update our height now that the child has been placed in the correct position.
setLogicalHeight(logicalHeight() + logicalHeightForChild(child));
if (child->style()->marginAfterCollapse() == MSEPARATE) {
setLogicalHeight(logicalHeight() + marginAfterForChild(child));
marginInfo.clearMargin();
}
// If the child has overhanging floats that intrude into following siblings (or possibly out
// of this block), then the parent gets notified of the floats now.
if (childRenderBlock && childRenderBlock->containsFloats())
maxFloatLogicalBottom = max(maxFloatLogicalBottom, addOverhangingFloats(toRenderBlock(child), -child->logicalLeft(), -child->logicalTop(), !childNeededLayout));
IntSize childOffset(child->x() - oldRect.x(), child->y() - oldRect.y());
if (childOffset.width() || childOffset.height()) {
view()->addLayoutDelta(childOffset);
// If the child moved, we have to repaint it as well as any floating/positioned
// descendants. An exception is if we need a layout. In this case, we know we're going to
// repaint ourselves (and the child) anyway.
if (childHadLayout && !selfNeedsLayout() && child->checkForRepaintDuringLayout())
child->repaintDuringLayoutIfMoved(oldRect);
}
if (!childHadLayout && child->checkForRepaintDuringLayout()) {
child->repaint();
child->repaintOverhangingFloats(true);
}
if (paginated) {
// Check for an after page/column break.
int newHeight = applyAfterBreak(child, logicalHeight(), marginInfo);
if (newHeight != height())
setLogicalHeight(newHeight);
}
ASSERT(oldLayoutDelta == view()->layoutDelta());
}
void RenderBlock::simplifiedNormalFlowLayout()
{
if (childrenInline()) {
ListHashSet<RootInlineBox*> lineBoxes;
bool endOfInline = false;
RenderObject* o = bidiFirstNotSkippingInlines(this);
while (o) {
if (!o->isPositioned() && (o->isReplaced() || o->isFloating())) {
o->layoutIfNeeded();
if (toRenderBox(o)->inlineBoxWrapper()) {
RootInlineBox* box = toRenderBox(o)->inlineBoxWrapper()->root();
lineBoxes.add(box);
}
} else if (o->isText() || (o->isRenderInline() && !endOfInline))
o->setNeedsLayout(false);
o = bidiNext(this, o, 0, false, &endOfInline);
}
// FIXME: Glyph overflow will get lost in this case, but not really a big deal.
GlyphOverflowAndFallbackFontsMap textBoxDataMap;
for (ListHashSet<RootInlineBox*>::const_iterator it = lineBoxes.begin(); it != lineBoxes.end(); ++it) {
RootInlineBox* box = *it;
box->computeOverflow(box->lineTop(), box->lineBottom(), textBoxDataMap);
}
} else {
for (RenderBox* box = firstChildBox(); box; box = box->nextSiblingBox()) {
if (!box->isPositioned())
box->layoutIfNeeded();
}
}
}
bool RenderBlock::simplifiedLayout()
{
if ((!posChildNeedsLayout() && !needsSimplifiedNormalFlowLayout()) || normalChildNeedsLayout() || selfNeedsLayout())
return false;
LayoutStateMaintainer statePusher(view(), this, IntSize(x(), y()), hasColumns() || hasTransform() || hasReflection() || style()->isFlippedBlocksWritingMode());
if (needsPositionedMovementLayout() && !tryLayoutDoingPositionedMovementOnly())
return false;
// Lay out positioned descendants or objects that just need to recompute overflow.
if (needsSimplifiedNormalFlowLayout())
simplifiedNormalFlowLayout();
// Lay out our positioned objects if our positioned child bit is set.
if (posChildNeedsLayout())
layoutPositionedObjects(false);
// Recompute our overflow information.
// FIXME: We could do better here by computing a temporary overflow object from layoutPositionedObjects and only
// updating our overflow if we either used to have overflow or if the new temporary object has overflow.
// For now just always recompute overflow. This is no worse performance-wise than the old code that called rightmostPosition and
// lowestPosition on every relayout so it's not a regression.
m_overflow.clear();
computeOverflow(clientLogicalBottom(), true);
statePusher.pop();
updateLayerTransform();
updateScrollInfoAfterLayout();
setNeedsLayout(false);
return true;
}
void RenderBlock::layoutPositionedObjects(bool relayoutChildren)
{
if (!m_positionedObjects)
return;
if (hasColumns())
view()->layoutState()->clearPaginationInformation(); // Positioned objects are not part of the column flow, so they don't paginate with the columns.
RenderBox* r;
Iterator end = m_positionedObjects->end();
for (Iterator it = m_positionedObjects->begin(); it != end; ++it) {
r = *it;
// When a non-positioned block element moves, it may have positioned children that are implicitly positioned relative to the
// non-positioned block. Rather than trying to detect all of these movement cases, we just always lay out positioned
// objects that are positioned implicitly like this. Such objects are rare, and so in typical DHTML menu usage (where everything is
// positioned explicitly) this should not incur a performance penalty.
if (relayoutChildren || (r->style()->hasStaticBlockPosition(isHorizontalWritingMode()) && r->parent() != this && r->parent()->isBlockFlow()))
r->setChildNeedsLayout(true, false);
// If relayoutChildren is set and we have percentage padding, we also need to invalidate the child's pref widths.
if (relayoutChildren && (r->style()->paddingStart().isPercent() || r->style()->paddingEnd().isPercent()))
r->setPreferredLogicalWidthsDirty(true, false);
if (!r->needsLayout())
r->markForPaginationRelayoutIfNeeded();
// We don't have to do a full layout. We just have to update our position. Try that first. If we have shrink-to-fit width
// and we hit the available width constraint, the layoutIfNeeded() will catch it and do a full layout.
if (r->needsPositionedMovementLayoutOnly() && r->tryLayoutDoingPositionedMovementOnly())
r->setNeedsLayout(false);
r->layoutIfNeeded();
}
if (hasColumns())
view()->layoutState()->m_columnInfo = columnInfo(); // FIXME: Kind of gross. We just put this back into the layout state so that pop() will work.
}
void RenderBlock::markPositionedObjectsForLayout()
{
if (m_positionedObjects) {
RenderBox* r;
Iterator end = m_positionedObjects->end();
for (Iterator it = m_positionedObjects->begin(); it != end; ++it) {
r = *it;
r->setChildNeedsLayout(true);
}
}
}
void RenderBlock::markForPaginationRelayoutIfNeeded()
{
ASSERT(!needsLayout());
if (needsLayout())
return;
if (view()->layoutState()->pageLogicalHeightChanged() || (view()->layoutState()->pageLogicalHeight() && view()->layoutState()->pageLogicalOffset(logicalTop()) != pageLogicalOffset()))
setChildNeedsLayout(true, false);
}
void RenderBlock::repaintOverhangingFloats(bool paintAllDescendants)
{
// Repaint any overhanging floats (if we know we're the one to paint them).
// Otherwise, bail out.
if (!hasOverhangingFloats())
return;
// FIXME: Avoid disabling LayoutState. At the very least, don't disable it for floats originating
// in this block. Better yet would be to push extra state for the containers of other floats.
view()->disableLayoutState();
FloatingObjectSet& floatingObjectSet = m_floatingObjects->set();
FloatingObjectSetIterator end = floatingObjectSet.end();
for (FloatingObjectSetIterator it = floatingObjectSet.begin(); it != end; ++it) {
FloatingObject* r = *it;
// Only repaint the object if it is overhanging, is not in its own layer, and
// is our responsibility to paint (m_shouldPaint is set). When paintAllDescendants is true, the latter
// condition is replaced with being a descendant of us.
if (logicalBottomForFloat(r) > logicalHeight() && ((paintAllDescendants && r->m_renderer->isDescendantOf(this)) || r->m_shouldPaint) && !r->m_renderer->hasSelfPaintingLayer()) {
r->m_renderer->repaint();
r->m_renderer->repaintOverhangingFloats();
}
}
view()->enableLayoutState();
}
void RenderBlock::paint(PaintInfo& paintInfo, int tx, int ty)
{
tx += x();
ty += y();
PaintPhase phase = paintInfo.phase;
// Check if we need to do anything at all.
// FIXME: Could eliminate the isRoot() check if we fix background painting so that the RenderView
// paints the root's background.
if (!isRoot()) {
IntRect overflowBox = visualOverflowRect();
flipForWritingMode(overflowBox);
overflowBox.inflate(maximalOutlineSize(paintInfo.phase));
overflowBox.move(tx, ty);
if (!overflowBox.intersects(paintInfo.rect))
return;
}
bool pushedClip = pushContentsClip(paintInfo, tx, ty);
paintObject(paintInfo, tx, ty);
if (pushedClip)
popContentsClip(paintInfo, phase, tx, ty);
// Our scrollbar widgets paint exactly when we tell them to, so that they work properly with
// z-index. We paint after we painted the background/border, so that the scrollbars will
// sit above the background/border.
if (hasOverflowClip() && style()->visibility() == VISIBLE && (phase == PaintPhaseBlockBackground || phase == PaintPhaseChildBlockBackground) && paintInfo.shouldPaintWithinRoot(this))
layer()->paintOverflowControls(paintInfo.context, tx, ty, paintInfo.rect);
}
void RenderBlock::paintColumnRules(PaintInfo& paintInfo, int tx, int ty)
{
if (paintInfo.context->paintingDisabled())
return;
const Color& ruleColor = style()->visitedDependentColor(CSSPropertyWebkitColumnRuleColor);
bool ruleTransparent = style()->columnRuleIsTransparent();
EBorderStyle ruleStyle = style()->columnRuleStyle();
int ruleWidth = style()->columnRuleWidth();
int colGap = columnGap();
bool renderRule = ruleStyle > BHIDDEN && !ruleTransparent && ruleWidth <= colGap;
if (!renderRule)
return;
// We need to do multiple passes, breaking up our child painting into strips.
ColumnInfo* colInfo = columnInfo();
unsigned colCount = columnCount(colInfo);
int currLogicalLeftOffset = style()->isLeftToRightDirection() ? 0 : contentLogicalWidth();
int ruleAdd = logicalLeftOffsetForContent();
int ruleLogicalLeft = style()->isLeftToRightDirection() ? 0 : contentLogicalWidth();
const AffineTransform& currentCTM = paintInfo.context->getCTM();
bool antialias = !currentCTM.isIdentityOrTranslationOrFlipped();
for (unsigned i = 0; i < colCount; i++) {
IntRect colRect = columnRectAt(colInfo, i);
int inlineDirectionSize = isHorizontalWritingMode() ? colRect.width() : colRect.height();
// Move to the next position.
if (style()->isLeftToRightDirection()) {
ruleLogicalLeft += inlineDirectionSize + colGap / 2;
currLogicalLeftOffset += inlineDirectionSize + colGap;
} else {
ruleLogicalLeft -= (inlineDirectionSize + colGap / 2);
currLogicalLeftOffset -= (inlineDirectionSize + colGap);
}
// Now paint the column rule.
if (i < colCount - 1) {
int ruleLeft = isHorizontalWritingMode() ? tx + ruleLogicalLeft - ruleWidth / 2 + ruleAdd : tx + borderBefore() + paddingBefore();
int ruleRight = isHorizontalWritingMode() ? ruleLeft + ruleWidth : ruleLeft + contentWidth();
int ruleTop = isHorizontalWritingMode() ? ty + borderTop() + paddingTop() : ty + ruleLogicalLeft - ruleWidth / 2 + ruleAdd;
int ruleBottom = isHorizontalWritingMode() ? ruleTop + contentHeight() : ruleTop + ruleWidth;
drawLineForBoxSide(paintInfo.context, ruleLeft, ruleTop, ruleRight, ruleBottom,
style()->isLeftToRightDirection() ? BSLeft : BSRight, ruleColor, ruleStyle, 0, 0, antialias);
}
ruleLogicalLeft = currLogicalLeftOffset;
}
}
void RenderBlock::paintColumnContents(PaintInfo& paintInfo, int tx, int ty, bool paintingFloats)
{
// We need to do multiple passes, breaking up our child painting into strips.
GraphicsContext* context = paintInfo.context;
ColumnInfo* colInfo = columnInfo();
unsigned colCount = columnCount(colInfo);
if (!colCount)
return;
int currLogicalTopOffset = 0;
for (unsigned i = 0; i < colCount; i++) {
// For each rect, we clip to the rect, and then we adjust our coords.
IntRect colRect = columnRectAt(colInfo, i);
flipForWritingMode(colRect);
int logicalLeftOffset = (isHorizontalWritingMode() ? colRect.x() : colRect.y()) - logicalLeftOffsetForContent();
IntSize offset = isHorizontalWritingMode() ? IntSize(logicalLeftOffset, currLogicalTopOffset) : IntSize(currLogicalTopOffset, logicalLeftOffset);
colRect.move(tx, ty);
PaintInfo info(paintInfo);
info.rect.intersect(colRect);
if (!info.rect.isEmpty()) {
GraphicsContextStateSaver stateSaver(*context);
// Each strip pushes a clip, since column boxes are specified as being
// like overflow:hidden.
context->clip(colRect);
// Adjust our x and y when painting.
int finalX = tx + offset.width();
int finalY = ty + offset.height();
if (paintingFloats)
paintFloats(info, finalX, finalY, paintInfo.phase == PaintPhaseSelection || paintInfo.phase == PaintPhaseTextClip);
else
paintContents(info, finalX, finalY);
}
int blockDelta = (isHorizontalWritingMode() ? colRect.height() : colRect.width());
if (style()->isFlippedBlocksWritingMode())
currLogicalTopOffset += blockDelta;
else
currLogicalTopOffset -= blockDelta;
}
}
void RenderBlock::paintContents(PaintInfo& paintInfo, int tx, int ty)
{
// Avoid painting descendants of the root element when stylesheets haven't loaded. This eliminates FOUC.
// It's ok not to draw, because later on, when all the stylesheets do load, updateStyleSelector on the Document
// will do a full repaint().
if (document()->didLayoutWithPendingStylesheets() && !isRenderView())
return;
if (childrenInline())
m_lineBoxes.paint(this, paintInfo, tx, ty);
else
paintChildren(paintInfo, tx, ty);
}
void RenderBlock::paintChildren(PaintInfo& paintInfo, int tx, int ty)
{
PaintPhase newPhase = (paintInfo.phase == PaintPhaseChildOutlines) ? PaintPhaseOutline : paintInfo.phase;
newPhase = (newPhase == PaintPhaseChildBlockBackgrounds) ? PaintPhaseChildBlockBackground : newPhase;
// We don't paint our own background, but we do let the kids paint their backgrounds.
PaintInfo info(paintInfo);
info.phase = newPhase;
info.updatePaintingRootForChildren(this);
// FIXME: Paint-time pagination is obsolete and is now only used by embedded WebViews inside AppKit
// NSViews. Do not add any more code for this.
RenderView* renderView = view();
bool usePrintRect = !renderView->printRect().isEmpty();
for (RenderBox* child = firstChildBox(); child; child = child->nextSiblingBox()) {
// Check for page-break-before: always, and if it's set, break and bail.
bool checkBeforeAlways = !childrenInline() && (usePrintRect && child->style()->pageBreakBefore() == PBALWAYS);
if (checkBeforeAlways
&& (ty + child->y()) > paintInfo.rect.y()
&& (ty + child->y()) < paintInfo.rect.maxY()) {
view()->setBestTruncatedAt(ty + child->y(), this, true);
return;
}
if (!child->isFloating() && child->isReplaced() && usePrintRect && child->height() <= renderView->printRect().height()) {
// Paginate block-level replaced elements.
if (ty + child->y() + child->height() > renderView->printRect().maxY()) {
if (ty + child->y() < renderView->truncatedAt())
renderView->setBestTruncatedAt(ty + child->y(), child);
// If we were able to truncate, don't paint.
if (ty + child->y() >= renderView->truncatedAt())
break;
}
}
IntPoint childPoint = flipForWritingMode(child, IntPoint(tx, ty), ParentToChildFlippingAdjustment);
if (!child->hasSelfPaintingLayer() && !child->isFloating())
child->paint(info, childPoint.x(), childPoint.y());
// Check for page-break-after: always, and if it's set, break and bail.
bool checkAfterAlways = !childrenInline() && (usePrintRect && child->style()->pageBreakAfter() == PBALWAYS);
if (checkAfterAlways
&& (ty + child->y() + child->height()) > paintInfo.rect.y()
&& (ty + child->y() + child->height()) < paintInfo.rect.maxY()) {
view()->setBestTruncatedAt(ty + child->y() + child->height() + max(0, child->collapsedMarginAfter()), this, true);
return;
}
}
}
void RenderBlock::paintCaret(PaintInfo& paintInfo, int tx, int ty, CaretType type)
{
SelectionController* selection = type == CursorCaret ? frame()->selection() : frame()->page()->dragCaretController();
// Paint the caret if the SelectionController says so or if caret browsing is enabled
bool caretBrowsing = frame()->settings() && frame()->settings()->caretBrowsingEnabled();
RenderObject* caretPainter = selection->caretRenderer();
if (caretPainter == this && (selection->isContentEditable() || caretBrowsing)) {
// Convert the painting offset into the local coordinate system of this renderer,
// to match the localCaretRect computed by the SelectionController
offsetForContents(tx, ty);
if (type == CursorCaret)
frame()->selection()->paintCaret(paintInfo.context, tx, ty, paintInfo.rect);
else
frame()->selection()->paintDragCaret(paintInfo.context, tx, ty, paintInfo.rect);
}
}
void RenderBlock::paintObject(PaintInfo& paintInfo, int tx, int ty)
{
PaintPhase paintPhase = paintInfo.phase;
// 1. paint background, borders etc
if ((paintPhase == PaintPhaseBlockBackground || paintPhase == PaintPhaseChildBlockBackground) && style()->visibility() == VISIBLE) {
if (hasBoxDecorations())
paintBoxDecorations(paintInfo, tx, ty);
if (hasColumns())
paintColumnRules(paintInfo, tx, ty);
}
if (paintPhase == PaintPhaseMask && style()->visibility() == VISIBLE) {
paintMask(paintInfo, tx, ty);
return;
}
// We're done. We don't bother painting any children.
if (paintPhase == PaintPhaseBlockBackground)
return;
// Adjust our painting position if we're inside a scrolled layer (e.g., an overflow:auto div).
int scrolledX = tx;
int scrolledY = ty;
if (hasOverflowClip()) {
IntSize offset = layer()->scrolledContentOffset();
scrolledX -= offset.width();
scrolledY -= offset.height();
}
// 2. paint contents
if (paintPhase != PaintPhaseSelfOutline) {
if (hasColumns())
paintColumnContents(paintInfo, scrolledX, scrolledY);
else
paintContents(paintInfo, scrolledX, scrolledY);
}
// 3. paint selection
// FIXME: Make this work with multi column layouts. For now don't fill gaps.
bool isPrinting = document()->printing();
if (!isPrinting && !hasColumns())
paintSelection(paintInfo, scrolledX, scrolledY); // Fill in gaps in selection on lines and between blocks.
// 4. paint floats.
if (paintPhase == PaintPhaseFloat || paintPhase == PaintPhaseSelection || paintPhase == PaintPhaseTextClip) {
if (hasColumns())
paintColumnContents(paintInfo, scrolledX, scrolledY, true);
else
paintFloats(paintInfo, scrolledX, scrolledY, paintPhase == PaintPhaseSelection || paintPhase == PaintPhaseTextClip);
}
// 5. paint outline.
if ((paintPhase == PaintPhaseOutline || paintPhase == PaintPhaseSelfOutline) && hasOutline() && style()->visibility() == VISIBLE)
paintOutline(paintInfo.context, tx, ty, width(), height());
// 6. paint continuation outlines.
if ((paintPhase == PaintPhaseOutline || paintPhase == PaintPhaseChildOutlines)) {
RenderInline* inlineCont = inlineElementContinuation();
if (inlineCont && inlineCont->hasOutline() && inlineCont->style()->visibility() == VISIBLE) {
RenderInline* inlineRenderer = toRenderInline(inlineCont->node()->renderer());
RenderBlock* cb = containingBlock();
bool inlineEnclosedInSelfPaintingLayer = false;
for (RenderBoxModelObject* box = inlineRenderer; box != cb; box = box->parent()->enclosingBoxModelObject()) {
if (box->hasSelfPaintingLayer()) {
inlineEnclosedInSelfPaintingLayer = true;
break;
}
}
if (!inlineEnclosedInSelfPaintingLayer)
cb->addContinuationWithOutline(inlineRenderer);
else if (!inlineRenderer->firstLineBox())
inlineRenderer->paintOutline(paintInfo.context, tx - x() + inlineRenderer->containingBlock()->x(),
ty - y() + inlineRenderer->containingBlock()->y());
}
paintContinuationOutlines(paintInfo, tx, ty);
}
// 7. paint caret.
// If the caret's node's render object's containing block is this block, and the paint action is PaintPhaseForeground,
// then paint the caret.
if (paintPhase == PaintPhaseForeground) {
paintCaret(paintInfo, scrolledX, scrolledY, CursorCaret);
paintCaret(paintInfo, scrolledX, scrolledY, DragCaret);
}
}
IntPoint RenderBlock::flipFloatForWritingMode(const FloatingObject* child, const IntPoint& point) const
{
if (!style()->isFlippedBlocksWritingMode())
return point;
// This is similar to the ParentToChildFlippingAdjustment in RenderBox::flipForWritingMode. We have to subtract out our left/top offsets twice, since
// it's going to get added back in. We hide this complication here so that the calling code looks normal for the unflipped
// case.
if (isHorizontalWritingMode())
return IntPoint(point.x(), point.y() + height() - child->renderer()->height() - 2 * yPositionForFloatIncludingMargin(child));
return IntPoint(point.x() + width() - child->width() - 2 * xPositionForFloatIncludingMargin(child), point.y());
}
void RenderBlock::paintFloats(PaintInfo& paintInfo, int tx, int ty, bool preservePhase)
{
if (!m_floatingObjects)
return;
FloatingObjectSet& floatingObjectSet = m_floatingObjects->set();
FloatingObjectSetIterator end = floatingObjectSet.end();
for (FloatingObjectSetIterator it = floatingObjectSet.begin(); it != end; ++it) {
FloatingObject* r = *it;
// Only paint the object if our m_shouldPaint flag is set.
if (r->m_shouldPaint && !r->m_renderer->hasSelfPaintingLayer()) {
PaintInfo currentPaintInfo(paintInfo);
currentPaintInfo.phase = preservePhase ? paintInfo.phase : PaintPhaseBlockBackground;
IntPoint childPoint = flipFloatForWritingMode(r, IntPoint(tx + xPositionForFloatIncludingMargin(r) - r->m_renderer->x(), ty + yPositionForFloatIncludingMargin(r) - r->m_renderer->y()));
r->m_renderer->paint(currentPaintInfo, childPoint.x(), childPoint.y());
if (!preservePhase) {
currentPaintInfo.phase = PaintPhaseChildBlockBackgrounds;
r->m_renderer->paint(currentPaintInfo, childPoint.x(), childPoint.y());
currentPaintInfo.phase = PaintPhaseFloat;
r->m_renderer->paint(currentPaintInfo, childPoint.x(), childPoint.y());
currentPaintInfo.phase = PaintPhaseForeground;
r->m_renderer->paint(currentPaintInfo, childPoint.x(), childPoint.y());
currentPaintInfo.phase = PaintPhaseOutline;
r->m_renderer->paint(currentPaintInfo, childPoint.x(), childPoint.y());
}
}
}
}
void RenderBlock::paintEllipsisBoxes(PaintInfo& paintInfo, int tx, int ty)
{
if (!paintInfo.shouldPaintWithinRoot(this) || !firstLineBox())
return;
if (style()->visibility() == VISIBLE && paintInfo.phase == PaintPhaseForeground) {
// We can check the first box and last box and avoid painting if we don't
// intersect.
int yPos = ty + firstLineBox()->y();
int h = lastLineBox()->y() + lastLineBox()->logicalHeight() - firstLineBox()->y();
if (yPos >= paintInfo.rect.maxY() || yPos + h <= paintInfo.rect.y())
return;
// See if our boxes intersect with the dirty rect. If so, then we paint
// them. Note that boxes can easily overlap, so we can't make any assumptions
// based off positions of our first line box or our last line box.
for (RootInlineBox* curr = firstRootBox(); curr; curr = curr->nextRootBox()) {
yPos = ty + curr->y();
h = curr->logicalHeight();
if (curr->ellipsisBox() && yPos < paintInfo.rect.maxY() && yPos + h > paintInfo.rect.y())
curr->paintEllipsisBox(paintInfo, tx, ty, curr->lineTop(), curr->lineBottom());
}
}
}
RenderInline* RenderBlock::inlineElementContinuation() const
{
RenderBoxModelObject* continuation = this->continuation();
return continuation && continuation->isInline() ? toRenderInline(continuation) : 0;
}
RenderBlock* RenderBlock::blockElementContinuation() const
{
RenderBoxModelObject* currentContinuation = continuation();
if (!currentContinuation || currentContinuation->isInline())
return 0;
RenderBlock* nextContinuation = toRenderBlock(currentContinuation);
if (nextContinuation->isAnonymousBlock())
return nextContinuation->blockElementContinuation();
return nextContinuation;
}
static ContinuationOutlineTableMap* continuationOutlineTable()
{
DEFINE_STATIC_LOCAL(ContinuationOutlineTableMap, table, ());
return &table;
}
void RenderBlock::addContinuationWithOutline(RenderInline* flow)
{
// We can't make this work if the inline is in a layer. We'll just rely on the broken
// way of painting.
ASSERT(!flow->layer() && !flow->isInlineElementContinuation());
ContinuationOutlineTableMap* table = continuationOutlineTable();
ListHashSet<RenderInline*>* continuations = table->get(this);
if (!continuations) {
continuations = new ListHashSet<RenderInline*>;
table->set(this, continuations);
}
continuations->add(flow);
}
bool RenderBlock::paintsContinuationOutline(RenderInline* flow)
{
ContinuationOutlineTableMap* table = continuationOutlineTable();
if (table->isEmpty())
return false;
ListHashSet<RenderInline*>* continuations = table->get(this);
if (!continuations)
return false;
return continuations->contains(flow);
}
void RenderBlock::paintContinuationOutlines(PaintInfo& info, int tx, int ty)
{
ContinuationOutlineTableMap* table = continuationOutlineTable();
if (table->isEmpty())
return;
ListHashSet<RenderInline*>* continuations = table->get(this);
if (!continuations)
return;
// Paint each continuation outline.
ListHashSet<RenderInline*>::iterator end = continuations->end();
for (ListHashSet<RenderInline*>::iterator it = continuations->begin(); it != end; ++it) {
// Need to add in the coordinates of the intervening blocks.
RenderInline* flow = *it;
RenderBlock* block = flow->containingBlock();
for ( ; block && block != this; block = block->containingBlock()) {
tx += block->x();
ty += block->y();
}
ASSERT(block);
flow->paintOutline(info.context, tx, ty);
}
// Delete
delete continuations;
table->remove(this);
}
bool RenderBlock::shouldPaintSelectionGaps() const
{
return selectionState() != SelectionNone && style()->visibility() == VISIBLE && isSelectionRoot();
}
bool RenderBlock::isSelectionRoot() const
{
if (!node())
return false;
// FIXME: Eventually tables should have to learn how to fill gaps between cells, at least in simple non-spanning cases.
if (isTable())
return false;
if (isBody() || isRoot() || hasOverflowClip() || isRelPositioned() ||
isFloatingOrPositioned() || isTableCell() || isInlineBlockOrInlineTable() || hasTransform() ||
hasReflection() || hasMask() || isWritingModeRoot())
return true;
if (view() && view()->selectionStart()) {
Node* startElement = view()->selectionStart()->node();
if (startElement && startElement->rootEditableElement() == node())
return true;
}
return false;
}
GapRects RenderBlock::selectionGapRectsForRepaint(RenderBoxModelObject* repaintContainer)
{
ASSERT(!needsLayout());
if (!shouldPaintSelectionGaps())
return GapRects();
// FIXME: this is broken with transforms
TransformState transformState(TransformState::ApplyTransformDirection, FloatPoint());
mapLocalToContainer(repaintContainer, false, false, transformState);
IntPoint offsetFromRepaintContainer = roundedIntPoint(transformState.mappedPoint());
if (hasOverflowClip())
offsetFromRepaintContainer -= layer()->scrolledContentOffset();
int lastTop = 0;
int lastLeft = logicalLeftSelectionOffset(this, lastTop);
int lastRight = logicalRightSelectionOffset(this, lastTop);
return selectionGaps(this, offsetFromRepaintContainer, IntSize(), lastTop, lastLeft, lastRight);
}
void RenderBlock::paintSelection(PaintInfo& paintInfo, int tx, int ty)
{
if (shouldPaintSelectionGaps() && paintInfo.phase == PaintPhaseForeground) {
int lastTop = 0;
int lastLeft = logicalLeftSelectionOffset(this, lastTop);
int lastRight = logicalRightSelectionOffset(this, lastTop);
GraphicsContextStateSaver stateSaver(*paintInfo.context);
IntRect gapRectsBounds = selectionGaps(this, IntPoint(tx, ty), IntSize(), lastTop, lastLeft, lastRight, &paintInfo);
if (!gapRectsBounds.isEmpty()) {
if (RenderLayer* layer = enclosingLayer()) {
gapRectsBounds.move(IntSize(-tx, -ty));
if (!hasLayer()) {
IntRect localBounds(gapRectsBounds);
flipForWritingMode(localBounds);
gapRectsBounds = localToContainerQuad(FloatRect(localBounds), layer->renderer()).enclosingBoundingBox();
gapRectsBounds.move(layer->scrolledContentOffset());
}
layer->addBlockSelectionGapsBounds(gapRectsBounds);
}
}
}
}
static void clipOutPositionedObjects(const PaintInfo* paintInfo, const IntPoint& offset, RenderBlock::PositionedObjectsListHashSet* positionedObjects)
{
if (!positionedObjects)
return;
RenderBlock::PositionedObjectsListHashSet::const_iterator end = positionedObjects->end();
for (RenderBlock::PositionedObjectsListHashSet::const_iterator it = positionedObjects->begin(); it != end; ++it) {
RenderBox* r = *it;
paintInfo->context->clipOut(IntRect(offset.x() + r->x(), offset.y() + r->y(), r->width(), r->height()));
}
}
static int blockDirectionOffset(RenderBlock* rootBlock, const IntSize& offsetFromRootBlock)
{
return rootBlock->isHorizontalWritingMode() ? offsetFromRootBlock.height() : offsetFromRootBlock.width();
}
static int inlineDirectionOffset(RenderBlock* rootBlock, const IntSize& offsetFromRootBlock)
{
return rootBlock->isHorizontalWritingMode() ? offsetFromRootBlock.width() : offsetFromRootBlock.height();
}
IntRect RenderBlock::logicalRectToPhysicalRect(const IntPoint& rootBlockPhysicalPosition, const IntRect& logicalRect)
{
IntRect result;
if (isHorizontalWritingMode())
result = logicalRect;
else
result = IntRect(logicalRect.y(), logicalRect.x(), logicalRect.height(), logicalRect.width());
flipForWritingMode(result);
result.move(rootBlockPhysicalPosition.x(), rootBlockPhysicalPosition.y());
return result;
}
GapRects RenderBlock::selectionGaps(RenderBlock* rootBlock, const IntPoint& rootBlockPhysicalPosition, const IntSize& offsetFromRootBlock,
int& lastLogicalTop, int& lastLogicalLeft, int& lastLogicalRight, const PaintInfo* paintInfo)
{
// IMPORTANT: Callers of this method that intend for painting to happen need to do a save/restore.
// Clip out floating and positioned objects when painting selection gaps.
if (paintInfo) {
// Note that we don't clip out overflow for positioned objects. We just stick to the border box.
IntRect flippedBlockRect = IntRect(offsetFromRootBlock.width(), offsetFromRootBlock.height(), width(), height());
rootBlock->flipForWritingMode(flippedBlockRect);
flippedBlockRect.move(rootBlockPhysicalPosition.x(), rootBlockPhysicalPosition.y());
clipOutPositionedObjects(paintInfo, flippedBlockRect.location(), m_positionedObjects.get());
if (isBody() || isRoot()) // The <body> must make sure to examine its containingBlock's positioned objects.
for (RenderBlock* cb = containingBlock(); cb && !cb->isRenderView(); cb = cb->containingBlock())
clipOutPositionedObjects(paintInfo, IntPoint(cb->x(), cb->y()), cb->m_positionedObjects.get()); // FIXME: Not right for flipped writing modes.
if (m_floatingObjects) {
FloatingObjectSet& floatingObjectSet = m_floatingObjects->set();
FloatingObjectSetIterator end = floatingObjectSet.end();
for (FloatingObjectSetIterator it = floatingObjectSet.begin(); it != end; ++it) {
FloatingObject* r = *it;
IntRect floatBox = IntRect(offsetFromRootBlock.width() + xPositionForFloatIncludingMargin(r),
offsetFromRootBlock.height() + yPositionForFloatIncludingMargin(r),
r->m_renderer->width(), r->m_renderer->height());
rootBlock->flipForWritingMode(floatBox);
floatBox.move(rootBlockPhysicalPosition.x(), rootBlockPhysicalPosition.y());
paintInfo->context->clipOut(floatBox);
}
}
}
// FIXME: overflow: auto/scroll regions need more math here, since painting in the border box is different from painting in the padding box (one is scrolled, the other is
// fixed).
GapRects result;
if (!isBlockFlow()) // FIXME: Make multi-column selection gap filling work someday.
return result;
if (hasColumns() || hasTransform() || style()->columnSpan()) {
// FIXME: We should learn how to gap fill multiple columns and transforms eventually.
lastLogicalTop = blockDirectionOffset(rootBlock, offsetFromRootBlock) + logicalHeight();
lastLogicalLeft = logicalLeftSelectionOffset(rootBlock, logicalHeight());
lastLogicalRight = logicalRightSelectionOffset(rootBlock, logicalHeight());
return result;
}
if (childrenInline())
result = inlineSelectionGaps(rootBlock, rootBlockPhysicalPosition, offsetFromRootBlock, lastLogicalTop, lastLogicalLeft, lastLogicalRight, paintInfo);
else
result = blockSelectionGaps(rootBlock, rootBlockPhysicalPosition, offsetFromRootBlock, lastLogicalTop, lastLogicalLeft, lastLogicalRight, paintInfo);
// Go ahead and fill the vertical gap all the way to the bottom of our block if the selection extends past our block.
if (rootBlock == this && (selectionState() != SelectionBoth && selectionState() != SelectionEnd))
result.uniteCenter(blockSelectionGap(rootBlock, rootBlockPhysicalPosition, offsetFromRootBlock, lastLogicalTop, lastLogicalLeft, lastLogicalRight,
logicalHeight(), paintInfo));
return result;
}
GapRects RenderBlock::inlineSelectionGaps(RenderBlock* rootBlock, const IntPoint& rootBlockPhysicalPosition, const IntSize& offsetFromRootBlock,
int& lastLogicalTop, int& lastLogicalLeft, int& lastLogicalRight, const PaintInfo* paintInfo)
{
GapRects result;
bool containsStart = selectionState() == SelectionStart || selectionState() == SelectionBoth;
if (!firstLineBox()) {
if (containsStart) {
// Go ahead and update our lastLogicalTop to be the bottom of the block. <hr>s or empty blocks with height can trip this
// case.
lastLogicalTop = blockDirectionOffset(rootBlock, offsetFromRootBlock) + logicalHeight();
lastLogicalLeft = logicalLeftSelectionOffset(rootBlock, logicalHeight());
lastLogicalRight = logicalRightSelectionOffset(rootBlock, logicalHeight());
}
return result;
}
RootInlineBox* lastSelectedLine = 0;
RootInlineBox* curr;
for (curr = firstRootBox(); curr && !curr->hasSelectedChildren(); curr = curr->nextRootBox()) { }
// Now paint the gaps for the lines.
for (; curr && curr->hasSelectedChildren(); curr = curr->nextRootBox()) {
int selTop = curr->selectionTop();
int selHeight = curr->selectionHeight();
if (!containsStart && !lastSelectedLine &&
selectionState() != SelectionStart && selectionState() != SelectionBoth)
result.uniteCenter(blockSelectionGap(rootBlock, rootBlockPhysicalPosition, offsetFromRootBlock, lastLogicalTop, lastLogicalLeft, lastLogicalRight,
selTop, paintInfo));
IntRect logicalRect(curr->logicalLeft(), selTop, curr->logicalWidth(), selTop + selHeight);
logicalRect.move(isHorizontalWritingMode() ? offsetFromRootBlock : IntSize(offsetFromRootBlock.height(), offsetFromRootBlock.width()));
IntRect physicalRect = rootBlock->logicalRectToPhysicalRect(rootBlockPhysicalPosition, logicalRect);
if (!paintInfo || (isHorizontalWritingMode() && physicalRect.y() < paintInfo->rect.maxY() && physicalRect.maxY() > paintInfo->rect.y())
|| (!isHorizontalWritingMode() && physicalRect.x() < paintInfo->rect.maxX() && physicalRect.maxX() > paintInfo->rect.x()))
result.unite(curr->lineSelectionGap(rootBlock, rootBlockPhysicalPosition, offsetFromRootBlock, selTop, selHeight, paintInfo));
lastSelectedLine = curr;
}
if (containsStart && !lastSelectedLine)
// VisibleSelection must start just after our last line.
lastSelectedLine = lastRootBox();
if (lastSelectedLine && selectionState() != SelectionEnd && selectionState() != SelectionBoth) {
// Go ahead and update our lastY to be the bottom of the last selected line.
lastLogicalTop = blockDirectionOffset(rootBlock, offsetFromRootBlock) + lastSelectedLine->selectionBottom();
lastLogicalLeft = logicalLeftSelectionOffset(rootBlock, lastSelectedLine->selectionBottom());
lastLogicalRight = logicalRightSelectionOffset(rootBlock, lastSelectedLine->selectionBottom());
}
return result;
}
GapRects RenderBlock::blockSelectionGaps(RenderBlock* rootBlock, const IntPoint& rootBlockPhysicalPosition, const IntSize& offsetFromRootBlock,
int& lastLogicalTop, int& lastLogicalLeft, int& lastLogicalRight, const PaintInfo* paintInfo)
{
GapRects result;
// Go ahead and jump right to the first block child that contains some selected objects.
RenderBox* curr;
for (curr = firstChildBox(); curr && curr->selectionState() == SelectionNone; curr = curr->nextSiblingBox()) { }
for (bool sawSelectionEnd = false; curr && !sawSelectionEnd; curr = curr->nextSiblingBox()) {
SelectionState childState = curr->selectionState();
if (childState == SelectionBoth || childState == SelectionEnd)
sawSelectionEnd = true;
if (curr->isFloatingOrPositioned())
continue; // We must be a normal flow object in order to even be considered.
if (curr->isRelPositioned() && curr->hasLayer()) {
// If the relposition offset is anything other than 0, then treat this just like an absolute positioned element.
// Just disregard it completely.
IntSize relOffset = curr->layer()->relativePositionOffset();
if (relOffset.width() || relOffset.height())
continue;
}
bool paintsOwnSelection = curr->shouldPaintSelectionGaps() || curr->isTable(); // FIXME: Eventually we won't special-case table like this.
bool fillBlockGaps = paintsOwnSelection || (curr->canBeSelectionLeaf() && childState != SelectionNone);
if (fillBlockGaps) {
// We need to fill the vertical gap above this object.
if (childState == SelectionEnd || childState == SelectionInside)
// Fill the gap above the object.
result.uniteCenter(blockSelectionGap(rootBlock, rootBlockPhysicalPosition, offsetFromRootBlock, lastLogicalTop, lastLogicalLeft, lastLogicalRight,
curr->logicalTop(), paintInfo));
// Only fill side gaps for objects that paint their own selection if we know for sure the selection is going to extend all the way *past*
// our object. We know this if the selection did not end inside our object.
if (paintsOwnSelection && (childState == SelectionStart || sawSelectionEnd))
childState = SelectionNone;
// Fill side gaps on this object based off its state.
bool leftGap, rightGap;
getSelectionGapInfo(childState, leftGap, rightGap);
if (leftGap)
result.uniteLeft(logicalLeftSelectionGap(rootBlock, rootBlockPhysicalPosition, offsetFromRootBlock, this, curr->logicalLeft(), curr->logicalTop(), curr->logicalHeight(), paintInfo));
if (rightGap)
result.uniteRight(logicalRightSelectionGap(rootBlock, rootBlockPhysicalPosition, offsetFromRootBlock, this, curr->logicalRight(), curr->logicalTop(), curr->logicalHeight(), paintInfo));
// Update lastLogicalTop to be just underneath the object. lastLogicalLeft and lastLogicalRight extend as far as
// they can without bumping into floating or positioned objects. Ideally they will go right up
// to the border of the root selection block.
lastLogicalTop = blockDirectionOffset(rootBlock, offsetFromRootBlock) + curr->logicalBottom();
lastLogicalLeft = logicalLeftSelectionOffset(rootBlock, curr->logicalBottom());
lastLogicalRight = logicalRightSelectionOffset(rootBlock, curr->logicalBottom());
} else if (childState != SelectionNone)
// We must be a block that has some selected object inside it. Go ahead and recur.
result.unite(toRenderBlock(curr)->selectionGaps(rootBlock, rootBlockPhysicalPosition, IntSize(offsetFromRootBlock.width() + curr->x(), offsetFromRootBlock.height() + curr->y()),
lastLogicalTop, lastLogicalLeft, lastLogicalRight, paintInfo));
}
return result;
}
IntRect RenderBlock::blockSelectionGap(RenderBlock* rootBlock, const IntPoint& rootBlockPhysicalPosition, const IntSize& offsetFromRootBlock,
int lastLogicalTop, int lastLogicalLeft, int lastLogicalRight, int logicalBottom, const PaintInfo* paintInfo)
{
int logicalTop = lastLogicalTop;
int logicalHeight = blockDirectionOffset(rootBlock, offsetFromRootBlock) + logicalBottom - logicalTop;
if (logicalHeight <= 0)
return IntRect();
// Get the selection offsets for the bottom of the gap
int logicalLeft = max(lastLogicalLeft, logicalLeftSelectionOffset(rootBlock, logicalBottom));
int logicalRight = min(lastLogicalRight, logicalRightSelectionOffset(rootBlock, logicalBottom));
int logicalWidth = logicalRight - logicalLeft;
if (logicalWidth <= 0)
return IntRect();
IntRect gapRect = rootBlock->logicalRectToPhysicalRect(rootBlockPhysicalPosition, IntRect(logicalLeft, logicalTop, logicalWidth, logicalHeight));
if (paintInfo)
paintInfo->context->fillRect(gapRect, selectionBackgroundColor(), style()->colorSpace());
return gapRect;
}
IntRect RenderBlock::logicalLeftSelectionGap(RenderBlock* rootBlock, const IntPoint& rootBlockPhysicalPosition, const IntSize& offsetFromRootBlock,
RenderObject* selObj, int logicalLeft, int logicalTop, int logicalHeight, const PaintInfo* paintInfo)
{
int rootBlockLogicalTop = blockDirectionOffset(rootBlock, offsetFromRootBlock) + logicalTop;
int rootBlockLogicalLeft = max(logicalLeftSelectionOffset(rootBlock, logicalTop), logicalLeftSelectionOffset(rootBlock, logicalTop + logicalHeight));
int rootBlockLogicalRight = min(inlineDirectionOffset(rootBlock, offsetFromRootBlock) + logicalLeft, min(logicalRightSelectionOffset(rootBlock, logicalTop), logicalRightSelectionOffset(rootBlock, logicalTop + logicalHeight)));
int rootBlockLogicalWidth = rootBlockLogicalRight - rootBlockLogicalLeft;
if (rootBlockLogicalWidth <= 0)
return IntRect();
IntRect gapRect = rootBlock->logicalRectToPhysicalRect(rootBlockPhysicalPosition, IntRect(rootBlockLogicalLeft, rootBlockLogicalTop, rootBlockLogicalWidth, logicalHeight));
if (paintInfo)
paintInfo->context->fillRect(gapRect, selObj->selectionBackgroundColor(), selObj->style()->colorSpace());
return gapRect;
}
IntRect RenderBlock::logicalRightSelectionGap(RenderBlock* rootBlock, const IntPoint& rootBlockPhysicalPosition, const IntSize& offsetFromRootBlock,
RenderObject* selObj, int logicalRight, int logicalTop, int logicalHeight, const PaintInfo* paintInfo)
{
int rootBlockLogicalTop = blockDirectionOffset(rootBlock, offsetFromRootBlock) + logicalTop;
int rootBlockLogicalLeft = max(inlineDirectionOffset(rootBlock, offsetFromRootBlock) + logicalRight, max(logicalLeftSelectionOffset(rootBlock, logicalTop), logicalLeftSelectionOffset(rootBlock, logicalTop + logicalHeight)));
int rootBlockLogicalRight = min(logicalRightSelectionOffset(rootBlock, logicalTop), logicalRightSelectionOffset(rootBlock, logicalTop + logicalHeight));
int rootBlockLogicalWidth = rootBlockLogicalRight - rootBlockLogicalLeft;
if (rootBlockLogicalWidth <= 0)
return IntRect();
IntRect gapRect = rootBlock->logicalRectToPhysicalRect(rootBlockPhysicalPosition, IntRect(rootBlockLogicalLeft, rootBlockLogicalTop, rootBlockLogicalWidth, logicalHeight));
if (paintInfo)
paintInfo->context->fillRect(gapRect, selObj->selectionBackgroundColor(), selObj->style()->colorSpace());
return gapRect;
}
void RenderBlock::getSelectionGapInfo(SelectionState state, bool& leftGap, bool& rightGap)
{
bool ltr = style()->isLeftToRightDirection();
leftGap = (state == RenderObject::SelectionInside) ||
(state == RenderObject::SelectionEnd && ltr) ||
(state == RenderObject::SelectionStart && !ltr);
rightGap = (state == RenderObject::SelectionInside) ||
(state == RenderObject::SelectionStart && ltr) ||
(state == RenderObject::SelectionEnd && !ltr);
}
int RenderBlock::logicalLeftSelectionOffset(RenderBlock* rootBlock, int position)
{
int logicalLeft = logicalLeftOffsetForLine(position, false);
if (logicalLeft == logicalLeftOffsetForContent()) {
if (rootBlock != this)
// The border can potentially be further extended by our containingBlock().
return containingBlock()->logicalLeftSelectionOffset(rootBlock, position + logicalTop());
return logicalLeft;
} else {
RenderBlock* cb = this;
while (cb != rootBlock) {
logicalLeft += cb->logicalLeft();
cb = cb->containingBlock();
}
}
return logicalLeft;
}
int RenderBlock::logicalRightSelectionOffset(RenderBlock* rootBlock, int position)
{
int logicalRight = logicalRightOffsetForLine(position, false);
if (logicalRight == logicalRightOffsetForContent()) {
if (rootBlock != this)
// The border can potentially be further extended by our containingBlock().
return containingBlock()->logicalRightSelectionOffset(rootBlock, position + logicalTop());
return logicalRight;
} else {
RenderBlock* cb = this;
while (cb != rootBlock) {
logicalRight += cb->logicalLeft();
cb = cb->containingBlock();
}
}
return logicalRight;
}
void RenderBlock::insertPositionedObject(RenderBox* o)
{
// Create the list of special objects if we don't aleady have one
if (!m_positionedObjects)
m_positionedObjects = adoptPtr(new PositionedObjectsListHashSet);
m_positionedObjects->add(o);
}
void RenderBlock::removePositionedObject(RenderBox* o)
{
if (m_positionedObjects)
m_positionedObjects->remove(o);
}
void RenderBlock::removePositionedObjects(RenderBlock* o)
{
if (!m_positionedObjects)
return;
RenderBox* r;
Iterator end = m_positionedObjects->end();
Vector<RenderBox*, 16> deadObjects;
for (Iterator it = m_positionedObjects->begin(); it != end; ++it) {
r = *it;
if (!o || r->isDescendantOf(o)) {
if (o)
r->setChildNeedsLayout(true, false);
// It is parent blocks job to add positioned child to positioned objects list of its containing block
// Parent layout needs to be invalidated to ensure this happens.
RenderObject* p = r->parent();
while (p && !p->isRenderBlock())
p = p->parent();
if (p)
p->setChildNeedsLayout(true);
deadObjects.append(r);
}
}
for (unsigned i = 0; i < deadObjects.size(); i++)
m_positionedObjects->remove(deadObjects.at(i));
}
RenderBlock::FloatingObject* RenderBlock::insertFloatingObject(RenderBox* o)
{
ASSERT(o->isFloating());
// Create the list of special objects if we don't aleady have one
if (!m_floatingObjects)
m_floatingObjects = adoptPtr(new FloatingObjects);
else {
// Don't insert the object again if it's already in the list
FloatingObjectSet& floatingObjectSet = m_floatingObjects->set();
FloatingObjectSetIterator it = floatingObjectSet.find<RenderBox*, FloatingObjectHashTranslator>(o);
if (it != floatingObjectSet.end())
return *it;
}
// Create the special object entry & append it to the list
FloatingObject* newObj = new FloatingObject(o->style()->floating() == FLEFT ? FloatingObject::FloatLeft : FloatingObject::FloatRight);
// Our location is irrelevant if we're unsplittable or no pagination is in effect.
// Just go ahead and lay out the float.
bool isChildRenderBlock = o->isRenderBlock();
if (isChildRenderBlock && !o->needsLayout() && view()->layoutState()->pageLogicalHeightChanged())
o->setChildNeedsLayout(true, false);
bool affectedByPagination = isChildRenderBlock && view()->layoutState()->m_pageLogicalHeight;
if (!affectedByPagination || isWritingModeRoot()) // We are unsplittable if we're a block flow root.
o->layoutIfNeeded();
else {
o->computeLogicalWidth();
o->computeBlockDirectionMargins(this);
}
setLogicalWidthForFloat(newObj, logicalWidthForChild(o) + marginStartForChild(o) + marginEndForChild(o));
newObj->m_shouldPaint = !o->hasSelfPaintingLayer(); // If a layer exists, the float will paint itself. Otherwise someone else will.
newObj->m_isDescendant = true;
newObj->m_renderer = o;
m_floatingObjects->increaseObjectsCount(newObj->type());
m_floatingObjects->set().add(newObj);
return newObj;
}
void RenderBlock::removeFloatingObject(RenderBox* o)
{
if (m_floatingObjects) {
FloatingObjectSet& floatingObjectSet = m_floatingObjects->set();
FloatingObjectSet::iterator it = floatingObjectSet.find<RenderBox*, FloatingObjectHashTranslator>(o);
if (it != floatingObjectSet.end()) {
FloatingObject* r = *it;
if (childrenInline()) {
int logicalTop = logicalTopForFloat(r);
int logicalBottom = logicalBottomForFloat(r);
// Fix for https://bugs.webkit.org/show_bug.cgi?id=54995.
if (logicalBottom < 0 || logicalBottom < logicalTop || logicalTop == numeric_limits<int>::max())
logicalBottom = numeric_limits<int>::max();
else {
// Special-case zero- and less-than-zero-height floats: those don't touch
// the line that they're on, but it still needs to be dirtied. This is
// accomplished by pretending they have a height of 1.
logicalBottom = max(logicalBottom, logicalTop + 1);
}
if (r->m_originatingLine) {
if (!selfNeedsLayout()) {
ASSERT(r->m_originatingLine->renderer() == this);
r->m_originatingLine->markDirty();
}
#if !ASSERT_DISABLED
r->m_originatingLine = 0;
#endif
}
markLinesDirtyInBlockRange(0, logicalBottom);
}
m_floatingObjects->decreaseObjectsCount(r->type());
floatingObjectSet.remove(it);
ASSERT(!r->m_originatingLine);
delete r;
}
}
}
void RenderBlock::removeFloatingObjectsBelow(FloatingObject* lastFloat, int logicalOffset)
{
if (!m_floatingObjects)
return;
FloatingObjectSet& floatingObjectSet = m_floatingObjects->set();
FloatingObject* curr = floatingObjectSet.last();
while (curr != lastFloat && (!curr->isPlaced() || logicalTopForFloat(curr) >= logicalOffset)) {
m_floatingObjects->decreaseObjectsCount(curr->type());
floatingObjectSet.removeLast();
ASSERT(!curr->m_originatingLine);
delete curr;
curr = floatingObjectSet.last();
}
}
bool RenderBlock::positionNewFloats()
{
if (!m_floatingObjects)
return false;
FloatingObjectSet& floatingObjectSet = m_floatingObjects->set();
if (floatingObjectSet.isEmpty())
return false;
// If all floats have already been positioned, then we have no work to do.
if (floatingObjectSet.last()->isPlaced())
return false;
// Move backwards through our floating object list until we find a float that has
// already been positioned. Then we'll be able to move forward, positioning all of
// the new floats that need it.
FloatingObjectSetIterator it = floatingObjectSet.end();
--it; // Go to last item.
FloatingObjectSetIterator begin = floatingObjectSet.begin();
FloatingObject* lastPlacedFloatingObject = 0;
while (it != begin) {
--it;
if ((*it)->isPlaced()) {
lastPlacedFloatingObject = *it;
++it;
break;
}
}
int logicalTop = logicalHeight();
// The float cannot start above the top position of the last positioned float.
if (lastPlacedFloatingObject)
logicalTop = max(logicalTopForFloat(lastPlacedFloatingObject), logicalTop);
FloatingObjectSetIterator end = floatingObjectSet.end();
// Now walk through the set of unpositioned floats and place them.
for (; it != end; ++it) {
FloatingObject* floatingObject = *it;
// The containing block is responsible for positioning floats, so if we have floats in our
// list that come from somewhere else, do not attempt to position them.
if (floatingObject->renderer()->containingBlock() != this)
continue;
RenderBox* childBox = floatingObject->renderer();
int childLogicalLeftMargin = style()->isLeftToRightDirection() ? marginStartForChild(childBox) : marginEndForChild(childBox);
int rightOffset = logicalRightOffsetForContent(); // Constant part of right offset.
int leftOffset = logicalLeftOffsetForContent(); // Constant part of left offset.
int floatLogicalWidth = logicalWidthForFloat(floatingObject); // The width we look for.
if (rightOffset - leftOffset < floatLogicalWidth)
floatLogicalWidth = rightOffset - leftOffset; // Never look for more than what will be available.
IntRect oldRect(childBox->x(), childBox->y() , childBox->width(), childBox->height());
if (childBox->style()->clear() & CLEFT)
logicalTop = max(lowestFloatLogicalBottom(FloatingObject::FloatLeft), logicalTop);
if (childBox->style()->clear() & CRIGHT)
logicalTop = max(lowestFloatLogicalBottom(FloatingObject::FloatRight), logicalTop);
int floatLogicalLeft;
if (childBox->style()->floating() == FLEFT) {
int heightRemainingLeft = 1;
int heightRemainingRight = 1;
floatLogicalLeft = logicalLeftOffsetForLine(logicalTop, leftOffset, false, &heightRemainingLeft);
while (logicalRightOffsetForLine(logicalTop, rightOffset, false, &heightRemainingRight) - floatLogicalLeft < floatLogicalWidth) {
logicalTop += min(heightRemainingLeft, heightRemainingRight);
floatLogicalLeft = logicalLeftOffsetForLine(logicalTop, leftOffset, false, &heightRemainingLeft);
}
floatLogicalLeft = max(0, floatLogicalLeft);
} else {
int heightRemainingLeft = 1;
int heightRemainingRight = 1;
floatLogicalLeft = logicalRightOffsetForLine(logicalTop, rightOffset, false, &heightRemainingRight);
while (floatLogicalLeft - logicalLeftOffsetForLine(logicalTop, leftOffset, false, &heightRemainingLeft) < floatLogicalWidth) {
logicalTop += min(heightRemainingLeft, heightRemainingRight);
floatLogicalLeft = logicalRightOffsetForLine(logicalTop, rightOffset, false, &heightRemainingRight);
}
floatLogicalLeft -= logicalWidthForFloat(floatingObject); // Use the original width of the float here, since the local variable
// |floatLogicalWidth| was capped to the available line width.
// See fast/block/float/clamped-right-float.html.
}
setLogicalLeftForFloat(floatingObject, floatLogicalLeft);
setLogicalLeftForChild(childBox, floatLogicalLeft + childLogicalLeftMargin);
setLogicalTopForChild(childBox, logicalTop + marginBeforeForChild(childBox));
if (view()->layoutState()->isPaginated()) {
RenderBlock* childBlock = childBox->isRenderBlock() ? toRenderBlock(childBox) : 0;
if (!childBox->needsLayout())
childBox->markForPaginationRelayoutIfNeeded();;
childBox->layoutIfNeeded();
// If we are unsplittable and don't fit, then we need to move down.
// We include our margins as part of the unsplittable area.
int newLogicalTop = adjustForUnsplittableChild(childBox, logicalTop, true);
// See if we have a pagination strut that is making us move down further.
// Note that an unsplittable child can't also have a pagination strut, so this is
// exclusive with the case above.
if (childBlock && childBlock->paginationStrut()) {
newLogicalTop += childBlock->paginationStrut();
childBlock->setPaginationStrut(0);
}
if (newLogicalTop != logicalTop) {
floatingObject->m_paginationStrut = newLogicalTop - logicalTop;
logicalTop = newLogicalTop;
setLogicalTopForChild(childBox, logicalTop + marginBeforeForChild(childBox));
if (childBlock)
childBlock->setChildNeedsLayout(true, false);
childBox->layoutIfNeeded();
}
}
setLogicalTopForFloat(floatingObject, logicalTop);
setLogicalHeightForFloat(floatingObject, logicalHeightForChild(childBox) + marginBeforeForChild(childBox) + marginAfterForChild(childBox));
floatingObject->setIsPlaced();
// If the child moved, we have to repaint it.
if (childBox->checkForRepaintDuringLayout())
childBox->repaintDuringLayoutIfMoved(oldRect);
}
return true;
}
void RenderBlock::newLine(EClear clear)
{
positionNewFloats();
// set y position
int newY = 0;
switch (clear)
{
case CLEFT:
newY = lowestFloatLogicalBottom(FloatingObject::FloatLeft);
break;
case CRIGHT:
newY = lowestFloatLogicalBottom(FloatingObject::FloatRight);
break;
case CBOTH:
newY = lowestFloatLogicalBottom();
default:
break;
}
if (height() < newY)
setLogicalHeight(newY);
}
void RenderBlock::addPercentHeightDescendant(RenderBox* descendant)
{
if (!gPercentHeightDescendantsMap) {
gPercentHeightDescendantsMap = new PercentHeightDescendantsMap;
gPercentHeightContainerMap = new PercentHeightContainerMap;
}
HashSet<RenderBox*>* descendantSet = gPercentHeightDescendantsMap->get(this);
if (!descendantSet) {
descendantSet = new HashSet<RenderBox*>;
gPercentHeightDescendantsMap->set(this, descendantSet);
}
bool added = descendantSet->add(descendant).second;
if (!added) {
ASSERT(gPercentHeightContainerMap->get(descendant));
ASSERT(gPercentHeightContainerMap->get(descendant)->contains(this));
return;
}
HashSet<RenderBlock*>* containerSet = gPercentHeightContainerMap->get(descendant);
if (!containerSet) {
containerSet = new HashSet<RenderBlock*>;
gPercentHeightContainerMap->set(descendant, containerSet);
}
ASSERT(!containerSet->contains(this));
containerSet->add(this);
}
void RenderBlock::removePercentHeightDescendant(RenderBox* descendant)
{
if (!gPercentHeightContainerMap)
return;
HashSet<RenderBlock*>* containerSet = gPercentHeightContainerMap->take(descendant);
if (!containerSet)
return;
HashSet<RenderBlock*>::iterator end = containerSet->end();
for (HashSet<RenderBlock*>::iterator it = containerSet->begin(); it != end; ++it) {
RenderBlock* container = *it;
HashSet<RenderBox*>* descendantSet = gPercentHeightDescendantsMap->get(container);
ASSERT(descendantSet);
if (!descendantSet)
continue;
ASSERT(descendantSet->contains(descendant));
descendantSet->remove(descendant);
if (descendantSet->isEmpty()) {
gPercentHeightDescendantsMap->remove(container);
delete descendantSet;
}
}
delete containerSet;
}
HashSet<RenderBox*>* RenderBlock::percentHeightDescendants() const
{
return gPercentHeightDescendantsMap ? gPercentHeightDescendantsMap->get(this) : 0;
}
// FIXME: The logicalLeftOffsetForLine/logicalRightOffsetForLine functions are very slow if there are many floats
// present. We need to add a structure to floating objects to represent "lines" of floats. Then instead of checking
// each float individually, we'd just walk backwards through the "lines" and stop when we hit a line that is fully above
// the vertical offset that we'd like to check. Computing the "lines" would be rather complicated, but could replace the left
// objects and right objects count hack that is currently used here.
int RenderBlock::logicalLeftOffsetForLine(int logicalTop, int fixedOffset, bool applyTextIndent, int* heightRemaining) const
{
int left = fixedOffset;
if (m_floatingObjects && m_floatingObjects->hasLeftObjects()) {
if (heightRemaining)
*heightRemaining = 1;
// We know the list is non-empty, since we have "left" objects to search for.
// Therefore we can assume that begin != end, and that we can do at least one
// decrement.
FloatingObjectSet& floatingObjectSet = m_floatingObjects->set();
FloatingObjectSetIterator begin = floatingObjectSet.begin();
FloatingObjectSetIterator it = floatingObjectSet.end();
do {
--it;
FloatingObject* r = *it;
if (r->isPlaced() && logicalTopForFloat(r) <= logicalTop && logicalBottomForFloat(r) > logicalTop
&& r->type() == FloatingObject::FloatLeft
&& logicalRightForFloat(r) > left) {
left = max(left, logicalRightForFloat(r));
if (heightRemaining)
*heightRemaining = logicalBottomForFloat(r) - logicalTop;
}
} while (it != begin);
}
if (applyTextIndent && style()->isLeftToRightDirection()) {
int cw = 0;
if (style()->textIndent().isPercent())
cw = containingBlock()->availableLogicalWidth();
left += style()->textIndent().calcMinValue(cw);
}
return left;
}
int RenderBlock::logicalRightOffsetForLine(int logicalTop, int fixedOffset, bool applyTextIndent, int* heightRemaining) const
{
int right = fixedOffset;
if (m_floatingObjects && m_floatingObjects->hasRightObjects()) {
if (heightRemaining)
*heightRemaining = 1;
// We know the list is non-empty, since we have "right" objects to search for.
// Therefore we can assume that begin != end, and that we can do at least one
// decrement.
FloatingObjectSet& floatingObjectSet = m_floatingObjects->set();
FloatingObjectSetIterator begin = floatingObjectSet.begin();
FloatingObjectSetIterator it = floatingObjectSet.end();
do {
--it;
FloatingObject* r = *it;
if (r->isPlaced() && logicalTopForFloat(r) <= logicalTop && logicalBottomForFloat(r) > logicalTop
&& r->type() == FloatingObject::FloatRight
&& logicalLeftForFloat(r) < right) {
right = min(right, logicalLeftForFloat(r));
if (heightRemaining)
*heightRemaining = logicalBottomForFloat(r) - logicalTop;
}
} while (it != begin);
}
if (applyTextIndent && !style()->isLeftToRightDirection()) {
int cw = 0;
if (style()->textIndent().isPercent())
cw = containingBlock()->availableLogicalWidth();
right -= style()->textIndent().calcMinValue(cw);
}
return right;
}
int RenderBlock::availableLogicalWidthForLine(int position, bool firstLine) const
{
int result = logicalRightOffsetForLine(position, firstLine) - logicalLeftOffsetForLine(position, firstLine);
return (result < 0) ? 0 : result;
}
int RenderBlock::nextFloatLogicalBottomBelow(int logicalHeight) const
{
if (!m_floatingObjects)
return 0;
int bottom = INT_MAX;
FloatingObjectSet& floatingObjectSet = m_floatingObjects->set();
FloatingObjectSetIterator end = floatingObjectSet.end();
for (FloatingObjectSetIterator it = floatingObjectSet.begin(); it != end; ++it) {
FloatingObject* r = *it;
int floatBottom = logicalBottomForFloat(r);
if (floatBottom > logicalHeight)
bottom = min(floatBottom, bottom);
}
return bottom == INT_MAX ? 0 : bottom;
}
int RenderBlock::lowestFloatLogicalBottom(FloatingObject::Type floatType) const
{
if (!m_floatingObjects)
return 0;
int lowestFloatBottom = 0;
FloatingObjectSet& floatingObjectSet = m_floatingObjects->set();
FloatingObjectSetIterator end = floatingObjectSet.end();
for (FloatingObjectSetIterator it = floatingObjectSet.begin(); it != end; ++it) {
FloatingObject* r = *it;
if (r->isPlaced() && r->type() & floatType)
lowestFloatBottom = max(lowestFloatBottom, logicalBottomForFloat(r));
}
return lowestFloatBottom;
}
void RenderBlock::markLinesDirtyInBlockRange(int logicalTop, int logicalBottom, RootInlineBox* highest)
{
if (logicalTop >= logicalBottom)
return;
RootInlineBox* lowestDirtyLine = lastRootBox();
RootInlineBox* afterLowest = lowestDirtyLine;
while (lowestDirtyLine && lowestDirtyLine->blockLogicalHeight() >= logicalBottom && logicalBottom < numeric_limits<int>::max()) {
afterLowest = lowestDirtyLine;
lowestDirtyLine = lowestDirtyLine->prevRootBox();
}
while (afterLowest && afterLowest != highest && (afterLowest->blockLogicalHeight() >= logicalTop || afterLowest->blockLogicalHeight() < 0)) {
afterLowest->markDirty();
afterLowest = afterLowest->prevRootBox();
}
}
void RenderBlock::clearFloats()
{
// Inline blocks are covered by the isReplaced() check in the avoidFloats method.
if (avoidsFloats() || isRoot() || isRenderView() || isFloatingOrPositioned() || isTableCell()) {
if (m_floatingObjects) {
deleteAllValues(m_floatingObjects->set());
m_floatingObjects->clear();
}
return;
}
typedef HashMap<RenderObject*, FloatingObject*> RendererToFloatInfoMap;
RendererToFloatInfoMap floatMap;
if (m_floatingObjects) {
FloatingObjectSet& floatingObjectSet = m_floatingObjects->set();
if (childrenInline()) {
FloatingObjectSet::iterator end = floatingObjectSet.end();
for (FloatingObjectSet::iterator it = floatingObjectSet.begin(); it != end; ++it) {
FloatingObject* f = *it;
floatMap.add(f->m_renderer, f);
}
} else
deleteAllValues(floatingObjectSet);
m_floatingObjects->clear();
}
// We should not process floats if the parent node is not a RenderBlock. Otherwise, we will add
// floats in an invalid context. This will cause a crash arising from a bad cast on the parent.
// See <rdar://problem/8049753>, where float property is applied on a text node in a SVG.
if (!parent() || !parent()->isRenderBlock())
return;
// Attempt to locate a previous sibling with overhanging floats. We skip any elements that are
// out of flow (like floating/positioned elements), and we also skip over any objects that may have shifted
// to avoid floats.
bool parentHasFloats = false;
RenderBlock* parentBlock = toRenderBlock(parent());
RenderObject* prev = previousSibling();
while (prev && (prev->isFloatingOrPositioned() || !prev->isBox() || !prev->isRenderBlock() || toRenderBlock(prev)->avoidsFloats())) {
if (prev->isFloating())
parentHasFloats = true;
prev = prev->previousSibling();
}
// First add in floats from the parent.
int logicalTopOffset = logicalTop();
if (parentHasFloats)
addIntrudingFloats(parentBlock, parentBlock->logicalLeftOffsetForContent(), logicalTopOffset);
int logicalLeftOffset = 0;
if (prev)
logicalTopOffset -= toRenderBox(prev)->logicalTop();
else {
prev = parentBlock;
logicalLeftOffset += parentBlock->logicalLeftOffsetForContent();
}
// Add overhanging floats from the previous RenderBlock, but only if it has a float that intrudes into our space.
if (!prev || !prev->isRenderBlock())
return;
RenderBlock* block = toRenderBlock(prev);
if (block->m_floatingObjects && block->lowestFloatLogicalBottom() > logicalTopOffset)
addIntrudingFloats(block, logicalLeftOffset, logicalTopOffset);
if (childrenInline()) {
int changeLogicalTop = numeric_limits<int>::max();
int changeLogicalBottom = numeric_limits<int>::min();
if (m_floatingObjects) {
FloatingObjectSet& floatingObjectSet = m_floatingObjects->set();
FloatingObjectSetIterator end = floatingObjectSet.end();
for (FloatingObjectSetIterator it = floatingObjectSet.begin(); it != end; ++it) {
FloatingObject* f = *it;
FloatingObject* oldFloatingObject = floatMap.get(f->m_renderer);
int logicalBottom = logicalBottomForFloat(f);
if (oldFloatingObject) {
int oldLogicalBottom = logicalBottomForFloat(oldFloatingObject);
if (logicalWidthForFloat(f) != logicalWidthForFloat(oldFloatingObject) || logicalLeftForFloat(f) != logicalLeftForFloat(oldFloatingObject)) {
changeLogicalTop = 0;
changeLogicalBottom = max(changeLogicalBottom, max(logicalBottom, oldLogicalBottom));
} else if (logicalBottom != oldLogicalBottom) {
changeLogicalTop = min(changeLogicalTop, min(logicalBottom, oldLogicalBottom));
changeLogicalBottom = max(changeLogicalBottom, max(logicalBottom, oldLogicalBottom));
}
floatMap.remove(f->m_renderer);
if (oldFloatingObject->m_originatingLine && !selfNeedsLayout()) {
ASSERT(oldFloatingObject->m_originatingLine->renderer() == this);
oldFloatingObject->m_originatingLine->markDirty();
}
delete oldFloatingObject;
} else {
changeLogicalTop = 0;
changeLogicalBottom = max(changeLogicalBottom, logicalBottom);
}
}
}
RendererToFloatInfoMap::iterator end = floatMap.end();
for (RendererToFloatInfoMap::iterator it = floatMap.begin(); it != end; ++it) {
FloatingObject* floatingObject = (*it).second;
if (!floatingObject->m_isDescendant) {
changeLogicalTop = 0;
changeLogicalBottom = max(changeLogicalBottom, logicalBottomForFloat(floatingObject));
}
}
deleteAllValues(floatMap);
markLinesDirtyInBlockRange(changeLogicalTop, changeLogicalBottom);
}
}
int RenderBlock::addOverhangingFloats(RenderBlock* child, int logicalLeftOffset, int logicalTopOffset, bool makeChildPaintOtherFloats)
{
// Prevent floats from being added to the canvas by the root element, e.g., <html>.
if (child->hasOverflowClip() || !child->containsFloats() || child->isRoot() || child->hasColumns() || child->isWritingModeRoot())
return 0;
int childLogicalTop = child->logicalTop();
int lowestFloatLogicalBottom = 0;
// Floats that will remain the child's responsibility to paint should factor into its
// overflow.
FloatingObjectSetIterator childEnd = child->m_floatingObjects->set().end();
for (FloatingObjectSetIterator childIt = child->m_floatingObjects->set().begin(); childIt != childEnd; ++childIt) {
FloatingObject* r = *childIt;
int logicalBottomForFloat = min(this->logicalBottomForFloat(r), numeric_limits<int>::max() - childLogicalTop);
int logicalBottom = childLogicalTop + logicalBottomForFloat;
lowestFloatLogicalBottom = max(lowestFloatLogicalBottom, logicalBottom);
if (logicalBottom > logicalHeight()) {
// If the object is not in the list, we add it now.
if (!containsFloat(r->m_renderer)) {
int leftOffset = isHorizontalWritingMode() ? logicalLeftOffset : logicalTopOffset;
int topOffset = isHorizontalWritingMode() ? logicalTopOffset : logicalLeftOffset;
FloatingObject* floatingObj = new FloatingObject(r->type(), IntRect(r->x() - leftOffset, r->y() - topOffset, r->width(), r->height()));
floatingObj->m_renderer = r->m_renderer;
// The nearest enclosing layer always paints the float (so that zindex and stacking
// behaves properly). We always want to propagate the desire to paint the float as
// far out as we can, to the outermost block that overlaps the float, stopping only
// if we hit a self-painting layer boundary.
if (r->m_renderer->enclosingFloatPaintingLayer() == enclosingFloatPaintingLayer())
r->m_shouldPaint = false;
else
floatingObj->m_shouldPaint = false;
floatingObj->m_isDescendant = true;
// We create the floating object list lazily.
if (!m_floatingObjects)
m_floatingObjects = adoptPtr(new FloatingObjects);
m_floatingObjects->increaseObjectsCount(floatingObj->type());
m_floatingObjects->set().add(floatingObj);
}
} else {
if (makeChildPaintOtherFloats && !r->m_shouldPaint && !r->m_renderer->hasSelfPaintingLayer() &&
r->m_renderer->isDescendantOf(child) && r->m_renderer->enclosingFloatPaintingLayer() == child->enclosingFloatPaintingLayer()) {
// The float is not overhanging from this block, so if it is a descendant of the child, the child should
// paint it (the other case is that it is intruding into the child), unless it has its own layer or enclosing
// layer.
// If makeChildPaintOtherFloats is false, it means that the child must already know about all the floats
// it should paint.
r->m_shouldPaint = true;
}
// Since the float doesn't overhang, it didn't get put into our list. We need to go ahead and add its overflow in to the
// child now.
if (r->m_isDescendant)
child->addOverflowFromChild(r->m_renderer, IntSize(xPositionForFloatIncludingMargin(r), yPositionForFloatIncludingMargin(r)));
}
}
return lowestFloatLogicalBottom;
}
bool RenderBlock::hasOverhangingFloat(RenderBox* renderer)
{
if (!m_floatingObjects || hasColumns() || !parent())
return false;
FloatingObjectSet& floatingObjectSet = m_floatingObjects->set();
FloatingObjectSetIterator it = floatingObjectSet.find<RenderBox*, FloatingObjectHashTranslator>(renderer);
if (it == floatingObjectSet.end())
return false;
return logicalBottomForFloat(*it) > logicalHeight();
}
void RenderBlock::addIntrudingFloats(RenderBlock* prev, int logicalLeftOffset, int logicalTopOffset)
{
// If the parent or previous sibling doesn't have any floats to add, don't bother.
if (!prev->m_floatingObjects)
return;
logicalLeftOffset += (isHorizontalWritingMode() ? marginLeft() : marginTop());
FloatingObjectSet& prevSet = prev->m_floatingObjects->set();
FloatingObjectSetIterator prevEnd = prevSet.end();
for (FloatingObjectSetIterator prevIt = prevSet.begin(); prevIt != prevEnd; ++prevIt) {
FloatingObject* r = *prevIt;
if (logicalBottomForFloat(r) > logicalTopOffset) {
if (!m_floatingObjects || !m_floatingObjects->set().contains(r)) {
int leftOffset = isHorizontalWritingMode() ? logicalLeftOffset : logicalTopOffset;
int topOffset = isHorizontalWritingMode() ? logicalTopOffset : logicalLeftOffset;
FloatingObject* floatingObj = new FloatingObject(r->type(), IntRect(r->x() - leftOffset, r->y() - topOffset, r->width(), r->height()));
// Applying the child's margin makes no sense in the case where the child was passed in.
// since this margin was added already through the modification of the |logicalLeftOffset| variable
// above. |logicalLeftOffset| will equal the margin in this case, so it's already been taken
// into account. Only apply this code if prev is the parent, since otherwise the left margin
// will get applied twice.
if (prev != parent()) {
if (isHorizontalWritingMode())
floatingObj->setX(floatingObj->x() + prev->marginLeft());
else
floatingObj->setY(floatingObj->y() + prev->marginTop());
}
floatingObj->m_shouldPaint = false; // We are not in the direct inheritance chain for this float. We will never paint it.
floatingObj->m_renderer = r->m_renderer;
// We create the floating object list lazily.
if (!m_floatingObjects)
m_floatingObjects = adoptPtr(new FloatingObjects);
m_floatingObjects->increaseObjectsCount(floatingObj->type());
m_floatingObjects->set().add(floatingObj);
}
}
}
}
bool RenderBlock::avoidsFloats() const
{
// Floats can't intrude into our box if we have a non-auto column count or width.
return RenderBox::avoidsFloats() || !style()->hasAutoColumnCount() || !style()->hasAutoColumnWidth();
}
bool RenderBlock::containsFloat(RenderBox* renderer)
{
return m_floatingObjects && m_floatingObjects->set().contains<RenderBox*, FloatingObjectHashTranslator>(renderer);
}
void RenderBlock::markAllDescendantsWithFloatsForLayout(RenderBox* floatToRemove, bool inLayout)
{
if (!m_everHadLayout)
return;
setChildNeedsLayout(true, !inLayout);
if (floatToRemove)
removeFloatingObject(floatToRemove);
// Iterate over our children and mark them as needed.
if (!childrenInline()) {
for (RenderObject* child = firstChild(); child; child = child->nextSibling()) {
if ((!floatToRemove && child->isFloatingOrPositioned()) || !child->isRenderBlock())
continue;
RenderBlock* childBlock = toRenderBlock(child);
if ((floatToRemove ? childBlock->containsFloat(floatToRemove) : childBlock->containsFloats()) || childBlock->shrinkToAvoidFloats())
childBlock->markAllDescendantsWithFloatsForLayout(floatToRemove, inLayout);
}
}
}
void RenderBlock::markSiblingsWithFloatsForLayout()
{
FloatingObjectSet& floatingObjectSet = m_floatingObjects->set();
FloatingObjectSetIterator end = floatingObjectSet.end();
for (FloatingObjectSetIterator it = floatingObjectSet.begin(); it != end; ++it) {
if (logicalBottomForFloat(*it) > logicalHeight()) {
RenderBox* floatingBox = (*it)->renderer();
RenderObject* next = nextSibling();
while (next) {
if (next->isRenderBlock() && !next->isFloatingOrPositioned() && !toRenderBlock(next)->avoidsFloats()) {
RenderBlock* nextBlock = toRenderBlock(next);
if (nextBlock->containsFloat(floatingBox))
nextBlock->markAllDescendantsWithFloatsForLayout(floatingBox);
else
break;
}
next = next->nextSibling();
}
}
}
}
int RenderBlock::getClearDelta(RenderBox* child, int yPos)
{
// There is no need to compute clearance if we have no floats.
if (!containsFloats())
return 0;
// At least one float is present. We need to perform the clearance computation.
bool clearSet = child->style()->clear() != CNONE;
int bottom = 0;
switch (child->style()->clear()) {
case CNONE:
break;
case CLEFT:
bottom = lowestFloatLogicalBottom(FloatingObject::FloatLeft);
break;
case CRIGHT:
bottom = lowestFloatLogicalBottom(FloatingObject::FloatRight);
break;
case CBOTH:
bottom = lowestFloatLogicalBottom();
break;
}
// We also clear floats if we are too big to sit on the same line as a float (and wish to avoid floats by default).
int result = clearSet ? max(0, bottom - yPos) : 0;
if (!result && child->avoidsFloats()) {
int y = yPos;
while (true) {
int widthAtY = availableLogicalWidthForLine(y, false);
if (widthAtY == availableLogicalWidth())
return y - yPos;
int oldChildY = child->y();
int oldChildWidth = child->width();
child->setY(y);
child->computeLogicalWidth();
int childWidthAtY = child->width();
child->setY(oldChildY);
child->setWidth(oldChildWidth);
if (childWidthAtY <= widthAtY)
return y - yPos;
y = nextFloatLogicalBottomBelow(y);
ASSERT(y >= yPos);
if (y < yPos)
break;
}
ASSERT_NOT_REACHED();
}
return result;
}
bool RenderBlock::isPointInOverflowControl(HitTestResult& result, int _x, int _y, int _tx, int _ty)
{
if (!scrollsOverflow())
return false;
return layer()->hitTestOverflowControls(result, IntPoint(_x - _tx, _y - _ty));
}
bool RenderBlock::nodeAtPoint(const HitTestRequest& request, HitTestResult& result, int _x, int _y, int _tx, int _ty, HitTestAction hitTestAction)
{
int tx = _tx + x();
int ty = _ty + y();
if (!isRenderView()) {
// Check if we need to do anything at all.
IntRect overflowBox = visualOverflowRect();
overflowBox.move(tx, ty);
if (!overflowBox.intersects(result.rectForPoint(_x, _y)))
return false;
}
if ((hitTestAction == HitTestBlockBackground || hitTestAction == HitTestChildBlockBackground) && isPointInOverflowControl(result, _x, _y, tx, ty)) {
updateHitTestResult(result, IntPoint(_x - tx, _y - ty));
// FIXME: isPointInOverflowControl() doesn't handle rect-based tests yet.
if (!result.addNodeToRectBasedTestResult(node(), _x, _y))
return true;
}
// If we have clipping, then we can't have any spillout.
bool useOverflowClip = hasOverflowClip() && !hasSelfPaintingLayer();
bool useClip = (hasControlClip() || useOverflowClip);
IntRect hitTestArea(result.rectForPoint(_x, _y));
bool checkChildren = !useClip || (hasControlClip() ? controlClipRect(tx, ty).intersects(hitTestArea) : overflowClipRect(tx, ty, IncludeOverlayScrollbarSize).intersects(hitTestArea));
if (checkChildren) {
// Hit test descendants first.
int scrolledX = tx;
int scrolledY = ty;
if (hasOverflowClip()) {
IntSize offset = layer()->scrolledContentOffset();
scrolledX -= offset.width();
scrolledY -= offset.height();
}
// Hit test contents if we don't have columns.
if (!hasColumns()) {
if (hitTestContents(request, result, _x, _y, scrolledX, scrolledY, hitTestAction)) {
updateHitTestResult(result, IntPoint(_x - tx, _y - ty));
return true;
}
if (hitTestAction == HitTestFloat && hitTestFloats(request, result, _x, _y, scrolledX, scrolledY))
return true;
} else if (hitTestColumns(request, result, _x, _y, scrolledX, scrolledY, hitTestAction)) {
updateHitTestResult(result, IntPoint(_x - tx, _y - ty));
return true;
}
}
// Now hit test our background
if (hitTestAction == HitTestBlockBackground || hitTestAction == HitTestChildBlockBackground) {
IntRect boundsRect(tx, ty, width(), height());
if (visibleToHitTesting() && boundsRect.intersects(result.rectForPoint(_x, _y))) {
updateHitTestResult(result, flipForWritingMode(IntPoint(_x - tx, _y - ty)));
if (!result.addNodeToRectBasedTestResult(node(), _x, _y, boundsRect))
return true;
}
}
return false;
}
bool RenderBlock::hitTestFloats(const HitTestRequest& request, HitTestResult& result, int x, int y, int tx, int ty)
{
if (!m_floatingObjects)
return false;
if (isRenderView()) {
tx += toRenderView(this)->frameView()->scrollX();
ty += toRenderView(this)->frameView()->scrollY();
}
FloatingObjectSet& floatingObjectSet = m_floatingObjects->set();
FloatingObjectSetIterator begin = floatingObjectSet.begin();
for (FloatingObjectSetIterator it = floatingObjectSet.end(); it != begin;) {
--it;
FloatingObject* floatingObject = *it;
if (floatingObject->m_shouldPaint && !floatingObject->m_renderer->hasSelfPaintingLayer()) {
int xOffset = xPositionForFloatIncludingMargin(floatingObject) - floatingObject->m_renderer->x();
int yOffset = yPositionForFloatIncludingMargin(floatingObject) - floatingObject->m_renderer->y();
IntPoint childPoint = flipFloatForWritingMode(floatingObject, IntPoint(tx + xOffset, ty + yOffset));
if (floatingObject->m_renderer->hitTest(request, result, IntPoint(x, y), childPoint.x(), childPoint.y())) {
updateHitTestResult(result, IntPoint(x - childPoint.x(), y - childPoint.y()));
return true;
}
}
}
return false;
}
bool RenderBlock::hitTestColumns(const HitTestRequest& request, HitTestResult& result, int x, int y, int tx, int ty, HitTestAction hitTestAction)
{
// We need to do multiple passes, breaking up our hit testing into strips.
ColumnInfo* colInfo = columnInfo();
int colCount = columnCount(colInfo);
if (!colCount)
return false;
int logicalLeft = logicalLeftOffsetForContent();
int currLogicalTopOffset = 0;
int i;
bool isHorizontal = isHorizontalWritingMode();
for (i = 0; i < colCount; i++) {
IntRect colRect = columnRectAt(colInfo, i);
int blockDelta = (isHorizontal ? colRect.height() : colRect.width());
if (style()->isFlippedBlocksWritingMode())
currLogicalTopOffset += blockDelta;
else
currLogicalTopOffset -= blockDelta;
}
for (i = colCount - 1; i >= 0; i--) {
IntRect colRect = columnRectAt(colInfo, i);
flipForWritingMode(colRect);
int currLogicalLeftOffset = (isHorizontal ? colRect.x() : colRect.y()) - logicalLeft;
int blockDelta = (isHorizontal ? colRect.height() : colRect.width());
if (style()->isFlippedBlocksWritingMode())
currLogicalTopOffset -= blockDelta;
else
currLogicalTopOffset += blockDelta;
colRect.move(tx, ty);
if (colRect.intersects(result.rectForPoint(x, y))) {
// The point is inside this column.
// Adjust tx and ty to change where we hit test.
IntSize offset = isHorizontal ? IntSize(currLogicalLeftOffset, currLogicalTopOffset) : IntSize(currLogicalTopOffset, currLogicalLeftOffset);
int finalX = tx + offset.width();
int finalY = ty + offset.height();
if (result.isRectBasedTest() && !colRect.contains(result.rectForPoint(x, y)))
hitTestContents(request, result, x, y, finalX, finalY, hitTestAction);
else
return hitTestContents(request, result, x, y, finalX, finalY, hitTestAction) || (hitTestAction == HitTestFloat && hitTestFloats(request, result, x, y, finalX, finalY));
}
}
return false;
}
bool RenderBlock::hitTestContents(const HitTestRequest& request, HitTestResult& result, int x, int y, int tx, int ty, HitTestAction hitTestAction)
{
if (childrenInline() && !isTable()) {
// We have to hit-test our line boxes.
if (m_lineBoxes.hitTest(this, request, result, x, y, tx, ty, hitTestAction))
return true;
} else {
// Hit test our children.
HitTestAction childHitTest = hitTestAction;
if (hitTestAction == HitTestChildBlockBackgrounds)
childHitTest = HitTestChildBlockBackground;
for (RenderBox* child = lastChildBox(); child; child = child->previousSiblingBox()) {
IntPoint childPoint = flipForWritingMode(child, IntPoint(tx, ty), ParentToChildFlippingAdjustment);
if (!child->hasSelfPaintingLayer() && !child->isFloating() && child->nodeAtPoint(request, result, x, y, childPoint.x(), childPoint.y(), childHitTest))
return true;
}
}
return false;
}
Position RenderBlock::positionForBox(InlineBox *box, bool start) const
{
if (!box)
return Position();
if (!box->renderer()->node())
return Position(node(), start ? caretMinOffset() : caretMaxOffset());
if (!box->isInlineTextBox())
return Position(box->renderer()->node(), start ? box->renderer()->caretMinOffset() : box->renderer()->caretMaxOffset());
InlineTextBox *textBox = static_cast<InlineTextBox *>(box);
return Position(box->renderer()->node(), start ? textBox->start() : textBox->start() + textBox->len());
}
// FIXME: This function should go on RenderObject as an instance method. Then
// all cases in which positionForPoint recurs could call this instead to
// prevent crossing editable boundaries. This would require many tests.
static VisiblePosition positionForPointRespectingEditingBoundaries(RenderBlock* parent, RenderBox* child, const IntPoint& pointInParentCoordinates)
{
// FIXME: This is wrong if the child's writing-mode is different from the parent's.
IntPoint pointInChildCoordinates(pointInParentCoordinates - child->location());
// If this is an anonymous renderer, we just recur normally
Node* childNode = child->node();
if (!childNode)
return child->positionForPoint(pointInChildCoordinates);
// Otherwise, first make sure that the editability of the parent and child agree.
// If they don't agree, then we return a visible position just before or after the child
RenderObject* ancestor = parent;
while (ancestor && !ancestor->node())
ancestor = ancestor->parent();
// If we can't find an ancestor to check editability on, or editability is unchanged, we recur like normal
if (!ancestor || ancestor->node()->rendererIsEditable() == childNode->rendererIsEditable())
return child->positionForPoint(pointInChildCoordinates);
// Otherwise return before or after the child, depending on if the click was to the logical left or logical right of the child
int childMiddle = parent->logicalWidthForChild(child) / 2;
int logicalLeft = parent->isHorizontalWritingMode() ? pointInChildCoordinates.x() : pointInChildCoordinates.y();
if (logicalLeft < childMiddle)
return ancestor->createVisiblePosition(childNode->nodeIndex(), DOWNSTREAM);
return ancestor->createVisiblePosition(childNode->nodeIndex() + 1, UPSTREAM);
}
VisiblePosition RenderBlock::positionForPointWithInlineChildren(const IntPoint& pointInLogicalContents)
{
ASSERT(childrenInline());
if (!firstRootBox())
return createVisiblePosition(0, DOWNSTREAM);
// look for the closest line box in the root box which is at the passed-in y coordinate
InlineBox* closestBox = 0;
RootInlineBox* firstRootBoxWithChildren = 0;
RootInlineBox* lastRootBoxWithChildren = 0;
for (RootInlineBox* root = firstRootBox(); root; root = root->nextRootBox()) {
if (!root->firstLeafChild())
continue;
if (!firstRootBoxWithChildren)
firstRootBoxWithChildren = root;
lastRootBoxWithChildren = root;
// check if this root line box is located at this y coordinate
if (pointInLogicalContents.y() < root->selectionBottom()) {
closestBox = root->closestLeafChildForLogicalLeftPosition(pointInLogicalContents.x());
if (closestBox)
break;
}
}
bool moveCaretToBoundary = document()->frame()->editor()->behavior().shouldMoveCaretToHorizontalBoundaryWhenPastTopOrBottom();
if (!moveCaretToBoundary && !closestBox && lastRootBoxWithChildren) {
// y coordinate is below last root line box, pretend we hit it
closestBox = lastRootBoxWithChildren->closestLeafChildForLogicalLeftPosition(pointInLogicalContents.x());
}
if (closestBox) {
if (moveCaretToBoundary && pointInLogicalContents.y() < firstRootBoxWithChildren->selectionTop()
&& pointInLogicalContents.y() < firstRootBoxWithChildren->logicalTop()) {
// y coordinate is above first root line box, so return the start of the first
return VisiblePosition(positionForBox(firstRootBoxWithChildren->firstLeafChild(), true), DOWNSTREAM);
}
// pass the box a top position that is inside it
IntPoint point(pointInLogicalContents.x(), closestBox->logicalTop());
if (!isHorizontalWritingMode())
point = point.transposedPoint();
if (closestBox->renderer()->isReplaced())
return positionForPointRespectingEditingBoundaries(this, toRenderBox(closestBox->renderer()), point);
return closestBox->renderer()->positionForPoint(point);
}
if (lastRootBoxWithChildren) {
// We hit this case for Mac behavior when the Y coordinate is below the last box.
ASSERT(moveCaretToBoundary);
InlineBox* logicallyLastBox;
if (lastRootBoxWithChildren->getLogicalEndBoxWithNode(logicallyLastBox))
return VisiblePosition(positionForBox(logicallyLastBox, false), DOWNSTREAM);
}
// Can't reach this. We have a root line box, but it has no kids.
// FIXME: This should ASSERT_NOT_REACHED(), but clicking on placeholder text
// seems to hit this code path.
return createVisiblePosition(0, DOWNSTREAM);
}
static inline bool isChildHitTestCandidate(RenderBox* box)
{
return box->height() && box->style()->visibility() == VISIBLE && !box->isFloatingOrPositioned();
}
VisiblePosition RenderBlock::positionForPoint(const IntPoint& point)
{
if (isTable())
return RenderBox::positionForPoint(point);
if (isReplaced()) {
// FIXME: This seems wrong when the object's writing-mode doesn't match the line's writing-mode.
int pointLogicalLeft = isHorizontalWritingMode() ? point.x() : point.y();
int pointLogicalTop = isHorizontalWritingMode() ? point.y() : point.x();
if (pointLogicalTop < 0 || (pointLogicalTop < logicalHeight() && pointLogicalLeft < 0))
return createVisiblePosition(caretMinOffset(), DOWNSTREAM);
if (pointLogicalTop >= logicalHeight() || (pointLogicalTop >= 0 && pointLogicalLeft >= logicalWidth()))
return createVisiblePosition(caretMaxOffset(), DOWNSTREAM);
}
int contentsX = point.x();
int contentsY = point.y();
offsetForContents(contentsX, contentsY);
IntPoint pointInContents(contentsX, contentsY);
IntPoint pointInLogicalContents(pointInContents);
if (!isHorizontalWritingMode())
pointInLogicalContents = pointInLogicalContents.transposedPoint();
if (childrenInline())
return positionForPointWithInlineChildren(pointInLogicalContents);
if (lastChildBox() && pointInContents.y() > lastChildBox()->logicalTop()) {
for (RenderBox* childBox = lastChildBox(); childBox; childBox = childBox->previousSiblingBox()) {
if (isChildHitTestCandidate(childBox))
return positionForPointRespectingEditingBoundaries(this, childBox, pointInContents);
}
} else {
for (RenderBox* childBox = firstChildBox(); childBox; childBox = childBox->nextSiblingBox()) {
// We hit child if our click is above the bottom of its padding box (like IE6/7 and FF3).
if (isChildHitTestCandidate(childBox) && pointInContents.y() < childBox->logicalBottom())
return positionForPointRespectingEditingBoundaries(this, childBox, pointInContents);
}
}
// We only get here if there are no hit test candidate children below the click.
return RenderBox::positionForPoint(point);
}
void RenderBlock::offsetForContents(int& tx, int& ty) const
{
IntPoint contentsPoint(tx, ty);
if (hasOverflowClip())
contentsPoint += layer()->scrolledContentOffset();
if (hasColumns())
adjustPointToColumnContents(contentsPoint);
tx = contentsPoint.x();
ty = contentsPoint.y();
}
int RenderBlock::availableLogicalWidth() const
{
// If we have multiple columns, then the available logical width is reduced to our column width.
if (hasColumns())
return desiredColumnWidth();
return RenderBox::availableLogicalWidth();
}
int RenderBlock::columnGap() const
{
if (style()->hasNormalColumnGap())
return style()->fontDescription().computedPixelSize(); // "1em" is recommended as the normal gap setting. Matches <p> margins.
return static_cast<int>(style()->columnGap());
}
void RenderBlock::calcColumnWidth()
{
// Calculate our column width and column count.
unsigned desiredColumnCount = 1;
int desiredColumnWidth = contentLogicalWidth();
// For now, we don't support multi-column layouts when printing, since we have to do a lot of work for proper pagination.
if (document()->paginated() || (style()->hasAutoColumnCount() && style()->hasAutoColumnWidth())) {
setDesiredColumnCountAndWidth(desiredColumnCount, desiredColumnWidth);
return;
}
int availWidth = desiredColumnWidth;
int colGap = columnGap();
int colWidth = max(1, static_cast<int>(style()->columnWidth()));
int colCount = max(1, static_cast<int>(style()->columnCount()));
if (style()->hasAutoColumnWidth() && !style()->hasAutoColumnCount()) {
desiredColumnCount = colCount;
desiredColumnWidth = max<int>(0, (availWidth - ((desiredColumnCount - 1) * colGap)) / desiredColumnCount);
} else if (!style()->hasAutoColumnWidth() && style()->hasAutoColumnCount()) {
desiredColumnCount = max<int>(1, (float)(availWidth + colGap) / (colWidth + colGap));
desiredColumnWidth = ((availWidth + colGap) / desiredColumnCount) - colGap;
} else {
desiredColumnCount = max(min<int>(colCount, (float)(availWidth + colGap) / (colWidth + colGap)), 1);
desiredColumnWidth = ((availWidth + colGap) / desiredColumnCount) - colGap;
}
setDesiredColumnCountAndWidth(desiredColumnCount, desiredColumnWidth);
}
void RenderBlock::setDesiredColumnCountAndWidth(int count, int width)
{
bool destroyColumns = !firstChild()
|| (count == 1 && style()->hasAutoColumnWidth())
|| firstChild()->isAnonymousColumnsBlock()
|| firstChild()->isAnonymousColumnSpanBlock();
if (destroyColumns) {
if (hasColumns()) {
delete gColumnInfoMap->take(this);
setHasColumns(false);
}
} else {
ColumnInfo* info;
if (hasColumns())
info = gColumnInfoMap->get(this);
else {
if (!gColumnInfoMap)
gColumnInfoMap = new ColumnInfoMap;
info = new ColumnInfo;
gColumnInfoMap->add(this, info);
setHasColumns(true);
}
info->setDesiredColumnCount(count);
info->setDesiredColumnWidth(width);
}
}
int RenderBlock::desiredColumnWidth() const
{
if (!hasColumns())
return contentLogicalWidth();
return gColumnInfoMap->get(this)->desiredColumnWidth();
}
unsigned RenderBlock::desiredColumnCount() const
{
if (!hasColumns())
return 1;
return gColumnInfoMap->get(this)->desiredColumnCount();
}
ColumnInfo* RenderBlock::columnInfo() const
{
if (!hasColumns())
return 0;
return gColumnInfoMap->get(this);
}
unsigned RenderBlock::columnCount(ColumnInfo* colInfo) const
{
ASSERT(hasColumns() && gColumnInfoMap->get(this) == colInfo);
return colInfo->columnCount();
}
IntRect RenderBlock::columnRectAt(ColumnInfo* colInfo, unsigned index) const
{
ASSERT(hasColumns() && gColumnInfoMap->get(this) == colInfo);
// Compute the appropriate rect based off our information.
int colLogicalWidth = colInfo->desiredColumnWidth();
int colLogicalHeight = colInfo->columnHeight();
int colLogicalTop = borderBefore() + paddingBefore();
int colGap = columnGap();
int colLogicalLeft = style()->isLeftToRightDirection() ?
logicalLeftOffsetForContent() + (index * (colLogicalWidth + colGap))
: logicalLeftOffsetForContent() + contentLogicalWidth() - colLogicalWidth - (index * (colLogicalWidth + colGap));
IntRect rect(colLogicalLeft, colLogicalTop, colLogicalWidth, colLogicalHeight);
if (isHorizontalWritingMode())
return IntRect(colLogicalLeft, colLogicalTop, colLogicalWidth, colLogicalHeight);
return IntRect(colLogicalTop, colLogicalLeft, colLogicalHeight, colLogicalWidth);
}
bool RenderBlock::layoutColumns(bool hasSpecifiedPageLogicalHeight, int pageLogicalHeight, LayoutStateMaintainer& statePusher)
{
if (!hasColumns())
return false;
// FIXME: We don't balance properly at all in the presence of forced page breaks. We need to understand what
// the distance between forced page breaks is so that we can avoid making the minimum column height too tall.
ColumnInfo* colInfo = columnInfo();
int desiredColumnCount = colInfo->desiredColumnCount();
if (!hasSpecifiedPageLogicalHeight) {
int columnHeight = pageLogicalHeight;
int minColumnCount = colInfo->forcedBreaks() + 1;
if (minColumnCount >= desiredColumnCount) {
// The forced page breaks are in control of the balancing. Just set the column height to the
// maximum page break distance.
if (!pageLogicalHeight) {
int distanceBetweenBreaks = max(colInfo->maximumDistanceBetweenForcedBreaks(),
view()->layoutState()->pageLogicalOffset(borderBefore() + paddingBefore() + contentLogicalHeight()) - colInfo->forcedBreakOffset());
columnHeight = max(colInfo->minimumColumnHeight(), distanceBetweenBreaks);
}
} else if (contentLogicalHeight() > pageLogicalHeight * desiredColumnCount) {
// Now that we know the intrinsic height of the columns, we have to rebalance them.
columnHeight = max(colInfo->minimumColumnHeight(), (int)ceilf((float)contentLogicalHeight() / desiredColumnCount));
}
if (columnHeight && columnHeight != pageLogicalHeight) {
statePusher.pop();
m_everHadLayout = true;
layoutBlock(false, columnHeight);
return true;
}
}
if (pageLogicalHeight)
colInfo->setColumnCountAndHeight(ceilf((float)contentLogicalHeight() / pageLogicalHeight), pageLogicalHeight);
if (columnCount(colInfo)) {
setLogicalHeight(borderBefore() + paddingBefore() + colInfo->columnHeight() + borderAfter() + paddingAfter() + scrollbarLogicalHeight());
m_overflow.clear();
}
return false;
}
void RenderBlock::adjustPointToColumnContents(IntPoint& point) const
{
// Just bail if we have no columns.
if (!hasColumns())
return;
ColumnInfo* colInfo = columnInfo();
if (!columnCount(colInfo))
return;
// Determine which columns we intersect.
int colGap = columnGap();
int halfColGap = colGap / 2;
IntPoint columnPoint(columnRectAt(colInfo, 0).location());
int logicalOffset = 0;
for (unsigned i = 0; i < colInfo->columnCount(); i++) {
// Add in half the column gap to the left and right of the rect.
IntRect colRect = columnRectAt(colInfo, i);
if (isHorizontalWritingMode()) {
IntRect gapAndColumnRect(colRect.x() - halfColGap, colRect.y(), colRect.width() + colGap, colRect.height());
if (point.x() >= gapAndColumnRect.x() && point.x() < gapAndColumnRect.maxX()) {
// FIXME: The clamping that follows is not completely right for right-to-left
// content.
// Clamp everything above the column to its top left.
if (point.y() < gapAndColumnRect.y())
point = gapAndColumnRect.location();
// Clamp everything below the column to the next column's top left. If there is
// no next column, this still maps to just after this column.
else if (point.y() >= gapAndColumnRect.maxY()) {
point = gapAndColumnRect.location();
point.move(0, gapAndColumnRect.height());
}
// We're inside the column. Translate the x and y into our column coordinate space.
point.move(columnPoint.x() - colRect.x(), logicalOffset);
return;
}
// Move to the next position.
logicalOffset += colRect.height();
} else {
IntRect gapAndColumnRect(colRect.x(), colRect.y() - halfColGap, colRect.width(), colRect.height() + colGap);
if (point.y() >= gapAndColumnRect.y() && point.y() < gapAndColumnRect.maxY()) {
// FIXME: The clamping that follows is not completely right for right-to-left
// content.
// Clamp everything above the column to its top left.
if (point.x() < gapAndColumnRect.x())
point = gapAndColumnRect.location();
// Clamp everything below the column to the next column's top left. If there is
// no next column, this still maps to just after this column.
else if (point.x() >= gapAndColumnRect.maxX()) {
point = gapAndColumnRect.location();
point.move(gapAndColumnRect.width(), 0);
}
// We're inside the column. Translate the x and y into our column coordinate space.
point.move(logicalOffset, columnPoint.y() - colRect.y());
return;
}
// Move to the next position.
logicalOffset += colRect.width();
}
}
}
void RenderBlock::adjustRectForColumns(IntRect& r) const
{
// Just bail if we have no columns.
if (!hasColumns())
return;
ColumnInfo* colInfo = columnInfo();
// Begin with a result rect that is empty.
IntRect result;
// Determine which columns we intersect.
unsigned colCount = columnCount(colInfo);
if (!colCount)
return;
int logicalLeft = logicalLeftOffsetForContent();
int currLogicalOffset = 0;
for (unsigned i = 0; i < colCount; i++) {
IntRect colRect = columnRectAt(colInfo, i);
IntRect repaintRect = r;
if (isHorizontalWritingMode()) {
int currXOffset = colRect.x() - logicalLeft;
repaintRect.move(currXOffset, currLogicalOffset);
currLogicalOffset -= colRect.height();
} else {
int currYOffset = colRect.y() - logicalLeft;
repaintRect.move(currLogicalOffset, currYOffset);
currLogicalOffset -= colRect.width();
}
repaintRect.intersect(colRect);
result.unite(repaintRect);
}
r = result;
}
IntPoint RenderBlock::flipForWritingModeIncludingColumns(const IntPoint& point) const
{
ASSERT(hasColumns());
if (!hasColumns() || !style()->isFlippedBlocksWritingMode())
return point;
ColumnInfo* colInfo = columnInfo();
int columnLogicalHeight = colInfo->columnHeight();
int expandedLogicalHeight = borderBefore() + paddingBefore() + columnCount(colInfo) * columnLogicalHeight + borderAfter() + paddingAfter() + scrollbarLogicalHeight();
if (isHorizontalWritingMode())
return IntPoint(point.x(), expandedLogicalHeight - point.y());
return IntPoint(expandedLogicalHeight - point.x(), point.y());
}
void RenderBlock::flipForWritingModeIncludingColumns(IntRect& rect) const
{
ASSERT(hasColumns());
if (!hasColumns() || !style()->isFlippedBlocksWritingMode())
return;
ColumnInfo* colInfo = columnInfo();
int columnLogicalHeight = colInfo->columnHeight();
int expandedLogicalHeight = borderBefore() + paddingBefore() + columnCount(colInfo) * columnLogicalHeight + borderAfter() + paddingAfter() + scrollbarLogicalHeight();
if (isHorizontalWritingMode())
rect.setY(expandedLogicalHeight - rect.maxY());
else
rect.setX(expandedLogicalHeight - rect.maxX());
}
void RenderBlock::adjustForColumns(IntSize& offset, const IntPoint& point) const
{
if (!hasColumns())
return;
ColumnInfo* colInfo = columnInfo();
int logicalLeft = logicalLeftOffsetForContent();
size_t colCount = columnCount(colInfo);
int colLogicalWidth = colInfo->desiredColumnWidth();
int colLogicalHeight = colInfo->columnHeight();
for (size_t i = 0; i < colCount; ++i) {
// Compute the edges for a given column in the block progression direction.
IntRect sliceRect = IntRect(logicalLeft, borderBefore() + paddingBefore() + i * colLogicalHeight, colLogicalWidth, colLogicalHeight);
if (!isHorizontalWritingMode())
sliceRect = sliceRect.transposedRect();
// If we have a flipped blocks writing mode, then convert the column so that it's coming from the after edge (either top or left edge).
flipForWritingModeIncludingColumns(sliceRect);
int logicalOffset = style()->isFlippedBlocksWritingMode() ? (colCount - 1 - i) * colLogicalHeight : i * colLogicalHeight;
// Now we're in the same coordinate space as the point. See if it is inside the rectangle.
if (isHorizontalWritingMode()) {
if (point.y() >= sliceRect.y() && point.y() < sliceRect.maxY()) {
offset.expand(columnRectAt(colInfo, i).x() - logicalLeft, -logicalOffset);
return;
}
} else {
if (point.x() >= sliceRect.x() && point.x() < sliceRect.maxX()) {
offset.expand(-logicalOffset, columnRectAt(colInfo, i).y() - logicalLeft);
return;
}
}
}
}
void RenderBlock::computePreferredLogicalWidths()
{
ASSERT(preferredLogicalWidthsDirty());
updateFirstLetter();
if (!isTableCell() && style()->logicalWidth().isFixed() && style()->logicalWidth().value() > 0)
m_minPreferredLogicalWidth = m_maxPreferredLogicalWidth = computeContentBoxLogicalWidth(style()->logicalWidth().value());
else {
m_minPreferredLogicalWidth = 0;
m_maxPreferredLogicalWidth = 0;
if (childrenInline())
computeInlinePreferredLogicalWidths();
else
computeBlockPreferredLogicalWidths();
m_maxPreferredLogicalWidth = max(m_minPreferredLogicalWidth, m_maxPreferredLogicalWidth);
if (!style()->autoWrap() && childrenInline()) {
m_minPreferredLogicalWidth = m_maxPreferredLogicalWidth;
// A horizontal marquee with inline children has no minimum width.
if (layer() && layer()->marquee() && layer()->marquee()->isHorizontal())
m_minPreferredLogicalWidth = 0;
}
int scrollbarWidth = 0;
if (hasOverflowClip() && style()->overflowY() == OSCROLL) {
layer()->setHasVerticalScrollbar(true);
scrollbarWidth = verticalScrollbarWidth();
m_maxPreferredLogicalWidth += scrollbarWidth;
}
if (isTableCell()) {
Length w = toRenderTableCell(this)->styleOrColLogicalWidth();
if (w.isFixed() && w.value() > 0) {
m_maxPreferredLogicalWidth = max(m_minPreferredLogicalWidth, computeContentBoxLogicalWidth(w.value()));
scrollbarWidth = 0;
}
}
m_minPreferredLogicalWidth += scrollbarWidth;
}
if (style()->logicalMinWidth().isFixed() && style()->logicalMinWidth().value() > 0) {
m_maxPreferredLogicalWidth = max(m_maxPreferredLogicalWidth, computeContentBoxLogicalWidth(style()->logicalMinWidth().value()));
m_minPreferredLogicalWidth = max(m_minPreferredLogicalWidth, computeContentBoxLogicalWidth(style()->logicalMinWidth().value()));
}
if (style()->logicalMaxWidth().isFixed() && style()->logicalMaxWidth().value() != undefinedLength) {
m_maxPreferredLogicalWidth = min(m_maxPreferredLogicalWidth, computeContentBoxLogicalWidth(style()->logicalMaxWidth().value()));
m_minPreferredLogicalWidth = min(m_minPreferredLogicalWidth, computeContentBoxLogicalWidth(style()->logicalMaxWidth().value()));
}
int borderAndPadding = borderAndPaddingLogicalWidth();
m_minPreferredLogicalWidth += borderAndPadding;
m_maxPreferredLogicalWidth += borderAndPadding;
setPreferredLogicalWidthsDirty(false);
}
struct InlineMinMaxIterator {
/* InlineMinMaxIterator is a class that will iterate over all render objects that contribute to
inline min/max width calculations. Note the following about the way it walks:
(1) Positioned content is skipped (since it does not contribute to min/max width of a block)
(2) We do not drill into the children of floats or replaced elements, since you can't break
in the middle of such an element.
(3) Inline flows (e.g., <a>, <span>, <i>) are walked twice, since each side can have
distinct borders/margin/padding that contribute to the min/max width.
*/
RenderObject* parent;
RenderObject* current;
bool endOfInline;
InlineMinMaxIterator(RenderObject* p, bool end = false)
:parent(p), current(p), endOfInline(end) {}
RenderObject* next();
};
RenderObject* InlineMinMaxIterator::next()
{
RenderObject* result = 0;
bool oldEndOfInline = endOfInline;
endOfInline = false;
while (current || current == parent) {
if (!oldEndOfInline &&
(current == parent ||
(!current->isFloating() && !current->isReplaced() && !current->isPositioned())))
result = current->firstChild();
if (!result) {
// We hit the end of our inline. (It was empty, e.g., <span></span>.)
if (!oldEndOfInline && current->isRenderInline()) {
result = current;
endOfInline = true;
break;
}
while (current && current != parent) {
result = current->nextSibling();
if (result) break;
current = current->parent();
if (current && current != parent && current->isRenderInline()) {
result = current;
endOfInline = true;
break;
}
}
}
if (!result)
break;
if (!result->isPositioned() && (result->isText() || result->isFloating() || result->isReplaced() || result->isRenderInline()))
break;
current = result;
result = 0;
}
// Update our position.
current = result;
return current;
}
static int getBPMWidth(int childValue, Length cssUnit)
{
if (cssUnit.type() != Auto)
return (cssUnit.isFixed() ? cssUnit.value() : childValue);
return 0;
}
static int getBorderPaddingMargin(const RenderBoxModelObject* child, bool endOfInline)
{
RenderStyle* cstyle = child->style();
if (endOfInline)
return getBPMWidth(child->marginEnd(), cstyle->marginEnd()) +
getBPMWidth(child->paddingEnd(), cstyle->paddingEnd()) +
child->borderEnd();
return getBPMWidth(child->marginStart(), cstyle->marginStart()) +
getBPMWidth(child->paddingStart(), cstyle->paddingStart()) +
child->borderStart();
}
static inline void stripTrailingSpace(float& inlineMax, float& inlineMin,
RenderObject* trailingSpaceChild)
{
if (trailingSpaceChild && trailingSpaceChild->isText()) {
// Collapse away the trailing space at the end of a block.
RenderText* t = toRenderText(trailingSpaceChild);
const UChar space = ' ';
const Font& font = t->style()->font(); // FIXME: This ignores first-line.
float spaceWidth = font.width(TextRun(&space, 1));
inlineMax -= spaceWidth + font.wordSpacing();
if (inlineMin > inlineMax)
inlineMin = inlineMax;
}
}
static inline void updatePreferredWidth(int& preferredWidth, float& result)
{
int snappedResult = ceilf(result);
preferredWidth = max(snappedResult, preferredWidth);
}
void RenderBlock::computeInlinePreferredLogicalWidths()
{
float inlineMax = 0;
float inlineMin = 0;
int cw = containingBlock()->contentLogicalWidth();
// If we are at the start of a line, we want to ignore all white-space.
// Also strip spaces if we previously had text that ended in a trailing space.
bool stripFrontSpaces = true;
RenderObject* trailingSpaceChild = 0;
// Firefox and Opera will allow a table cell to grow to fit an image inside it under
// very specific cirucumstances (in order to match common WinIE renderings).
// Not supporting the quirk has caused us to mis-render some real sites. (See Bugzilla 10517.)
bool allowImagesToBreak = !document()->inQuirksMode() || !isTableCell() || !style()->logicalWidth().isIntrinsicOrAuto();
bool autoWrap, oldAutoWrap;
autoWrap = oldAutoWrap = style()->autoWrap();
InlineMinMaxIterator childIterator(this);
bool addedTextIndent = false; // Only gets added in once.
RenderObject* prevFloat = 0;
while (RenderObject* child = childIterator.next()) {
autoWrap = child->isReplaced() ? child->parent()->style()->autoWrap() :
child->style()->autoWrap();
if (!child->isBR()) {
// Step One: determine whether or not we need to go ahead and
// terminate our current line. Each discrete chunk can become
// the new min-width, if it is the widest chunk seen so far, and
// it can also become the max-width.
// Children fall into three categories:
// (1) An inline flow object. These objects always have a min/max of 0,
// and are included in the iteration solely so that their margins can
// be added in.
//
// (2) An inline non-text non-flow object, e.g., an inline replaced element.
// These objects can always be on a line by themselves, so in this situation
// we need to go ahead and break the current line, and then add in our own
// margins and min/max width on its own line, and then terminate the line.
//
// (3) A text object. Text runs can have breakable characters at the start,
// the middle or the end. They may also lose whitespace off the front if
// we're already ignoring whitespace. In order to compute accurate min-width
// information, we need three pieces of information.
// (a) the min-width of the first non-breakable run. Should be 0 if the text string
// starts with whitespace.
// (b) the min-width of the last non-breakable run. Should be 0 if the text string
// ends with whitespace.
// (c) the min/max width of the string (trimmed for whitespace).
//
// If the text string starts with whitespace, then we need to go ahead and
// terminate our current line (unless we're already in a whitespace stripping
// mode.
//
// If the text string has a breakable character in the middle, but didn't start
// with whitespace, then we add the width of the first non-breakable run and
// then end the current line. We then need to use the intermediate min/max width
// values (if any of them are larger than our current min/max). We then look at
// the width of the last non-breakable run and use that to start a new line
// (unless we end in whitespace).
RenderStyle* cstyle = child->style();
float childMin = 0;
float childMax = 0;
if (!child->isText()) {
// Case (1) and (2). Inline replaced and inline flow elements.
if (child->isRenderInline()) {
// Add in padding/border/margin from the appropriate side of
// the element.
float bpm = getBorderPaddingMargin(toRenderInline(child), childIterator.endOfInline);
childMin += bpm;
childMax += bpm;
inlineMin += childMin;
inlineMax += childMax;
child->setPreferredLogicalWidthsDirty(false);
} else {
// Inline replaced elts add in their margins to their min/max values.
float margins = 0;
Length startMargin = cstyle->marginStart();
Length endMargin = cstyle->marginEnd();
if (startMargin.isFixed())
margins += startMargin.value();
if (endMargin.isFixed())
margins += endMargin.value();
childMin += margins;
childMax += margins;
}
}
if (!child->isRenderInline() && !child->isText()) {
// Case (2). Inline replaced elements and floats.
// Go ahead and terminate the current line as far as
// minwidth is concerned.
childMin += child->minPreferredLogicalWidth();
childMax += child->maxPreferredLogicalWidth();
bool clearPreviousFloat;
if (child->isFloating()) {
clearPreviousFloat = (prevFloat
&& ((prevFloat->style()->floating() == FLEFT && (child->style()->clear() & CLEFT))
|| (prevFloat->style()->floating() == FRIGHT && (child->style()->clear() & CRIGHT))));
prevFloat = child;
} else
clearPreviousFloat = false;
bool canBreakReplacedElement = !child->isImage() || allowImagesToBreak;
if ((canBreakReplacedElement && (autoWrap || oldAutoWrap)) || clearPreviousFloat) {
updatePreferredWidth(m_minPreferredLogicalWidth, inlineMin);
inlineMin = 0;
}
// If we're supposed to clear the previous float, then terminate maxwidth as well.
if (clearPreviousFloat) {
updatePreferredWidth(m_maxPreferredLogicalWidth, inlineMax);
inlineMax = 0;
}
// Add in text-indent. This is added in only once.
int ti = 0;
if (!addedTextIndent) {
addedTextIndent = true;
ti = style()->textIndent().calcMinValue(cw);
childMin += ti;
childMax += ti;
}
// Add our width to the max.
inlineMax += childMax;
if (!autoWrap || !canBreakReplacedElement) {
if (child->isFloating())
updatePreferredWidth(m_minPreferredLogicalWidth, childMin);
else
inlineMin += childMin;
} else {
// Now check our line.
updatePreferredWidth(m_minPreferredLogicalWidth, childMin);
// Now start a new line.
inlineMin = 0;
}
// We are no longer stripping whitespace at the start of
// a line.
if (!child->isFloating()) {
stripFrontSpaces = false;
trailingSpaceChild = 0;
}
} else if (child->isText()) {
// Case (3). Text.
RenderText* t = toRenderText(child);
if (t->isWordBreak()) {
updatePreferredWidth(m_minPreferredLogicalWidth, inlineMin);
inlineMin = 0;
continue;
}
if (t->style()->hasTextCombine() && t->isCombineText())
toRenderCombineText(t)->combineText();
// Determine if we have a breakable character. Pass in
// whether or not we should ignore any spaces at the front
// of the string. If those are going to be stripped out,
// then they shouldn't be considered in the breakable char
// check.
bool hasBreakableChar, hasBreak;
float beginMin, endMin;
bool beginWS, endWS;
float beginMax, endMax;
t->trimmedPrefWidths(inlineMax, beginMin, beginWS, endMin, endWS,
hasBreakableChar, hasBreak, beginMax, endMax,
childMin, childMax, stripFrontSpaces);
// This text object will not be rendered, but it may still provide a breaking opportunity.
if (!hasBreak && childMax == 0) {
if (autoWrap && (beginWS || endWS)) {
updatePreferredWidth(m_minPreferredLogicalWidth, inlineMin);
inlineMin = 0;
}
continue;
}
if (stripFrontSpaces)
trailingSpaceChild = child;
else
trailingSpaceChild = 0;
// Add in text-indent. This is added in only once.
int ti = 0;
if (!addedTextIndent) {
addedTextIndent = true;
ti = style()->textIndent().calcMinValue(cw);
childMin+=ti; beginMin += ti;
childMax+=ti; beginMax += ti;
}
// If we have no breakable characters at all,
// then this is the easy case. We add ourselves to the current
// min and max and continue.
if (!hasBreakableChar) {
inlineMin += childMin;
} else {
// We have a breakable character. Now we need to know if
// we start and end with whitespace.
if (beginWS)
// Go ahead and end the current line.
updatePreferredWidth(m_minPreferredLogicalWidth, inlineMin);
else {
inlineMin += beginMin;
updatePreferredWidth(m_minPreferredLogicalWidth, inlineMin);
childMin -= ti;
}
inlineMin = childMin;
if (endWS) {
// We end in whitespace, which means we can go ahead
// and end our current line.
updatePreferredWidth(m_minPreferredLogicalWidth, inlineMin);
inlineMin = 0;
} else {
updatePreferredWidth(m_minPreferredLogicalWidth, inlineMin);
inlineMin = endMin;
}
}
if (hasBreak) {
inlineMax += beginMax;
updatePreferredWidth(m_maxPreferredLogicalWidth, inlineMax);
updatePreferredWidth(m_maxPreferredLogicalWidth, childMax);
inlineMax = endMax;
} else
inlineMax += childMax;
}
// Ignore spaces after a list marker.
if (child->isListMarker())
stripFrontSpaces = true;
} else {
updatePreferredWidth(m_minPreferredLogicalWidth, inlineMin);
updatePreferredWidth(m_maxPreferredLogicalWidth, inlineMax);
inlineMin = inlineMax = 0;
stripFrontSpaces = true;
trailingSpaceChild = 0;
}
oldAutoWrap = autoWrap;
}
if (style()->collapseWhiteSpace())
stripTrailingSpace(inlineMax, inlineMin, trailingSpaceChild);
updatePreferredWidth(m_minPreferredLogicalWidth, inlineMin);
updatePreferredWidth(m_maxPreferredLogicalWidth, inlineMax);
}
// Use a very large value (in effect infinite).
#define BLOCK_MAX_WIDTH 15000
void RenderBlock::computeBlockPreferredLogicalWidths()
{
bool nowrap = style()->whiteSpace() == NOWRAP;
RenderObject *child = firstChild();
int floatLeftWidth = 0, floatRightWidth = 0;
while (child) {
// Positioned children don't affect the min/max width
if (child->isPositioned()) {
child = child->nextSibling();
continue;
}
if (child->isFloating() || (child->isBox() && toRenderBox(child)->avoidsFloats())) {
int floatTotalWidth = floatLeftWidth + floatRightWidth;
if (child->style()->clear() & CLEFT) {
m_maxPreferredLogicalWidth = max(floatTotalWidth, m_maxPreferredLogicalWidth);
floatLeftWidth = 0;
}
if (child->style()->clear() & CRIGHT) {
m_maxPreferredLogicalWidth = max(floatTotalWidth, m_maxPreferredLogicalWidth);
floatRightWidth = 0;
}
}
// A margin basically has three types: fixed, percentage, and auto (variable).
// Auto and percentage margins simply become 0 when computing min/max width.
// Fixed margins can be added in as is.
Length startMarginLength = child->style()->marginStart();
Length endMarginLength = child->style()->marginEnd();
int margin = 0;
int marginStart = 0;
int marginEnd = 0;
if (startMarginLength.isFixed())
marginStart += startMarginLength.value();
if (endMarginLength.isFixed())
marginEnd += endMarginLength.value();
margin = marginStart + marginEnd;
int w = child->minPreferredLogicalWidth() + margin;
m_minPreferredLogicalWidth = max(w, m_minPreferredLogicalWidth);
// IE ignores tables for calculation of nowrap. Makes some sense.
if (nowrap && !child->isTable())
m_maxPreferredLogicalWidth = max(w, m_maxPreferredLogicalWidth);
w = child->maxPreferredLogicalWidth() + margin;
if (!child->isFloating()) {
if (child->isBox() && toRenderBox(child)->avoidsFloats()) {
// Determine a left and right max value based off whether or not the floats can fit in the
// margins of the object. For negative margins, we will attempt to overlap the float if the negative margin
// is smaller than the float width.
bool ltr = containingBlock()->style()->isLeftToRightDirection();
int marginLogicalLeft = ltr ? marginStart : marginEnd;
int marginLogicalRight = ltr ? marginEnd : marginStart;
int maxLeft = marginLogicalLeft > 0 ? max(floatLeftWidth, marginLogicalLeft) : floatLeftWidth + marginLogicalLeft;
int maxRight = marginLogicalRight > 0 ? max(floatRightWidth, marginLogicalRight) : floatRightWidth + marginLogicalRight;
w = child->maxPreferredLogicalWidth() + maxLeft + maxRight;
w = max(w, floatLeftWidth + floatRightWidth);
}
else
m_maxPreferredLogicalWidth = max(floatLeftWidth + floatRightWidth, m_maxPreferredLogicalWidth);
floatLeftWidth = floatRightWidth = 0;
}
if (child->isFloating()) {
if (style()->floating() == FLEFT)
floatLeftWidth += w;
else
floatRightWidth += w;
} else
m_maxPreferredLogicalWidth = max(w, m_maxPreferredLogicalWidth);
// A very specific WinIE quirk.
// Example:
/*
<div style="position:absolute; width:100px; top:50px;">
<div style="position:absolute;left:0px;top:50px;height:50px;background-color:green">
<table style="width:100%"><tr><td></table>
</div>
</div>
*/
// In the above example, the inner absolute positioned block should have a computed width
// of 100px because of the table.
// We can achieve this effect by making the maxwidth of blocks that contain tables
// with percentage widths be infinite (as long as they are not inside a table cell).
if (document()->inQuirksMode() && child->style()->logicalWidth().isPercent() &&
!isTableCell() && child->isTable() && m_maxPreferredLogicalWidth < BLOCK_MAX_WIDTH) {
RenderBlock* cb = containingBlock();
while (!cb->isRenderView() && !cb->isTableCell())
cb = cb->containingBlock();
if (!cb->isTableCell())
m_maxPreferredLogicalWidth = BLOCK_MAX_WIDTH;
}
child = child->nextSibling();
}
// Always make sure these values are non-negative.
m_minPreferredLogicalWidth = max(0, m_minPreferredLogicalWidth);
m_maxPreferredLogicalWidth = max(0, m_maxPreferredLogicalWidth);
m_maxPreferredLogicalWidth = max(floatLeftWidth + floatRightWidth, m_maxPreferredLogicalWidth);
}
bool RenderBlock::hasLineIfEmpty() const
{
if (!node())
return false;
if (node()->rendererIsEditable() && node()->rootEditableElement() == node())
return true;
if (node()->isShadowRoot() && (node()->shadowHost()->hasTagName(inputTag)))
return true;
return false;
}
int RenderBlock::lineHeight(bool firstLine, LineDirectionMode direction, LinePositionMode linePositionMode) const
{
// Inline blocks are replaced elements. Otherwise, just pass off to
// the base class. If we're being queried as though we're the root line
// box, then the fact that we're an inline-block is irrelevant, and we behave
// just like a block.
if (isReplaced() && linePositionMode == PositionOnContainingLine)
return RenderBox::lineHeight(firstLine, direction, linePositionMode);
if (firstLine && document()->usesFirstLineRules()) {
RenderStyle* s = style(firstLine);
if (s != style())
return s->computedLineHeight();
}
if (m_lineHeight == -1)
m_lineHeight = style()->computedLineHeight();
return m_lineHeight;
}
int RenderBlock::baselinePosition(FontBaseline baselineType, bool firstLine, LineDirectionMode direction, LinePositionMode linePositionMode) const
{
// Inline blocks are replaced elements. Otherwise, just pass off to
// the base class. If we're being queried as though we're the root line
// box, then the fact that we're an inline-block is irrelevant, and we behave
// just like a block.
if (isReplaced() && linePositionMode == PositionOnContainingLine) {
// For "leaf" theme objects, let the theme decide what the baseline position is.
// FIXME: Might be better to have a custom CSS property instead, so that if the theme
// is turned off, checkboxes/radios will still have decent baselines.
// FIXME: Need to patch form controls to deal with vertical lines.
if (style()->hasAppearance() && !theme()->isControlContainer(style()->appearance()))
return theme()->baselinePosition(this);
// CSS2.1 states that the baseline of an inline block is the baseline of the last line box in
// the normal flow. We make an exception for marquees, since their baselines are meaningless
// (the content inside them moves). This matches WinIE as well, which just bottom-aligns them.
// We also give up on finding a baseline if we have a vertical scrollbar, or if we are scrolled
// vertically (e.g., an overflow:hidden block that has had scrollTop moved) or if the baseline is outside
// of our content box.
bool ignoreBaseline = (layer() && (layer()->marquee() || (direction == HorizontalLine ? (layer()->verticalScrollbar() || layer()->scrollYOffset() != 0)
: (layer()->horizontalScrollbar() || layer()->scrollXOffset() != 0)))) || (isWritingModeRoot() && !isRubyRun());
int baselinePos = ignoreBaseline ? -1 : lastLineBoxBaseline();
int bottomOfContent = direction == HorizontalLine ? borderTop() + paddingTop() + contentHeight() : borderRight() + paddingRight() + contentWidth();
if (baselinePos != -1 && baselinePos <= bottomOfContent)
return direction == HorizontalLine ? marginTop() + baselinePos : marginRight() + baselinePos;
return RenderBox::baselinePosition(baselineType, firstLine, direction, linePositionMode);
}
const FontMetrics& fontMetrics = style(firstLine)->fontMetrics();
return fontMetrics.ascent(baselineType) + (lineHeight(firstLine, direction, linePositionMode) - fontMetrics.height()) / 2;
}
int RenderBlock::firstLineBoxBaseline() const
{
if (!isBlockFlow() || (isWritingModeRoot() && !isRubyRun()))
return -1;
if (childrenInline()) {
if (firstLineBox())
return firstLineBox()->logicalTop() + style(true)->fontMetrics().ascent(firstRootBox()->baselineType());
else
return -1;
}
else {
for (RenderBox* curr = firstChildBox(); curr; curr = curr->nextSiblingBox()) {
if (!curr->isFloatingOrPositioned()) {
int result = curr->firstLineBoxBaseline();
if (result != -1)
return curr->logicalTop() + result; // Translate to our coordinate space.
}
}
}
return -1;
}
int RenderBlock::lastLineBoxBaseline() const
{
if (!isBlockFlow() || (isWritingModeRoot() && !isRubyRun()))
return -1;
LineDirectionMode lineDirection = isHorizontalWritingMode() ? HorizontalLine : VerticalLine;
if (childrenInline()) {
if (!firstLineBox() && hasLineIfEmpty()) {
const FontMetrics& fontMetrics = firstLineStyle()->fontMetrics();
return fontMetrics.ascent()
+ (lineHeight(true, lineDirection, PositionOfInteriorLineBoxes) - fontMetrics.height()) / 2
+ (lineDirection == HorizontalLine ? borderTop() + paddingTop() : borderRight() + paddingRight());
}
if (lastLineBox())
return lastLineBox()->logicalTop() + style(lastLineBox() == firstLineBox())->fontMetrics().ascent(lastRootBox()->baselineType());
return -1;
} else {
bool haveNormalFlowChild = false;
for (RenderBox* curr = lastChildBox(); curr; curr = curr->previousSiblingBox()) {
if (!curr->isFloatingOrPositioned()) {
haveNormalFlowChild = true;
int result = curr->lastLineBoxBaseline();
if (result != -1)
return curr->logicalTop() + result; // Translate to our coordinate space.
}
}
if (!haveNormalFlowChild && hasLineIfEmpty()) {
const FontMetrics& fontMetrics = firstLineStyle()->fontMetrics();
return fontMetrics.ascent()
+ (lineHeight(true, lineDirection, PositionOfInteriorLineBoxes) - fontMetrics.height()) / 2
+ (lineDirection == HorizontalLine ? borderTop() + paddingTop() : borderRight() + paddingRight());
}
}
return -1;
}
bool RenderBlock::containsNonZeroBidiLevel() const
{
for (RootInlineBox* root = firstRootBox(); root; root = root->nextRootBox()) {
for (InlineBox* box = root->firstLeafChild(); box; box = box->nextLeafChild()) {
if (box->bidiLevel())
return true;
}
}
return false;
}
RenderBlock* RenderBlock::firstLineBlock() const
{
RenderBlock* firstLineBlock = const_cast<RenderBlock*>(this);
bool hasPseudo = false;
while (true) {
hasPseudo = firstLineBlock->style()->hasPseudoStyle(FIRST_LINE);
if (hasPseudo)
break;
RenderObject* parentBlock = firstLineBlock->parent();
if (firstLineBlock->isReplaced() || firstLineBlock->isFloating() ||
!parentBlock || parentBlock->firstChild() != firstLineBlock || !parentBlock->isBlockFlow())
break;
ASSERT(parentBlock->isRenderBlock());
firstLineBlock = toRenderBlock(parentBlock);
}
if (!hasPseudo)
return 0;
return firstLineBlock;
}
static RenderStyle* styleForFirstLetter(RenderObject* firstLetterBlock, RenderObject* firstLetterContainer)
{
RenderStyle* pseudoStyle = firstLetterBlock->getCachedPseudoStyle(FIRST_LETTER, firstLetterContainer->firstLineStyle());
// Force inline display (except for floating first-letters).
pseudoStyle->setDisplay(pseudoStyle->isFloating() ? BLOCK : INLINE);
// CSS2 says first-letter can't be positioned.
pseudoStyle->setPosition(StaticPosition);
return pseudoStyle;
}
// CSS 2.1 http://www.w3.org/TR/CSS21/selector.html#first-letter
// "Punctuation (i.e, characters defined in Unicode [UNICODE] in the "open" (Ps), "close" (Pe),
// "initial" (Pi). "final" (Pf) and "other" (Po) punctuation classes), that precedes or follows the first letter should be included"
static inline bool isPunctuationForFirstLetter(UChar c)
{
CharCategory charCategory = category(c);
return charCategory == Punctuation_Open
|| charCategory == Punctuation_Close
|| charCategory == Punctuation_InitialQuote
|| charCategory == Punctuation_FinalQuote
|| charCategory == Punctuation_Other;
}
static inline bool shouldSkipForFirstLetter(UChar c)
{
return isSpaceOrNewline(c) || c == noBreakSpace || isPunctuationForFirstLetter(c);
}
void RenderBlock::updateFirstLetter()
{
if (!document()->usesFirstLetterRules())
return;
// Don't recur
if (style()->styleType() == FIRST_LETTER)
return;
// FIXME: We need to destroy the first-letter object if it is no longer the first child. Need to find
// an efficient way to check for that situation though before implementing anything.
RenderObject* firstLetterBlock = this;
bool hasPseudoStyle = false;
while (true) {
// We only honor first-letter if the firstLetterBlock can have children in the DOM. This correctly
// prevents form controls from honoring first-letter.
hasPseudoStyle = firstLetterBlock->style()->hasPseudoStyle(FIRST_LETTER)
&& firstLetterBlock->canHaveChildren();
if (hasPseudoStyle)
break;
RenderObject* parentBlock = firstLetterBlock->parent();
if (firstLetterBlock->isReplaced() || !parentBlock || parentBlock->firstChild() != firstLetterBlock ||
!parentBlock->isBlockFlow())
break;
firstLetterBlock = parentBlock;
}
if (!hasPseudoStyle)
return;
// Drill into inlines looking for our first text child.
RenderObject* currChild = firstLetterBlock->firstChild();
while (currChild && ((!currChild->isReplaced() && !currChild->isRenderButton() && !currChild->isMenuList()) || currChild->isFloatingOrPositioned()) && !currChild->isText()) {
if (currChild->isFloatingOrPositioned()) {
if (currChild->style()->styleType() == FIRST_LETTER) {
currChild = currChild->firstChild();
break;
}
currChild = currChild->nextSibling();
} else
currChild = currChild->firstChild();
}
// Get list markers out of the way.
while (currChild && currChild->isListMarker())
currChild = currChild->nextSibling();
if (!currChild)
return;
// If the child already has style, then it has already been created, so we just want
// to update it.
if (currChild->parent()->style()->styleType() == FIRST_LETTER) {
RenderObject* firstLetter = currChild->parent();
RenderObject* firstLetterContainer = firstLetter->parent();
RenderStyle* pseudoStyle = styleForFirstLetter(firstLetterBlock, firstLetterContainer);
if (Node::diff(firstLetter->style(), pseudoStyle) == Node::Detach) {
// The first-letter renderer needs to be replaced. Create a new renderer of the right type.
RenderObject* newFirstLetter;
if (pseudoStyle->display() == INLINE)
newFirstLetter = new (renderArena()) RenderInline(document());
else
newFirstLetter = new (renderArena()) RenderBlock(document());
newFirstLetter->setStyle(pseudoStyle);
// Move the first letter into the new renderer.
view()->disableLayoutState();
while (RenderObject* child = firstLetter->firstChild()) {
if (child->isText())
toRenderText(child)->removeAndDestroyTextBoxes();
firstLetter->removeChild(child);
newFirstLetter->addChild(child, 0);
}
RenderTextFragment* remainingText = 0;
RenderObject* nextSibling = firstLetter->nextSibling();
RenderObject* next = nextSibling;
while (next) {
if (next->isText() && toRenderText(next)->isTextFragment()) {
remainingText = toRenderTextFragment(next);
break;
}
next = next->nextSibling();
}
if (remainingText) {
ASSERT(remainingText->node()->renderer() == remainingText);
// Replace the old renderer with the new one.
remainingText->setFirstLetter(newFirstLetter);
}
firstLetter->destroy();
firstLetter = newFirstLetter;
firstLetterContainer->addChild(firstLetter, nextSibling);
view()->enableLayoutState();
} else
firstLetter->setStyle(pseudoStyle);
for (RenderObject* genChild = firstLetter->firstChild(); genChild; genChild = genChild->nextSibling()) {
if (genChild->isText())
genChild->setStyle(pseudoStyle);
}
return;
}
if (!currChild->isText() || currChild->isBR())
return;
// If the child does not already have style, we create it here.
RenderObject* firstLetterContainer = currChild->parent();
// Our layout state is not valid for the repaints we are going to trigger by
// adding and removing children of firstLetterContainer.
view()->disableLayoutState();
RenderText* textObj = toRenderText(currChild);
// Create our pseudo style now that we have our firstLetterContainer determined.
RenderStyle* pseudoStyle = styleForFirstLetter(firstLetterBlock, firstLetterContainer);
RenderObject* firstLetter = 0;
if (pseudoStyle->display() == INLINE)
firstLetter = new (renderArena()) RenderInline(document());
else
firstLetter = new (renderArena()) RenderBlock(document());
firstLetter->setStyle(pseudoStyle);
firstLetterContainer->addChild(firstLetter, currChild);
// The original string is going to be either a generated content string or a DOM node's
// string. We want the original string before it got transformed in case first-letter has
// no text-transform or a different text-transform applied to it.
RefPtr<StringImpl> oldText = textObj->originalText();
ASSERT(oldText);
if (oldText && oldText->length() > 0) {
unsigned length = 0;
// Account for leading spaces and punctuation.
while (length < oldText->length() && shouldSkipForFirstLetter((*oldText)[length]))
length++;
// Account for first letter.
length++;
// Keep looking for whitespace and allowed punctuation, but avoid
// accumulating just whitespace into the :first-letter.
for (unsigned scanLength = length; scanLength < oldText->length(); ++scanLength) {
UChar c = (*oldText)[scanLength];
if (!shouldSkipForFirstLetter(c))
break;
if (isPunctuationForFirstLetter(c))
length = scanLength + 1;
}
// Construct a text fragment for the text after the first letter.
// This text fragment might be empty.
RenderTextFragment* remainingText =
new (renderArena()) RenderTextFragment(textObj->node() ? textObj->node() : textObj->document(), oldText.get(), length, oldText->length() - length);
remainingText->setStyle(textObj->style());
if (remainingText->node())
remainingText->node()->setRenderer(remainingText);
firstLetterContainer->addChild(remainingText, textObj);
firstLetterContainer->removeChild(textObj);
remainingText->setFirstLetter(firstLetter);
// construct text fragment for the first letter
RenderTextFragment* letter =
new (renderArena()) RenderTextFragment(remainingText->node() ? remainingText->node() : remainingText->document(), oldText.get(), 0, length);
letter->setStyle(pseudoStyle);
firstLetter->addChild(letter);
textObj->destroy();
}
view()->enableLayoutState();
}
// Helper methods for obtaining the last line, computing line counts and heights for line counts
// (crawling into blocks).
static bool shouldCheckLines(RenderObject* obj)
{
return !obj->isFloatingOrPositioned() && !obj->isRunIn() &&
obj->isBlockFlow() && obj->style()->height().isAuto() &&
(!obj->isFlexibleBox() || obj->style()->boxOrient() == VERTICAL);
}
static RootInlineBox* getLineAtIndex(RenderBlock* block, int i, int& count)
{
if (block->style()->visibility() == VISIBLE) {
if (block->childrenInline()) {
for (RootInlineBox* box = block->firstRootBox(); box; box = box->nextRootBox()) {
if (count++ == i)
return box;
}
}
else {
for (RenderObject* obj = block->firstChild(); obj; obj = obj->nextSibling()) {
if (shouldCheckLines(obj)) {
RootInlineBox *box = getLineAtIndex(toRenderBlock(obj), i, count);
if (box)
return box;
}
}
}
}
return 0;
}
static int getHeightForLineCount(RenderBlock* block, int l, bool includeBottom, int& count)
{
if (block->style()->visibility() == VISIBLE) {
if (block->childrenInline()) {
for (RootInlineBox* box = block->firstRootBox(); box; box = box->nextRootBox()) {
if (++count == l)
return box->lineBottom() + (includeBottom ? (block->borderBottom() + block->paddingBottom()) : 0);
}
}
else {
RenderBox* normalFlowChildWithoutLines = 0;
for (RenderBox* obj = block->firstChildBox(); obj; obj = obj->nextSiblingBox()) {
if (shouldCheckLines(obj)) {
int result = getHeightForLineCount(toRenderBlock(obj), l, false, count);
if (result != -1)
return result + obj->y() + (includeBottom ? (block->borderBottom() + block->paddingBottom()) : 0);
}
else if (!obj->isFloatingOrPositioned() && !obj->isRunIn())
normalFlowChildWithoutLines = obj;
}
if (normalFlowChildWithoutLines && l == 0)
return normalFlowChildWithoutLines->y() + normalFlowChildWithoutLines->height();
}
}
return -1;
}
RootInlineBox* RenderBlock::lineAtIndex(int i)
{
int count = 0;
return getLineAtIndex(this, i, count);
}
int RenderBlock::lineCount()
{
int count = 0;
if (style()->visibility() == VISIBLE) {
if (childrenInline())
for (RootInlineBox* box = firstRootBox(); box; box = box->nextRootBox())
count++;
else
for (RenderObject* obj = firstChild(); obj; obj = obj->nextSibling())
if (shouldCheckLines(obj))
count += toRenderBlock(obj)->lineCount();
}
return count;
}
int RenderBlock::heightForLineCount(int l)
{
int count = 0;
return getHeightForLineCount(this, l, true, count);
}
void RenderBlock::adjustForBorderFit(int x, int& left, int& right) const
{
// We don't deal with relative positioning. Our assumption is that you shrink to fit the lines without accounting
// for either overflow or translations via relative positioning.
if (style()->visibility() == VISIBLE) {
if (childrenInline()) {
for (RootInlineBox* box = firstRootBox(); box; box = box->nextRootBox()) {
if (box->firstChild())
left = min(left, x + static_cast<int>(box->firstChild()->x()));
if (box->lastChild())
right = max(right, x + static_cast<int>(ceilf(box->lastChild()->logicalRight())));
}
}
else {
for (RenderBox* obj = firstChildBox(); obj; obj = obj->nextSiblingBox()) {
if (!obj->isFloatingOrPositioned()) {
if (obj->isBlockFlow() && !obj->hasOverflowClip())
toRenderBlock(obj)->adjustForBorderFit(x + obj->x(), left, right);
else if (obj->style()->visibility() == VISIBLE) {
// We are a replaced element or some kind of non-block-flow object.
left = min(left, x + obj->x());
right = max(right, x + obj->x() + obj->width());
}
}
}
}
if (m_floatingObjects) {
FloatingObjectSet& floatingObjectSet = m_floatingObjects->set();
FloatingObjectSetIterator end = floatingObjectSet.end();
for (FloatingObjectSetIterator it = floatingObjectSet.begin(); it != end; ++it) {
FloatingObject* r = *it;
// Only examine the object if our m_shouldPaint flag is set.
if (r->m_shouldPaint) {
int floatLeft = xPositionForFloatIncludingMargin(r) - r->m_renderer->x();
int floatRight = floatLeft + r->m_renderer->width();
left = min(left, floatLeft);
right = max(right, floatRight);
}
}
}
}
}
void RenderBlock::borderFitAdjust(int& x, int& w) const
{
if (style()->borderFit() == BorderFitBorder)
return;
// Walk any normal flow lines to snugly fit.
int left = INT_MAX;
int right = INT_MIN;
int oldWidth = w;
adjustForBorderFit(0, left, right);
if (left != INT_MAX) {
left -= (borderLeft() + paddingLeft());
if (left > 0) {
x += left;
w -= left;
}
}
if (right != INT_MIN) {
right += (borderRight() + paddingRight());
if (right < oldWidth)
w -= (oldWidth - right);
}
}
void RenderBlock::clearTruncation()
{
if (style()->visibility() == VISIBLE) {
if (childrenInline() && hasMarkupTruncation()) {
setHasMarkupTruncation(false);
for (RootInlineBox* box = firstRootBox(); box; box = box->nextRootBox())
box->clearTruncation();
}
else
for (RenderObject* obj = firstChild(); obj; obj = obj->nextSibling())
if (shouldCheckLines(obj))
toRenderBlock(obj)->clearTruncation();
}
}
void RenderBlock::setMaxMarginBeforeValues(int pos, int neg)
{
if (!m_rareData) {
if (pos == RenderBlockRareData::positiveMarginBeforeDefault(this) && neg == RenderBlockRareData::negativeMarginBeforeDefault(this))
return;
m_rareData = adoptPtr(new RenderBlockRareData(this));
}
m_rareData->m_margins.setPositiveMarginBefore(pos);
m_rareData->m_margins.setNegativeMarginBefore(neg);
}
void RenderBlock::setMaxMarginAfterValues(int pos, int neg)
{
if (!m_rareData) {
if (pos == RenderBlockRareData::positiveMarginAfterDefault(this) && neg == RenderBlockRareData::negativeMarginAfterDefault(this))
return;
m_rareData = adoptPtr(new RenderBlockRareData(this));
}
m_rareData->m_margins.setPositiveMarginAfter(pos);
m_rareData->m_margins.setNegativeMarginAfter(neg);
}
void RenderBlock::setPaginationStrut(int strut)
{
if (!m_rareData) {
if (!strut)
return;
m_rareData = adoptPtr(new RenderBlockRareData(this));
}
m_rareData->m_paginationStrut = strut;
}
void RenderBlock::setPageLogicalOffset(int logicalOffset)
{
if (!m_rareData) {
if (!logicalOffset)
return;
m_rareData = adoptPtr(new RenderBlockRareData(this));
}
m_rareData->m_pageLogicalOffset = logicalOffset;
}
void RenderBlock::absoluteRects(Vector<IntRect>& rects, int tx, int ty)
{
// For blocks inside inlines, we go ahead and include margins so that we run right up to the
// inline boxes above and below us (thus getting merged with them to form a single irregular
// shape).
if (isAnonymousBlockContinuation()) {
// FIXME: This is wrong for block-flows that are horizontal.
// https://bugs.webkit.org/show_bug.cgi?id=46781
rects.append(IntRect(tx, ty - collapsedMarginBefore(),
width(), height() + collapsedMarginBefore() + collapsedMarginAfter()));
continuation()->absoluteRects(rects,
tx - x() + inlineElementContinuation()->containingBlock()->x(),
ty - y() + inlineElementContinuation()->containingBlock()->y());
} else
rects.append(IntRect(tx, ty, width(), height()));
}
void RenderBlock::absoluteQuads(Vector<FloatQuad>& quads)
{
// For blocks inside inlines, we go ahead and include margins so that we run right up to the
// inline boxes above and below us (thus getting merged with them to form a single irregular
// shape).
if (isAnonymousBlockContinuation()) {
// FIXME: This is wrong for block-flows that are horizontal.
// https://bugs.webkit.org/show_bug.cgi?id=46781
FloatRect localRect(0, -collapsedMarginBefore(),
width(), height() + collapsedMarginBefore() + collapsedMarginAfter());
quads.append(localToAbsoluteQuad(localRect));
continuation()->absoluteQuads(quads);
} else
quads.append(RenderBox::localToAbsoluteQuad(FloatRect(0, 0, width(), height())));
}
IntRect RenderBlock::rectWithOutlineForRepaint(RenderBoxModelObject* repaintContainer, int outlineWidth)
{
IntRect r(RenderBox::rectWithOutlineForRepaint(repaintContainer, outlineWidth));
if (isAnonymousBlockContinuation())
r.inflateY(collapsedMarginBefore()); // FIXME: This is wrong for block-flows that are horizontal.
return r;
}
RenderObject* RenderBlock::hoverAncestor() const
{
return isAnonymousBlockContinuation() ? continuation() : RenderBox::hoverAncestor();
}
void RenderBlock::updateDragState(bool dragOn)
{
RenderBox::updateDragState(dragOn);
if (continuation())
continuation()->updateDragState(dragOn);
}
RenderStyle* RenderBlock::outlineStyleForRepaint() const
{
return isAnonymousBlockContinuation() ? continuation()->style() : style();
}
void RenderBlock::childBecameNonInline(RenderObject*)
{
makeChildrenNonInline();
if (isAnonymousBlock() && parent() && parent()->isRenderBlock())
toRenderBlock(parent())->removeLeftoverAnonymousBlock(this);
// |this| may be dead here
}
void RenderBlock::updateHitTestResult(HitTestResult& result, const IntPoint& point)
{
if (result.innerNode())
return;
Node* n = node();
if (isAnonymousBlockContinuation())
// We are in the margins of block elements that are part of a continuation. In
// this case we're actually still inside the enclosing element that was
// split. Go ahead and set our inner node accordingly.
n = continuation()->node();
if (n) {
result.setInnerNode(n);
if (!result.innerNonSharedNode())
result.setInnerNonSharedNode(n);
result.setLocalPoint(point);
}
}
IntRect RenderBlock::localCaretRect(InlineBox* inlineBox, int caretOffset, int* extraWidthToEndOfLine)
{
// Do the normal calculation in most cases.
if (firstChild())
return RenderBox::localCaretRect(inlineBox, caretOffset, extraWidthToEndOfLine);
// This is a special case:
// The element is not an inline element, and it's empty. So we have to
// calculate a fake position to indicate where objects are to be inserted.
// FIXME: This does not take into account either :first-line or :first-letter
// However, as soon as some content is entered, the line boxes will be
// constructed and this kludge is not called any more. So only the caret size
// of an empty :first-line'd block is wrong. I think we can live with that.
RenderStyle* currentStyle = firstLineStyle();
int height = lineHeight(true, currentStyle->isHorizontalWritingMode() ? HorizontalLine : VerticalLine);
enum CaretAlignment { alignLeft, alignRight, alignCenter };
CaretAlignment alignment = alignLeft;
switch (currentStyle->textAlign()) {
case TAAUTO:
case JUSTIFY:
if (!currentStyle->isLeftToRightDirection())
alignment = alignRight;
break;
case LEFT:
case WEBKIT_LEFT:
break;
case CENTER:
case WEBKIT_CENTER:
alignment = alignCenter;
break;
case RIGHT:
case WEBKIT_RIGHT:
alignment = alignRight;
break;
case TASTART:
if (!currentStyle->isLeftToRightDirection())
alignment = alignRight;
break;
case TAEND:
if (currentStyle->isLeftToRightDirection())
alignment = alignRight;
break;
}
int x = borderLeft() + paddingLeft();
int w = width();
switch (alignment) {
case alignLeft:
break;
case alignCenter:
x = (x + w - (borderRight() + paddingRight())) / 2;
break;
case alignRight:
x = w - (borderRight() + paddingRight()) - caretWidth;
break;
}
if (extraWidthToEndOfLine) {
if (isRenderBlock()) {
*extraWidthToEndOfLine = w - (x + caretWidth);
} else {
// FIXME: This code looks wrong.
// myRight and containerRight are set up, but then clobbered.
// So *extraWidthToEndOfLine will always be 0 here.
int myRight = x + caretWidth;
// FIXME: why call localToAbsoluteForContent() twice here, too?
FloatPoint absRightPoint = localToAbsolute(FloatPoint(myRight, 0));
int containerRight = containingBlock()->x() + containingBlockLogicalWidthForContent();
FloatPoint absContainerPoint = localToAbsolute(FloatPoint(containerRight, 0));
*extraWidthToEndOfLine = absContainerPoint.x() - absRightPoint.x();
}
}
int y = paddingTop() + borderTop();
return IntRect(x, y, caretWidth, height);
}
void RenderBlock::addFocusRingRects(Vector<IntRect>& rects, int tx, int ty)
{
// For blocks inside inlines, we go ahead and include margins so that we run right up to the
// inline boxes above and below us (thus getting merged with them to form a single irregular
// shape).
if (inlineElementContinuation()) {
// FIXME: This check really isn't accurate.
bool nextInlineHasLineBox = inlineElementContinuation()->firstLineBox();
// FIXME: This is wrong. The principal renderer may not be the continuation preceding this block.
// FIXME: This is wrong for block-flows that are horizontal.
// https://bugs.webkit.org/show_bug.cgi?id=46781
bool prevInlineHasLineBox = toRenderInline(inlineElementContinuation()->node()->renderer())->firstLineBox();
int topMargin = prevInlineHasLineBox ? collapsedMarginBefore() : 0;
int bottomMargin = nextInlineHasLineBox ? collapsedMarginAfter() : 0;
IntRect rect(tx, ty - topMargin, width(), height() + topMargin + bottomMargin);
if (!rect.isEmpty())
rects.append(rect);
} else if (width() && height())
rects.append(IntRect(tx, ty, width(), height()));
if (!hasOverflowClip() && !hasControlClip()) {
for (RootInlineBox* curr = firstRootBox(); curr; curr = curr->nextRootBox()) {
int top = max(curr->lineTop(), curr->logicalTop());
int bottom = min(curr->lineBottom(), curr->logicalTop() + curr->logicalHeight());
IntRect rect(tx + curr->x(), ty + top, curr->logicalWidth(), bottom - top);
if (!rect.isEmpty())
rects.append(rect);
}
for (RenderObject* curr = firstChild(); curr; curr = curr->nextSibling()) {
if (!curr->isText() && !curr->isListMarker() && curr->isBox()) {
RenderBox* box = toRenderBox(curr);
FloatPoint pos;
// FIXME: This doesn't work correctly with transforms.
if (box->layer())
pos = curr->localToAbsolute();
else
pos = FloatPoint(tx + box->x(), ty + box->y());
box->addFocusRingRects(rects, pos.x(), pos.y());
}
}
}
if (inlineElementContinuation())
inlineElementContinuation()->addFocusRingRects(rects,
tx - x() + inlineElementContinuation()->containingBlock()->x(),
ty - y() + inlineElementContinuation()->containingBlock()->y());
}
RenderBlock* RenderBlock::createAnonymousBlock(bool isFlexibleBox) const
{
RefPtr<RenderStyle> newStyle = RenderStyle::createAnonymousStyle(style());
RenderBlock* newBox = 0;
if (isFlexibleBox) {
newStyle->setDisplay(BOX);
newBox = new (renderArena()) RenderFlexibleBox(document() /* anonymous box */);
} else {
newStyle->setDisplay(BLOCK);
newBox = new (renderArena()) RenderBlock(document() /* anonymous box */);
}
newBox->setStyle(newStyle.release());
return newBox;
}
RenderBlock* RenderBlock::createAnonymousBlockWithSameTypeAs(RenderBlock* otherAnonymousBlock) const
{
if (otherAnonymousBlock->isAnonymousColumnsBlock())
return createAnonymousColumnsBlock();
if (otherAnonymousBlock->isAnonymousColumnSpanBlock())
return createAnonymousColumnSpanBlock();
return createAnonymousBlock(otherAnonymousBlock->style()->display() == BOX);
}
RenderBlock* RenderBlock::createAnonymousColumnsBlock() const
{
RefPtr<RenderStyle> newStyle = RenderStyle::createAnonymousStyle(style());
newStyle->inheritColumnPropertiesFrom(style());
newStyle->setDisplay(BLOCK);
RenderBlock* newBox = new (renderArena()) RenderBlock(document() /* anonymous box */);
newBox->setStyle(newStyle.release());
return newBox;
}
RenderBlock* RenderBlock::createAnonymousColumnSpanBlock() const
{
RefPtr<RenderStyle> newStyle = RenderStyle::createAnonymousStyle(style());
newStyle->setColumnSpan(true);
newStyle->setDisplay(BLOCK);
RenderBlock* newBox = new (renderArena()) RenderBlock(document() /* anonymous box */);
newBox->setStyle(newStyle.release());
return newBox;
}
int RenderBlock::nextPageLogicalTop(int logicalOffset) const
{
LayoutState* layoutState = view()->layoutState();
if (!layoutState->m_pageLogicalHeight)
return logicalOffset;
// The logicalOffset is in our coordinate space. We can add in our pushed offset.
int pageLogicalHeight = layoutState->m_pageLogicalHeight;
IntSize delta = layoutState->m_layoutOffset - layoutState->m_pageOffset;
int offset = isHorizontalWritingMode() ? delta.height() : delta.width();
int remainingLogicalHeight = (pageLogicalHeight - (offset + logicalOffset) % pageLogicalHeight) % pageLogicalHeight;
return logicalOffset + remainingLogicalHeight;
}
static bool inNormalFlow(RenderBox* child)
{
RenderBlock* curr = child->containingBlock();
RenderBlock* initialBlock = child->view();
while (curr && curr != initialBlock) {
if (curr->hasColumns())
return true;
if (curr->isFloatingOrPositioned())
return false;
curr = curr->containingBlock();
}
return true;
}
int RenderBlock::applyBeforeBreak(RenderBox* child, int logicalOffset)
{
// FIXME: Add page break checking here when we support printing.
bool checkColumnBreaks = view()->layoutState()->isPaginatingColumns();
bool checkPageBreaks = !checkColumnBreaks && view()->layoutState()->m_pageLogicalHeight; // FIXME: Once columns can print we have to check this.
bool checkBeforeAlways = (checkColumnBreaks && child->style()->columnBreakBefore() == PBALWAYS) || (checkPageBreaks && child->style()->pageBreakBefore() == PBALWAYS);
if (checkBeforeAlways && inNormalFlow(child)) {
if (checkColumnBreaks)
view()->layoutState()->addForcedColumnBreak(logicalOffset);
return nextPageLogicalTop(logicalOffset);
}
return logicalOffset;
}
int RenderBlock::applyAfterBreak(RenderBox* child, int logicalOffset, MarginInfo& marginInfo)
{
// FIXME: Add page break checking here when we support printing.
bool checkColumnBreaks = view()->layoutState()->isPaginatingColumns();
bool checkPageBreaks = !checkColumnBreaks && view()->layoutState()->m_pageLogicalHeight; // FIXME: Once columns can print we have to check this.
bool checkAfterAlways = (checkColumnBreaks && child->style()->columnBreakAfter() == PBALWAYS) || (checkPageBreaks && child->style()->pageBreakAfter() == PBALWAYS);
if (checkAfterAlways && inNormalFlow(child)) {
marginInfo.setMarginAfterQuirk(true); // Cause margins to be discarded for any following content.
if (checkColumnBreaks)
view()->layoutState()->addForcedColumnBreak(logicalOffset);
return nextPageLogicalTop(logicalOffset);
}
return logicalOffset;
}
int RenderBlock::adjustForUnsplittableChild(RenderBox* child, int logicalOffset, bool includeMargins)
{
bool isUnsplittable = child->isReplaced() || child->scrollsOverflow();
if (!isUnsplittable)
return logicalOffset;
int childLogicalHeight = logicalHeightForChild(child) + (includeMargins ? marginBeforeForChild(child) + marginAfterForChild(child) : 0);
LayoutState* layoutState = view()->layoutState();
if (layoutState->m_columnInfo)
layoutState->m_columnInfo->updateMinimumColumnHeight(childLogicalHeight);
int pageLogicalHeight = layoutState->m_pageLogicalHeight;
if (!pageLogicalHeight || childLogicalHeight > pageLogicalHeight)
return logicalOffset;
IntSize delta = layoutState->m_layoutOffset - layoutState->m_pageOffset;
int offset = isHorizontalWritingMode() ? delta.height() : delta.width();
int remainingLogicalHeight = (pageLogicalHeight - (offset + logicalOffset) % pageLogicalHeight) % pageLogicalHeight;
if (remainingLogicalHeight < childLogicalHeight)
return logicalOffset + remainingLogicalHeight;
return logicalOffset;
}
void RenderBlock::adjustLinePositionForPagination(RootInlineBox* lineBox, int& delta)
{
// FIXME: For now we paginate using line overflow. This ensures that lines don't overlap at all when we
// put a strut between them for pagination purposes. However, this really isn't the desired rendering, since
// the line on the top of the next page will appear too far down relative to the same kind of line at the top
// of the first column.
//
// The rendering we would like to see is one where the lineTop is at the top of the column, and any line overflow
// simply spills out above the top of the column. This effect would match what happens at the top of the first column.
// We can't achieve this rendering, however, until we stop columns from clipping to the column bounds (thus allowing
// for overflow to occur), and then cache visible overflow for each column rect.
//
// Furthermore, the paint we have to do when a column has overflow has to be special. We need to exclude
// content that paints in a previous column (and content that paints in the following column).
//
// FIXME: Another problem with simply moving lines is that the available line width may change (because of floats).
// Technically if the location we move the line to has a different line width than our old position, then we need to dirty the
// line and all following lines.
LayoutState* layoutState = view()->layoutState();
int pageLogicalHeight = layoutState->m_pageLogicalHeight;
IntRect logicalVisualOverflow = lineBox->logicalVisualOverflowRect(lineBox->lineTop(), lineBox->lineBottom());
int logicalOffset = logicalVisualOverflow.y();
int lineHeight = logicalVisualOverflow.maxY() - logicalOffset;
if (layoutState->m_columnInfo)
layoutState->m_columnInfo->updateMinimumColumnHeight(lineHeight);
logicalOffset += delta;
lineBox->setPaginationStrut(0);
if (!pageLogicalHeight || lineHeight > pageLogicalHeight)
return;
IntSize offsetDelta = layoutState->m_layoutOffset - layoutState->m_pageOffset;
int offset = isHorizontalWritingMode() ? offsetDelta.height() : offsetDelta.width();
int remainingLogicalHeight = pageLogicalHeight - (offset + logicalOffset) % pageLogicalHeight;
if (remainingLogicalHeight < lineHeight) {
int totalLogicalHeight = lineHeight + max(0, logicalOffset);
if (lineBox == firstRootBox() && totalLogicalHeight < pageLogicalHeight && !isPositioned() && !isTableCell())
setPaginationStrut(remainingLogicalHeight + max(0, logicalOffset));
else {
delta += remainingLogicalHeight;
lineBox->setPaginationStrut(remainingLogicalHeight);
}
}
}
int RenderBlock::collapsedMarginBeforeForChild(RenderBox* child) const
{
// If the child has the same directionality as we do, then we can just return its
// collapsed margin.
if (!child->isWritingModeRoot())
return child->collapsedMarginBefore();
// The child has a different directionality. If the child is parallel, then it's just
// flipped relative to us. We can use the collapsed margin for the opposite edge.
if (child->isHorizontalWritingMode() == isHorizontalWritingMode())
return child->collapsedMarginAfter();
// The child is perpendicular to us, which means its margins don't collapse but are on the
// "logical left/right" sides of the child box. We can just return the raw margin in this case.
return marginBeforeForChild(child);
}
int RenderBlock::collapsedMarginAfterForChild(RenderBox* child) const
{
// If the child has the same directionality as we do, then we can just return its
// collapsed margin.
if (!child->isWritingModeRoot())
return child->collapsedMarginAfter();
// The child has a different directionality. If the child is parallel, then it's just
// flipped relative to us. We can use the collapsed margin for the opposite edge.
if (child->isHorizontalWritingMode() == isHorizontalWritingMode())
return child->collapsedMarginBefore();
// The child is perpendicular to us, which means its margins don't collapse but are on the
// "logical left/right" side of the child box. We can just return the raw margin in this case.
return marginAfterForChild(child);
}
int RenderBlock::marginBeforeForChild(RenderBoxModelObject* child) const
{
switch (style()->writingMode()) {
case TopToBottomWritingMode:
return child->marginTop();
case BottomToTopWritingMode:
return child->marginBottom();
case LeftToRightWritingMode:
return child->marginLeft();
case RightToLeftWritingMode:
return child->marginRight();
}
ASSERT_NOT_REACHED();
return child->marginTop();
}
int RenderBlock::marginAfterForChild(RenderBoxModelObject* child) const
{
switch (style()->writingMode()) {
case TopToBottomWritingMode:
return child->marginBottom();
case BottomToTopWritingMode:
return child->marginTop();
case LeftToRightWritingMode:
return child->marginRight();
case RightToLeftWritingMode:
return child->marginLeft();
}
ASSERT_NOT_REACHED();
return child->marginBottom();
}
int RenderBlock::marginStartForChild(RenderBoxModelObject* child) const
{
if (isHorizontalWritingMode())
return style()->isLeftToRightDirection() ? child->marginLeft() : child->marginRight();
return style()->isLeftToRightDirection() ? child->marginTop() : child->marginBottom();
}
int RenderBlock::marginEndForChild(RenderBoxModelObject* child) const
{
if (isHorizontalWritingMode())
return style()->isLeftToRightDirection() ? child->marginRight() : child->marginLeft();
return style()->isLeftToRightDirection() ? child->marginBottom() : child->marginTop();
}
void RenderBlock::setMarginStartForChild(RenderBox* child, int margin)
{
if (isHorizontalWritingMode()) {
if (style()->isLeftToRightDirection())
child->setMarginLeft(margin);
else
child->setMarginRight(margin);
} else {
if (style()->isLeftToRightDirection())
child->setMarginTop(margin);
else
child->setMarginBottom(margin);
}
}
void RenderBlock::setMarginEndForChild(RenderBox* child, int margin)
{
if (isHorizontalWritingMode()) {
if (style()->isLeftToRightDirection())
child->setMarginRight(margin);
else
child->setMarginLeft(margin);
} else {
if (style()->isLeftToRightDirection())
child->setMarginBottom(margin);
else
child->setMarginTop(margin);
}
}
void RenderBlock::setMarginBeforeForChild(RenderBox* child, int margin)
{
switch (style()->writingMode()) {
case TopToBottomWritingMode:
child->setMarginTop(margin);
break;
case BottomToTopWritingMode:
child->setMarginBottom(margin);
break;
case LeftToRightWritingMode:
child->setMarginLeft(margin);
break;
case RightToLeftWritingMode:
child->setMarginRight(margin);
break;
}
}
void RenderBlock::setMarginAfterForChild(RenderBox* child, int margin)
{
switch (style()->writingMode()) {
case TopToBottomWritingMode:
child->setMarginBottom(margin);
break;
case BottomToTopWritingMode:
child->setMarginTop(margin);
break;
case LeftToRightWritingMode:
child->setMarginRight(margin);
break;
case RightToLeftWritingMode:
child->setMarginLeft(margin);
break;
}
}
RenderBlock::MarginValues RenderBlock::marginValuesForChild(RenderBox* child)
{
int childBeforePositive = 0;
int childBeforeNegative = 0;
int childAfterPositive = 0;
int childAfterNegative = 0;
int beforeMargin = 0;
int afterMargin = 0;
RenderBlock* childRenderBlock = child->isRenderBlock() ? toRenderBlock(child) : 0;
// If the child has the same directionality as we do, then we can just return its
// margins in the same direction.
if (!child->isWritingModeRoot()) {
if (childRenderBlock) {
childBeforePositive = childRenderBlock->maxPositiveMarginBefore();
childBeforeNegative = childRenderBlock->maxNegativeMarginBefore();
childAfterPositive = childRenderBlock->maxPositiveMarginAfter();
childAfterNegative = childRenderBlock->maxNegativeMarginAfter();
} else {
beforeMargin = child->marginBefore();
afterMargin = child->marginAfter();
}
} else if (child->isHorizontalWritingMode() == isHorizontalWritingMode()) {
// The child has a different directionality. If the child is parallel, then it's just
// flipped relative to us. We can use the margins for the opposite edges.
if (childRenderBlock) {
childBeforePositive = childRenderBlock->maxPositiveMarginAfter();
childBeforeNegative = childRenderBlock->maxNegativeMarginAfter();
childAfterPositive = childRenderBlock->maxPositiveMarginBefore();
childAfterNegative = childRenderBlock->maxNegativeMarginBefore();
} else {
beforeMargin = child->marginAfter();
afterMargin = child->marginBefore();
}
} else {
// The child is perpendicular to us, which means its margins don't collapse but are on the
// "logical left/right" sides of the child box. We can just return the raw margin in this case.
beforeMargin = marginBeforeForChild(child);
afterMargin = marginAfterForChild(child);
}
// Resolve uncollapsing margins into their positive/negative buckets.
if (beforeMargin) {
if (beforeMargin > 0)
childBeforePositive = beforeMargin;
else
childBeforeNegative = -beforeMargin;
}
if (afterMargin) {
if (afterMargin > 0)
childAfterPositive = afterMargin;
else
childAfterNegative = -afterMargin;
}
return MarginValues(childBeforePositive, childBeforeNegative, childAfterPositive, childAfterNegative);
}
const char* RenderBlock::renderName() const
{
if (isBody())
return "RenderBody"; // FIXME: Temporary hack until we know that the regression tests pass.
if (isFloating())
return "RenderBlock (floating)";
if (isPositioned())
return "RenderBlock (positioned)";
if (isAnonymousColumnsBlock())
return "RenderBlock (anonymous multi-column)";
if (isAnonymousColumnSpanBlock())
return "RenderBlock (anonymous multi-column span)";
if (isAnonymousBlock())
return "RenderBlock (anonymous)";
else if (isAnonymous())
return "RenderBlock (generated)";
if (isRelPositioned())
return "RenderBlock (relative positioned)";
if (isRunIn())
return "RenderBlock (run-in)";
return "RenderBlock";
}
inline void RenderBlock::FloatingObjects::clear()
{
m_set.clear();
m_leftObjectsCount = 0;
m_rightObjectsCount = 0;
}
inline void RenderBlock::FloatingObjects::increaseObjectsCount(FloatingObject::Type type)
{
if (type == FloatingObject::FloatLeft)
m_leftObjectsCount++;
else
m_rightObjectsCount++;
}
inline void RenderBlock::FloatingObjects::decreaseObjectsCount(FloatingObject::Type type)
{
if (type == FloatingObject::FloatLeft)
m_leftObjectsCount--;
else
m_rightObjectsCount--;
}
#ifndef NDEBUG
void RenderBlock::showLineTreeAndMark(const InlineBox* markedBox1, const char* markedLabel1, const InlineBox* markedBox2, const char* markedLabel2, const RenderObject* obj) const
{
showRenderObject();
for (const RootInlineBox* root = firstRootBox(); root; root = root->nextRootBox())
root->showLineTreeAndMark(markedBox1, markedLabel1, markedBox2, markedLabel2, obj, 1);
}
#endif
} // namespace WebCore